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MOS Chair’s Column

May 15, 2016. In June 1980, the chair of the MPS Publica-

tions Committee, Michael Held, wrote “Thus the decision was

made to establish a new Newsletter – OPTIMA.” You can find

the text of his article in Optima 1, available on the Web page

www.mathopt.org/?nav=optima_details together with full copies of

all 100 issues of Optima. It is great fun to click through the old copies

– give it a try. And please join me in thanking the current and past

Editors of Optima, Donald Hearn, issues 1–55 (!), Karen Aardal, is-

sues 56–65, Jens Clausen, issues 66–72 , Andrea Lodi, issues 73–84,

Katya Scheinberg, issues 85–93, and Volker Kaibel, issues 94–100.

Their work has, of course, been strongly supported by a long line of

Co-Editors, starting with Achim Bachem and continuing through the

current team of Sam Burer and Jeff Linderoth. Many thanks to all of

them.

The back issues of Optima provide great snapshots of the so-

ciety’s activities. Another set of snapshots are the ISMP program

books. We have begun to collect pdf versions of the programs on

www.mathopt.org/?nav=ismp. The plan is to eventually have docu-

mentation for all past symposia. In this effort, a big thanks goes to

Art Geoffrion, for donating his collection of MOS material, including

programs for 1967, 1973, 1976, and 1979. We will get these scanned

during the coming weeks. If you have any old ISMP programs, par-

ticularly those before 1967, that you might be willing to donate or

scan, please send me an email. A full set of programs on the MOS

Web site would be a great resource for the society.

This summer brings to an end the current three-year cycle of the

MOS. On July 18, 2016, Karen Aardal will take over as the society

Chair and I will move to the role of Vice Chair. Also, Marina Epel-

man will take over as the MOS Treasurer, after a six-year run by Juan

Meza. On the Publications Committee, Mike Juenger will take over

as Chair, following the great work of Nick Gould. Finally, Sebastian

Stiller will be the new Web Editor, following the long run of Marc

Pfetsch. Thanks to our officers, both old and new.

Let me wrap up with a few quick remarks on the status of the

society. We currently have 1,487 members. This follows our usual

pattern: the membership goes up in the year following the ISMP,

then declines in the following two years of the cycle. The society is

in very good shape financially and we are well positioned to take on

new activities. If you have something in mind, please send a note to

any officer or member of the MOS Council.
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As of March 31, 2016, the society has $794,610 in total assets,

with $25,711 restricted for the Fulkerson Prize and $19,257 re-

stricted for the Lagrange Prize. This is a substantial increase over

our balance of $550,261 at the end of 2012. The MOS is a learned

society, with no professional staff. Our main expense is an adminis-

trative fee paid to SIAM, to maintain our membership list, provide

email service, and handle our financial matters. Over the past three

years, the SIAM fee amounted to a total of $125,728. This was more

than offset by our $155,966 royalty income over the three-year pe-

riod, derived mainly from the publication of MPA, MPB, and MPC.

Thanks again to everyone for your support over the past three

years. Let’s all welcome Karen as the new chair of the society!

Bill Cook, University of Waterloo

bico@uwaterloo.ca

Frank Vallentin

Optimization in discrete geometry

Optimal structures in discrete geometry are fundamental to many areas

in mathematics, physics, information theory, and materials science. Fa-

mous examples are densest packings of spheres, or minimal energy point

configurations on Euclidean spheres.

Studying optimal structures we face two basic tasks: How to construct

structures which are conjecturally optimal? How to prove that a given

structure is indeed optimal?

For the first question researchers in mathematics and engineering have

found many heuristics which often work well in practice. The second ques-

tion is much harder, both from the mathematical as well as from the

computational point of view. In this article a universal methodology is

presented – based on a blend of tools coming from infinite-dimensional

semidefinite optimization and harmonic analysis, together with compu-

tational techniques coming from real algebraic geometry and polynomial

optimization – which frequently gives the best-known results.

1 Introduction

Many optimization problems in discrete geometry are concerned

with the optimal distribution of finitely many points X =

{x1, ... , xN} on a compact Riemannian manifold M . There are many

possibilities to optimize the quality of such a geometric configura-

tion X : One can maximize the packing density (or equivalently the

packing radius), which is by far the best-studied example. Other im-

portant optimization problems in discrete geometry are minimizing

potential energy, or minimizing covering density. In Section 2 we give

concrete examples and explain in which areas they occur naturally.

These geometric optimization problems have the flavor of binary

optimization problems, which occur frequently in classical combina-

torial optimization: For every point x ∈ M one has to make the

binary decision whether x belongs to the finite set X or not.

http://www.mathopt.org/?nav=optima_details
http://www.mathopt.org/?nav=ismp
mailto:bico@uwaterloo.ca


2 OPTIMA 100

On the one hand, the geometric setting is more difficult than

the classical combinatorial setting, since the Riemannian manifold M

contains infinitely many points. So one has to work with infinitely

many binary decision variables and the optimization problems be-

come infinite-dimensional. On the other hand, the geometric setting

also has advantages: Usually the geometric structure of M is nice –

it is smooth and it has many symmetries – and this one can exploit

when performing the numerical optimization.

The goal of this article is to explain how one can generalize tools

from finite-dimensional combinatorial optimization to this infinite-

dimensional geometric setting. In Section 3 we define a hierarchy of

increasingly stronger semidefinite programs which eventually solve

the discrete geometry optimization problem, but which become

more and more expensive to solve computationally. We will apply an

infinite dimensional generalization of Lasserre’s hierarchy introduced

in [30] which, in the finite setting, exploits the duality between sum

of squares of polynomials and the moment problem. In Section 4 we

show how to solve the infinite-dimensional semidefinite programs.

In particular we illustrate how the symmetry of the manifold M can

be used to simplify the computation. We end with Section 5 where

we report on recent results and pose open problems.

2 Optimization problems in discrete geometry

Before we explain our methods, we give a few concrete definitions

of optimization problems in discrete geometry. Here we also show

a few applications.

2.1 Packing

Let M be a compact metric space with metric d . Given a positive

real number r , the sphere packing problem asks: How many pairwise

nonoverlapping balls B(x , r) = {y ∈ M : d(x , y) ≤ r} of radius r

can one fit into M . In other words, what is the constant

A(M, 2r) = max{|X | : X ⊆ M, d(x , y) ≥ 2r

for x , y ∈ X with x 6= y} ?

In the theory of signal processing, especially when working with er-

ror correcting codes, the sphere packing problem in high dimen-

sional manifolds is central. Already in his foundational paper from

1948 Claude E. Shannon established the close connection between

dense sphere packings and good error correcting codes. In Shan-

non’s model a message should be sent from a source to a destination

via a communication channel. The channel is noisy: It may happen

that the signal sent is corrupted by random noise. Error correcting

codes help that in most cases this corruption can be repaired, so that

error free communication is possible. The communication channel

is modelled by a compact metric space M . Transmitter and receiver

agree on a finite dictionary X ⊆ M which the transmitter is allowed

to send. When the transmitter sends x ∈ X the channel corrupts x

by random noise so that x ′ ∈ M is received. Now it is natural for the

receiver to find x∗ ∈ X so that d(x ′, x∗) = min{d(x ′, y) : y ∈ X}.

When X was a sphere packing with balls of radius r and when the

noise was small (d(x , x ′) < r holds), then one recovers the original

message, i.e., one has x∗ = x . Usually an estimate of the noise of

the channel is known beforehand, meaning that one knows a bound

for r . Now an important goal is to use the capacity of the channel.

So finding a dense sphere packing X with |X | as close as possible to

A(M, 2r) is interesting.

There are different types of channels and they are modelled by dif-

ferent metric spaces M . For instance, the discrete binary symmetric

channel can be modelled by M = F
n
2 , the n-dimensional vector space

over the finite field with the two elements 0 and 1, and the Ham-

ming distance d(x , y) = |{i ∈ {1, ... , n} : xi 6= yi}|. The continuous

symmetric channel with Gaussian white noise of given finite power

can be modelled by the unit sphere Sn−1 and error correcting codes

in this model correspond to spherical codes. Constant weight codes

are discrete analogs of spherical codes.

The innovation of new technological devices can make it neces-

sary to consider “more exotic” manifolds. For example, when deal-

ing with a multiple input multiple output scenario, we have m trans-

mit antennas and m receive antennas, each of which can transmit or

receive real vectors of length t . In this case, we have

x
′ = Hx +W with x , x ′ ∈ R

m×t ,H ∈ R
m×m,W ∈ R

m×t ,

where x is the transmitted signal, H is the random matrix where

entry Hij says how much of signal sent by transmit antenna j was

received by antenna i , W is the random noise matrix, and x ′ is the

received signal, see [56]. Then the row spaces of matrices x and Hx

coincide with probability 1. So it makes sense to encode messages by

using packings in the real Grassmannian manifold Gm,t where points

represent m-dimensional subspaces in t-dimensional space R
t . Dis-

tance between two subspaces P and Q ∈ Gm,t is measured by the

chordal distance,

dc(P,Q) =

(
m∑

i=1

(sin θi )
2

)1/2

,

where θ1, ... , θm ∈ [0, π/2] are the m principal angles defined by P

and Q ; θ1 is the smallest angle between a line p1 in P and a line q1

in Q , θ2 is the smallest angle between a line p2 in the orthogonal

complement of p1 in P and a line q2 in the orthogonal complement

of q1 in Q , θ3 is the smallest angle between a line p3 in the orthog-

onal complement of p1 + p2 in P and a line q3 in the orthogonal

complement of q1 + q2 in Q , etc.

Other geometric packing problems, which are non-compact, are

translative packings of a centrally symmetric convex body K. Here

M is the n-dimensional Euclidean space R
n, and the metric is given

by the Minkowski functional of K:

‖x‖K = inf{λ ∈ R>0 : x ∈ λK}.

When K is the n-dimensional unit ball, we speak about n-

dimensional sphere packing.

Table 1 summarizes the packing problems we considered in this

section.

2.2 Energy minimization

One can define the problem of minimizing the potential energy of a

point configuration on any manifold. For the manifold being the unit

sphere Sn−1 the problem is defined as follows: Given a potential

function h : (0, 4] → R (for example the Coulomb potential energy

t 7→ 1/tn−2), the potential energy of N points X = {x1, ... , xN} on

the unit sphere Sn−1 is

Eh(X ) =
1

2

∑

i 6=j

h(‖xi − xj‖
2).

The goal is to arrange the N points in such a way that Eh(X ) is mini-

mized. In the limit, potential energy minimization specializes to max-

imizing packing density: If h is a hard-core potential, i.e. if it attains

the value infinity from 0 up to a certain radius 2r and zero beyond

it, then point configurations attaining minimal potential energy cor-

respond to packings of spherical caps with radius r (measured in the

Euclidean metric).

Potential energy minimization models physical particle systems,

for instance colloidal particles in disperse media. A classical exam-

ple of potential energy minimization is the Thomson problem which
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asks for the minimal-energy configuration of N points on the unit

sphere S2 which interact via the Coulomb potential 1/r at Euclidean

distance r .

Smale’s 7th problem [47] deals with a logarithmic potential func-

tion, h(t) = 1
log

√
t
. Smale asks whether one can efficiently find N

points in X ⊆ S2 so that

Eh(X )− min
Y⊆S2,|Y |=N

Eh(Y ) = O(logN),

holds. The motivation for this question comes from finding good

starting polynomials for homotopy algorithms for finding roots of

complex polynomials.

It turns out that some configurations consisting of few points

which are beautifully symmetric, like twelve points on S2 forming

the vertices of the regular icosahedron, are optimal for a huge class

of natural potential functions. This was noted by Cohn and Kumar

[7] who coined this phenomenon “universal optimality”.

Definition 2.1. A point configuration X ⊆ Sn−1 is called universally

optimal if it minimizes potential energy for all completely monotonic

potential functions h, where a function h : (0, 4] → R is called com-

pletely monotonic if its derivatives satisfy (−1)kh(k)(x) ≥ 0 for all

x ∈ (0, 4] and k ≥ 0, so that it is decreasing, convex, etc.

Energy minimizing point configurations on spheres have attracted

mathematicians in fields such as approximation and coding theory,

and biologists, chemists, and physicists in diverse fields such as viral

morphology, crystallography, molecular structure and electrostatics.

As engineers advance in gaining control of the microscopic and even

nanoscopic world, energy minimization principles appear to become

increasingly important for synthetic fabrication and design. Through

the understanding of minimal energy configurations one can design

nano-materials by a self-assembly process, shown for example by

Whitesides, Kriebel, and Mayers [54]. In approximation theory, min-

imal energy points are used to discretize manifolds, see e.g. Hardin

and Saff [22].

2.3 Covering

How can one distribute the N points X on the unit sphere Sn−1 so

that the covering radius

R(X ) = max
y∈Sn−1

min
i=1,...,N

‖y − xi‖

is minimized? This question of optimal coverings by spherical caps

has applications in coding theory, for instance when quantizing n-

dimensional Gaussian vectors with independent components (which

with high probability lies near the surface of a sphere). Hardin,

Sloane, and Smith [46] found point configurations which have a small

covering radius by computer experiments. However, apart from

asymptotic results for very large values of N (and besides the trivial

volume bound), no method is known to find strong lower bounds

for the covering radius.

3 Infinite-dimensional semidefinite optimization

The packing problems described above can be modeled as indepen-

dent set problems in distance graphs. A distance graph G = (V ,E)

is a graph where (V , d) is a metric space, and where there ex-

ists D ⊆ (0,∞) such that x and y are adjacent precisely when

d(x , y) ∈ D . An independent set of an undirected graph G = (V ,E)

is a subset of the vertex set which does not span an edge.

Now one is trying to find an independent set which is as large

as possible. What “large” means depends on the situation. When

the vertex set V is compact we can simply count and we use the

independence number

α(G) = sup{|I | : I ⊆ V , I is independent}.

In the non-compact translative body packing case one needs to use

a density version of the independence number since maximal inde-

pendent sets have infinite cardinality: The (upper) point density of an

independent set I ⊂ R
n is

δ(I ) = lim sup
R→∞

|I ∩ [−R,R]n|

vol([−R,R]n)
,

where [−R,R]n is the cube centered at the origin with side length

2R . This measures the number of centers of bodies per unit vol-

ume. To determine the geometric density of the corresponding body

packing we multiply δ(I ) by the volume of the body K.

Currently, these independent set problems have been solved only

in a few special cases. One might expect that they will never be

solved in full generality, for all parameters. Finding good lower

bounds by constructions and good upper bounds by obstructions

are both challenging tasks. Over the last years the best known re-

sults were achieved with computer assistance: Algorithms like the

adaptive shrinking cell scheme of Torquato and Jiao [50] generate

dense packings and give very good lower bounds. The combina-

tion of semidefinite programming and harmonic analysis often gives

the best known upper bounds for these packing problems. This

method originated from work of Hoffman [23], Delsarte [11], and

Lovász [37].

3.1 Lasserre’s hierarchy for finite graphs

Computing the independence number of a finite graph is an NP-

hard problem as shown by Karp [26]. Approximating optimal solu-

tions of NP-hard problems in combinatorial optimization with the

help of linear and semidefinite optimization is a very wide and active

area of research. The most popular semidefinite programming hi-

erarchies for NP-hard combinatorial optimization problems are the

Lovász-Schrijver hierarchy [38] (the N+-operator) and the hierar-

chy of Lasserre [31]. Laurent [32] showed that Lasserre’s hierarchy

is stronger (at the same step) than the Lovász-Schrijver hierarchy.

We now give a formulation of Lasserre’s hierarchy for computing

the independence number of a finite graph. Here we follow Lau-

rent [32].

Table 1. Examples of packing problems

Metric space M Packing problem

Fn
2 , d(x , y) = |{i : xi 6= yi}| Hamming distance Binary codes

Fn
q , d Hamming distance q-ary codes

{x ∈ Fn
q : d(0, x) = w}, d Hamming distance Constant weight codes

Sn−1 = {x ∈ Rn : ‖x‖ = 1}, d(x , y) = cos x · y spherical distance Spherical codes

Gm,t , dc chordal distance Grassmannian codes

RPn−1 = G1,n Codes in real projective space

Rn , d(x , y) = ‖x − y‖K Translative body packing
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Definition 3.1. The t-th step of Lasserre’s hierarchy of a finite

graph G = (V ,E) is defined as

last(G) = max
{∑

x∈V

y{x} : y ∈ R
I2t
≥0, y∅ = 1,

Mt(y) is positive semidefinite
}
,

where It is the set of all independent sets with at most t elements

and where Mt(y) ∈ R
It×It is the moment matrix defined by the

vector y : Its (J, J′)-entry equals

(Mt(y))J,J′ =

{
yJ∪J′ if J ∪ J′ ∈ I2t ,

0 otherwise.

One can show that the first step in Lasserre’s hierarchy coincides

with the ϑ′-number, the strengthened version of Lovász ϑ-number

[37] which is due to Schrijver [43]; for a proof see for instance [44,

Theorem 67.11].

Definition 3.2. The ϑ′-number of a finite graph G = (V ,E) is

defined as

ϑ′(G) = max
{ ∑

x,y∈V

K(x , y) : K ∈ R
V×V is positive

semidefinite, Trace(K) = 1,K(x , y) ≥ 0 for {x , y} ∈ E

}

Furthermore, the hierarchy is a complete proof system, in the

following sense:

Theorem 3.3. The hierarchy converges to α(G) after at most α(G)

steps:

ϑ′(G) = las1(G) ≥ las2(G) ≥ ... ≥ lasα(G)(G) = α(G).

Lasserre [31] showed that the hierachy converges in finitely many

steps in the general setting of hierarchies for 0/1 polynomial opti-

mization problems. For this he used Putinar’s Positivstellensatz [40].

Laurent [32] gave an elementary proof based on combinatorial mo-

ment matrices and showed that the hierarchy converges in at most

α(G) steps. She applied the fact that the cone of positive semidefi-

nite moment matrices where rows and columns are indexed by the

power set 2V is a simplicial polyhedral cone; an observation due to

Lindström [35] and Wilf [55]. More specifically using the inclusion-

exclusion principle one can show:

Theorem 3.4. The following equality holds:

{
M ∈ R

2V×2V : M � 0,M is a moment matrix
}

= cone{χSχ
T
S : S ⊆ V }, (1)

where a moment matrix M is a matrix where the entry MJ,J′ only de-

pends on the union J ∪ J′ and where the vector χS ∈ R
2V is defined

componentwise by

χS (R) =

{
1 if R ⊆ S ,

0 otherwise.

To set up a semidefinite programming hierarchy many variations

are possible: For instance one can consider only “interesting” prin-

cipal submatrices of the moment matrices to simplify the computa-

tion and one can also add more constraints coming from problem

specific arguments. In fact, in the definition of last(G) we used the

nonnegativity constraints yS ≥ 0 for S ∈ I2t . Even without them,

the convergence result holds, and the first step in the hierarchy co-

incides with the Lovász ϑ-number (without prime).

A rough classification for all these variations can be given in terms

of n-point bounds. This refers to all variations which make use of

variables yS with |S | ≤ n. An n-point bound is only capable of us-

ing obstructions coming from the local interaction of configurations

having at most n points. For instance Lovász ϑ-number is a 2-point

bound and the t-th step in Lasserre’s hierarchy is a 2t-point bound.

The relation between n-point bounds and Lasserre’s hierarchy was

first made explicit by Laurent [33] in the case of bounds for binary

codes.

3.2 Generalization of Lasserre’s hierarchy to infinite graphs

In [29] de Laat and Vallentin generalized Lasserre’s hierarchy to infi-

nite graphs which arise in geometric packing problems. For this we

consider topological packing graphs where vertices which are close

are adjacent and where vertices which are adjacent will stay adjacent

after slight perturbations:

Definition 3.5. A graph whose vertex set is a Hausdorff topolog-

ical space is called a topological packing graph if each finite clique is

contained in an open clique, where a clique is a subset of the vertices

where every two vertices are adjacent.

For instance distance graphs G where D is open and D contains

the interval (0, δ) for some δ > 0 are topological packing graphs.

That D contains an interval starting from 0 implies that vertices

which are close are adjacent, and that D is open implies that adja-

cent vertices will stay adjacent after slight perturbations.

Now we introduce our generalization of Lasserre’s hierarchy for

compact topological packing graphs.

Before we go into some of the technical details we would like to

comment on the choice of spaces in our generalization: In Lasserre’s

hierarchy for finite graphs the optimization variable y lies in the cone

R
I2t
≥0. One might try to use the same cone when I2t is uncountable,

but then there are too many variables and it is impossible to express

the objective function. At the other extreme one might try to re-

strict this cone to finitely (or countably) supported vectors, but then

we do not know how to develop a duality theory. A duality theory

is important for concrete computations: Minimization problems can

be used to derive upper bounds rigorously, but in the convergence

proof we use the maximization problem. We use the cone of Borel

measures where we have one degree of freedom for every open set.

One can use the topology of V to equip the set It , consist-

ing of the independent sets which have at most t elements, with

a compact Hausdorff topology, see [29] for the technical details.

Let C(I2t) be the set of continuous real-valued functions on I2t . By

the Riesz representation theorem (see e.g. [5, Chapter 2.2]) the

topological dual of C(I2t), where the topology is defined by the

supremum norm, can be identified with the space M(I2t) of signed

Radon measures. A signed Radon measure is the difference of two

Radon measures, where a Radon measure ν is a locally finite measure

on the Borel algebra satisfying inner regularity: ν(B) = sup{ν(C) :

C ⊆ B, C compact} for each Borel set B . Nonnegative functions in

C(I2t) form the cone C(I2t)≥0. Its conic dual is given by the cone of

Radon measures

M(I2t)≥0 = (C(I2t)≥0)
∗

= {λ ∈ M(I2t) : λ(f ) ≥ 0 for all f ∈ C(I2t)≥0}.

Denote by C(It × It)sym the space of symmetric kernels, which are the

continuous functions K : It × It → R such that

K(J, J′) = K(J′, J) for all J, J′ ∈ It .
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We say that a symmetric kernel K is positive if

(K(Ji , Jj ))
m
i ,j=1 is positive semidefinite for all m ∈ N

and J1, ... , Jm ∈ It .

The positive kernels form a cone C(It×It)�0. The dual of C(It×It)sym

can be identified with the space of symmetric signed Radon mea-

sures M(It × It)sym. Here a signed Radon measure µ ∈ M(It × It)

is symmetric if

µ(E × E
′) = µ(E ′ × E) for all Borel sets E and E

′.

We say that a measure µ ∈ M(It × It)sym is positive definite if it lies

in the dual cone M(It × It)�0 = (C(It × It)�0)
∗.

Now we are ready to define our generalization:

– The optimization variable is λ ∈ M(I2t)≥0.

– The objective function evaluates λ at I=1, where in general,

I=t = {S ∈ It : |S | = t},

and so when t = 1 we simply deal with all vertices, as single-

ton sets. This is similar to the objective function
∑

x∈V y{x} in

Lasserre’s hierarchy for finite graphs.

– The normalization condition reads λ({∅}) = 1.

– For generalizing the moment matrix condition “Mt(y) is positive

semidefinite” we use a dual approach. We define the operator

At : C(It × It)sym → C(I2t) by

AtK(S) =
∑

J,J′∈It :J∪J′=S

K(J, J′).

which is bounded and hence continuous. Thus there exists the

adjoint A∗
t : M(I2t) → M(It × It)sym and the moment matrix

condition reads A∗
t λ ∈ M(It × It)�0.

Definition 3.6. The t-th step of the generalized hierarchy is

last(G) = sup
{
λ(I=1) : λ ∈ M(I2t)≥0, λ

(
{∅}
)
= 1,

A
∗
t λ ∈ M(It × It)�0

}
.

Clearly, we have a nonincreasing chain

las1(G) ≥ las2(G) ≥ ... ≥ lasα(G)−1(G) ≥ lasα(G)(G)

= lasα(G)+1(G) = ... , (2)

which stabilizes after α(G) steps (note that Iα(G) = Iα(G)+1 = ...),

and specializes to the original hierarchy if G is a finite graph. Each

step gives an upper bound for α(G) because for every independent

set S the measure

λ =
∑

Q∈I2t :Q⊆S

δQ , where δQ is the delta measure at Q,

is a feasible solution for last(G) with objective value |S |. To see this

we note that λ({∅}) = 1, and for any K ∈ C(It × It)�0 we have

〈K ,A∗
t λ〉 = 〈AtK , λ〉 =

∑

R∈I2t :R⊆S

∑

J,J′∈It :J∪J′=R

K(J, J′)

=
∑

J,J′∈It :J,J′⊆S

K(J, J′) ≥ 0.

The dual program of last(G) is

last(G)∗ = inf
{
K(∅, ∅) : K ∈ C(It × It)�0, AtK(S) ≤ −1I=1

(S)

for S ∈ I2t \ {∅}
}
,

and in [29] we showed that strong duality holds in every step:

Theorem 3.7. Let G be a compact topological packing graph. For ev-

ery t ∈ N we have last(G) = last(G)∗, and the optimum in last(G) is

attained.

We show that the chain (2) converges to the independence num-

ber:

Theorem 3.8. Let G be a compact topological packing graph. Then,

lasα(G)(G) = α(G).

3.3 Explicit computations in the literature

Explicit computations of n-point bounds have been done in a variety

of situations. Table 2 provides a guide to the literature.

For the first three packing problems in this table one can use

Lasserre’s hierarchy for finite graphs. For the last seven packing

problems in this table our generalization can be used, where in the

last four cases one has to perform a compactification of the vertex

set first.

The convergence of the hierarchy shows that this approach is in

theory capable of solving every given packing problem in discrete ge-

ometry. Computing higher steps in this hierarchy is computationally

intractable but one attractive feature of the hierarchy is that already

its first steps give strong upper bounds as one can see from the

papers cited in the table above.

3.4 Generalization of Lasserre’s hierarchy for energy minimization

De Laat [27] introduces an infinite-dimensional version of Lasserre’s

hierarchy for energy minimization problems. Consider a compact

metric space (V , d) and a potential function h : (0, diamV ] → R

which should have the property that h(s) goes to infinity when s

goes to zero. Define a graph G with vertex set V where two distinct

vertices are adjacent whenever h(d(x , y)) ≤ B where B is an upper

bound on the minimum energy Eh(X ) of N points X = {x1, ... , xN}

in V . Define a continuous function f ∈ C(IN) by

f (S) =

{
h(d(x , y)) if S = {x , y} and x 6= y ,

0 otherwise.

Definition 3.9. The t-th step of the generalized hierarchy for en-

ergy minimization is

Et(G ,N, h) = inf
{
λ(f ) : λ ∈ M(I2t)≥0,A

∗
t λ ∈ M(It × It)�0,

λ(I=i ) =

(
N

i

)
for 0 ≤ i ≤ 2t

}
.

Again, the hierarchy gives a sequence of increasingly stronger

bounds which converges to the minimal energy, and again the in-

fimum can be replaced by a minimum.

Theorem 3.10. We have

Et(G ,N, h) ≤ Et+1(G ,N, h) for t ∈ N,

and

EN(G ,N, h) = min
Y⊆V ,|Y |=N

Eh(Y ).

For a proof of this theorem we refer to [27]. The bound

E1(G ,N, h) is a two-point bound and in the case of the unit sphere

it is due to Yudin [53]. Yudin’s bound is the principal tool in the study

of universal optimal point configurations on the unit sphere by Cohn

and Kumar [7].
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4 Symmetry reduction

When a graph has infinitely many vertices, then computing any step

in the semidefinite optimization hierarchies is an infinite-dimensional

semidefinite program. In most cases, we do not know how to

solve these optimization problems by analytic means. So one has

to use a computer to determine an, at least approximate, opti-

mal solution. Therefore a systematic approach to approximate the

infinite-dimensional optimization problem by a sequence of finite-

dimensional ones is needed.

One approach would be to discretize the graph and use the “clas-

sical” hierarchies. However, this is usually not a good idea, since

by discretizing the graph one destroys the symmetry of the situa-

tion. It is a well-known fact that symmetries can be very beneficially

exploited when solving convex optimization problems. Another ap-

proach, the one which we advocate here, is to first transform the

semidefinite program at hand to its Fourier domain (e.g. we work

with the space of Fourier coefficients) and then perform the dis-

cretization in the Fourier domain. Since in the Fourier domain the

symmetries are particularly visible, the full symmetry of the situation

can be exploited.

In this section we demonstrate this approach in a concrete setting,

where the advantage of exploiting symmetry is especially apparent

and nice. We will consider computing the first step las1(Cay(G ,X ))

of the hierarchy for Cayley graphs defined on the compact Lie group

G = SO(3), the group of three-dimensional rotation matrices.

Generally, a Cayley graph Cay(G ,X ) is defined by a group G and

a subset X ⊆ G . The vertices of the Cayley graph Cay(G ,X ) are

the elements of G and the neighborhood of the identity element

e of G is the set X . Now this neighborhood is transported to all

other group elements via the group action. This means that x and

y in G are adjacent whenever xy−1 ∈ X . We want to work with

undirected graphs so we additionally require that X = X−1 holds.

We consider a Cayley graph whose vertices are the elements of

the rotation group SO(3) which is given by all orthogonal matrices

having determinant 1:

SO(3) = {A ∈ R
3×3 : AT

A = I , det(A) = 1}.

Let C ⊆ R
3 be a proper convex cone. Now we will study indepen-

dent sets in the Cayley graph Γ = Cay(G ,X ) defined by

G = SO(3) and X = {A ∈ SO(3) : C◦ ∩ AC
◦ 6= ∅},

where C◦ denotes the topological interior of C . Independent sets in

this Cayley graph exactly correspond to packings of rotations of the

set C ∩ S2 on the unit sphere S2. This means for instance that if the

cone C has a regular k-gon as a base then we want to pack regular

spherical k-gons on the unit sphere; when the cone C has a round

disk as a base then we are packing spherical caps on S2, or in other

words, we are considering spherical codes.

Figure 1. Packing of twenty cones having an equilateral triangle as base

As mentioned in the previous section, the first step of the hier-

archy coincides with the ϑ′-number, a strengthened version of the

Lovász ϑ-number. In our case, it has, after dualizing, the following

form:

ϑ′(Γ) = inf M

K − J is a positive kernel,

K(x , x) = M for all x ∈ G ,

K(x , y) ≤ 0 for all {x , y} 6∈ E where x 6= y ,

M ∈ R, K ∈ C(G × G) is symmetric.
(3)

Here an element in the space C(G × G) of real-valued continuous

functions over G × G is called a kernel. A kernel K is symmetric if

K(x , y) = K(y , x) for all x , y ∈ G . It is positive if it is symmet-

ric and if for any m ∈ N and for any x1, . . . , xm ∈ G , the ma-

trix
(
K(xi , xj )

)m
i ,j=1

is positive semidefinite. The kernel K − J is

simply defined componentwise by (K − J)(x , y) = K(x , y) − 1 for

x , y ∈ G .

Now we are ready to discuss how to exploit the symmetry to

simplify the computation of ϑ′(Γ). The optimization problem (3)

defininig ϑ′(Γ) is invariant under the action of G , i.e. if (M,K) is

a feasible solution of (3) then so is (M,K ′) where

K
′(x , y) = K(g−1

x , g−1
y) with g ∈ G .

Hence, we can symmetrize every feasible solution (M,K) by taking

the group average and applying the Haar integral of the group G :

K(x , y) =

∫

G

K(g−1
x , g−1

y) dg .

Then one can check that (M,K ) is again a feasible solution of (3)

and that K is G -invariant, i.e.

K (g−1
x , g−1

y) = K(x , y) for all x , y , g ∈ G .

Thus, instead of optimizing over all K ∈ C(G ×G) it suffices to opti-

mize only over G -invariant kernels. In particular, these kernels only

depend on one parameter in G and no longer on two parameters

in G × G because K(x , y) = K(e, x−1y) holds for all x , y ∈ G . In

harmonic analysis the cone of positive kernels which are invariant

Table 2. Computation of n-point bounds

Packing problem 2-point bound 3-point bound 4-point bound

Binary codes Delsarte [11] Schrijver [45] Gijswijt, Mittelmann, Schrijver [20]

q-ary codes Delsarte [11] Gijswijt, Schrijver, Tanaka [19] Litjens, Polak, Schrijver [36]

Constant weight codes Delsarte [11] Schrijver [45], Regts [41]

Spherical codes Delsarte, Goethals, Seidel [13] Bachoc, Vallentin [4]

Codes in RPn−1 Kabatiansky, Levenshtein [25] Cohn, Woo [10]

Grassmannian codes Bachoc [1]

Sphere packings Cohn, Elkies [6]

Binary sphere and spherical cap packings de Laat, Oliveira, Vallentin [28]

Translative body packings Dostert, Guzmán, Oliveira, Vallentin [14]

Congruent copies of a convex body Oliveira, Vallentin [39]
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under the group G is called the cone of positive type functions on G

and it is denoted by P(G).

So we can simplify (3) by setting φ(x) = K(e, x):

ϑ′(Γ) = inf {φ(e) : φ− 1 ∈ P(G),φ(x) ≤ 0 for all x 6∈ X} . (4)

The next step is to give an explicit parametrization of the cone

P(G) and here harmonic analysis kicks in. For an excellent reference

on harmonic analysis where the cone of positive type functions is dis-

cussed in detail we recommend the reader to consult the book [17]

by Folland.

When the group G is compact, then the parametrization of P(G)

is particularly nice (but in the following, for the sake of simplicity,

we ignore all convergence issues, although they are not difficult). To

write down the parametrization we have to have an explicit descrip-

tion of the irreducible unitary representations of the group G .

A few standard definitions from harmonic analysis: A (finite-

dimensional) unitary representation of G is a group homomorphism

π : G → U(dπ) where U(dπ) is the group of unitary dπ × dπ matri-

ces. A subspace M of Cdπ is π-invariant if π(g)m ∈ M for all g ∈ G

and m ∈ M . The unitary representation π is said to be irreducible if

{0} and C
dπ are the only π-invariant subspaces of Cdπ . Two unitary

representations π and π′ are (unitarily) equivalent if there is a unitary

matrix T such that Tπ(g) = π′(g)T for all g ∈ G . We can fix a

set of mutually inequivalent irreducible unitary representations of G ,

so that each unitary equivalence class has a representative; call this

set Ĝ . This allows us to define the Fourier transform of a function

f : G → C:

f̂ (π) =

∫

G

f (g)π(g) dg ,

where f̂ (π) is a complex dπ×dπ matrix. The Fourier inversion formula

says we can recover f from its Fourier transform:

f (g) =
∑

π∈Ĝ

dπ〈f̂ (π),π(g)〉.

The inner product used here is the trace inner product, defined as

〈A,B〉 = Trace(B∗A) for square complex matrices A and B of the

same dimension, where B∗ denotes the conjugate-transpose of B .

Now the explicit parametrization of the cone of functions of posi-

tive type reads as follows (it is frequently called Bochner’s theorem):

Theorem 4.1. Let G be a compact group. The cone of positive type

functions on G equals

P(G) =
{∑

π∈Ĝ

dπ〈f̂ (π),π(g)〉 :

f̂ (π) is (Hermitian) positive semidefinite
}
.

So the cone P(G) is an infinite-dimensional direct product of

cones of finite-dimensional Hermitian positive semidefinite matrices.

Using just finitely many cones of this direct product is a natural way

to approximate the original infinite-dimensional optimization prob-

lem by finite-dimensional ones.

In the case of the rotation group G = SO(3) we can give explicit

formulæ: We parametrize the elements of SO(3) by Euler angles. A

triple of angles (ϕ1, θ,ϕ2), where ϕ1,ϕ2 ∈ [0, 2π] and β ∈ [0, π]

corresponds to the rotation where we

(1) first rotate on the xy -plane, keeping z fixed, by an angle of ϕ1;

(2) then rotate on the yz-plane, keeping x fixed, by an angle of θ;

(3) and finally rotate on the xy -plane again, keeping z fixed, by an

angle of ϕ2.

Thus we describe all elements of SO(3) as a product of the three

corresponding matrices gϕ1gθgϕ2 with

gϕ1 =



cosϕ1 − sinϕ1 0

sinϕ1 cosϕ1 0

0 0 1


 , gθ =



1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 ,

gϕ2 =



cosϕ2 − sinϕ2 0

sinϕ2 cosϕ2 0

0 0 1


 .

Then a positive type function f : SO(3) → R is given by

f (ϕ1, θ,ϕ2) =

∞∑

l=0

(2l + 1)〈f̂ (l),πl (ϕ1, θ,ϕ2)〉,

where f̂ (l) is a Hermitian positive semidefinite matrix of size

(2l + 1)× (2l + 1) and the unitary representation πl is given by

πl (ϕ1, θ,ϕ2) =
(
i
m−n

e
−i(mϕ1+nϕ2)P

l
mn(cos θ)

)l
m,n=−l

,

and where

P
l
mn(cos θ) =

(
(l −m)!(l +m)!

(l − n)!(l + n)!

)1/2

sinm−n θ

2
cosm+n θ

2
P
(m−n,m+n)
l

(cos θ),

and where P
α,β
k

is a Jacobi polynomial of degree k which is orthog-

onal with respect to the measure (1−x)α(1+x)β dx on the interval

[−1, 1].

The nonnegative integers l = 0, 1, ... determine the set Ĝ . In to-

tal, we have a very explicit parametrization of the cone. The book

[18] for example contains an elementary way of deriving the formulæ

above.

With this information one can compute approximations of

ϑ′(Cay(G ,X )) using standard SDP solvers: Instead of using all possi-

ble f ∈ P(G) one only optimizes over those f which can be written

as finite sums

f (ϕ1, θ,ϕ2) =

N∑

l=0

(2l + 1)〈f̂ (l),πl (ϕ1, θ,ϕ2)〉,

given some prescribed value of N . Usually, but this of course depends

on X , already small values of N , like N = 15, give good approxima-

tions for ϑ′(Cay(G ,X )).

Until now we only used the symmetry of the group G to simplify the

problem but one can also use the symmetry of the set X , in our case

the symmetry of the cone C which defines X , to further simplify the

optimization problem.

Let K ⊆ G be the symmetry group of cone C . We can assume

that φ in (4) is K bi-invariant, i.e. that

φ(k1xk2) = φ(x) for all k1, k2 ∈ K , x ∈ G ,

holds. As far as we know, a proof of this fact did not appear in the

literature. So let’s give it here, albeit in small print.

Indeed, let φ be a feasible solution of (4). Define

ψ(x) =

∫

K

∫

K

φ(k1xk2) dk1dk2.

Then ψ is K bi-invariant and it is again a feasible solution of (4) with ψ(e) ≤
φ(e). We have ψ(x) ≤ 0 if x 6∈ X because for k1, k2 ∈ K

k1xk2 6∈ X ⇐⇒ C◦ ∩ k1xk2C
◦ = ∅ ⇐⇒ (k1)

−1C◦ ∩ xk2C
◦

= ∅ ⇐⇒ C◦ ∩ xC◦ = ∅
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Figure 2. Left: Two-point (SDP) bound for the packing of spherical caps of two different, given sizes on S2 . Right: Comparison of two-point bound with geometric bound.

holds. We have ψ − 1 ∈ P(G) because we can write φ− 1 = f ∗ ∗ f as a con-
volution (see [12, Proposition 9.4]) and because for x1, ... , xN ∈ G and v ∈ RN

we have (see [12, Proof of Proposition 12.4])

vT
(

ψ(x−1
i

xj )− 1
)

i ,j=1,...,N
v

=
N
∑

i=1

N
∑

j=1

vivj

∫

K

∫

K

(φ(k1x
−1
i

xjk2)− 1) dk1 dk2

=
N
∑

i=1

N
∑

j=1

vivj

∫

K

∫

K

∫

G

f (z)f (zk1x
−1
i

xjk2) dz dk1 dk2

=
N
∑

i=1

N
∑

j=1

vivj

∫

K

∫

K

∫

G

f (zxik
−1
1 )f (zxjk2) dz dk1 dk2

=

∫

G

∣

∣

∣

∣

∣

N
∑

i=1

vi

∫

K

f (zxik) dk

∣

∣

∣

∣

∣

2

dz

≥ 0.

When C is a convex cone having a regular k-gon as base, then K is

the dihedral group, and we can work with K bi-invariant functions

of the form

f (ϕ1, θ,ϕ2) =

∞∑

l=0

l∑

m=−l

l∑

n=−l

f̂
l
mnπ

l
mn(ϕ1, θ,ϕ2),

where we sum only over m and n which are multiples of k and where

ϕ1,ϕ2 ∈ [0, 2π/n], thus reducing the domain of f and reducing the

number of Fourier coefficients we have to optimize over.

The more symmetry, the better: When C is a convex cone which

has a round disk as base, then K = SO(2), and we can work with

functions of the form

f (ϕ1, θ,ϕ2) =

∞∑

l=0

(2l + 1)f l00P
l
00(cos θ), with f

l
00 ≥ 0.

In fact, these functions no longer depend on the angles ϕ1 and ϕ2.

In particular, this representation shows that (4) collapses from a

semidefinite program to a linear program, as was realized in [3]. It

is the classical linear programming bound of Delsarte, Goethals and

Seidel [13], the first two-point bounds for non finite spaces which

appeared in the literature.

5 Some recent results and open problems

We already emphasized that the successful computation of n-point

bounds usually gives the strongest known bounds for geometric

packing and energy minimization problems, see Table 2. In this final

section we want to discuss some recent results and open problems.

5.1 Shape of two-point bounds for spherical codes

Even in the classical case of two-point point bounds for spherical

codes in S2 we do not understand the bound completely.

In the paper [28] de Laat, Oliveira and Vallentin computed two-

bound bounds for the packing of spherical caps of N different sizes

on S2, see Figure 2 for N = 2.

Florian [15, 16] provided a geometric upper bound for the density

of a spherical cap packing. He shows that the density of a packing

on S2 of spherical caps with given angles α1, ... ,αN ∈ (0,π/3] is at

most

max
1≤i≤j≤k≤N

D(αi ,αj ,αk ),

where D(αi ,αj ,αk) is defined as follows. Let T be a spherical tri-

angle in S2 such that if we center the spherical caps with angles αi ,

αj , and αk at the vertices of T , then the caps intersect pairwise at

their boundaries. The number D(αi ,αj ,αk ) is then defined as the

fraction of the area of T covered by the caps.

In Figure 2 we see that for N = 2 it depends on the angles

whether the geometric or the two-point bound is sharper. In par-

ticular we see that near the diagonal the two-point bound is at least

as good as the geometric bound.

We also used our programs to plot the upper bounds for N = 1,

the classical linear programming bound of Delsarte, Goethals, and

Seidel [13], see Figure 3. The plot seems to reveal interesting and

new properties of the bound. For better orientation we show in the

plot the packings where the two-point bound is sharp (cf. Leven-

shtein [34]; Cohn and Kumar [7] proved the much stronger state-

ment that these packings provide point configurations which are uni-

versally optimal). The dotted line is the geometric bound, and since

we know that both the geometric (cf. Florian [15]) and the two-

point bounds are sharp for the given configurations, we know that

at these peaks the bounds meet.

0.2 0.4 0.6 0.8 1.0
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0.84
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0.88

0.90

Simplex

Octahedron

Icosahedron

Figure 3. Computation of two-point bounds for spherical codes in S2 taken

from [28]: The colored graph corresponds to the two-point bound, the dashed

graph corresponds to the geometric bound of Florian.
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An interesting feature of the two-point bound seems to be that it

has a periodic behavior: The numerical results suggest that the two-

point bound and the Florian bound meet infinitely often as the angle

decreases, and that between any two of these meeting points the

two-point bound has a similar shape. Howerver, we do not know

how to prove this.

5.2 Translative packings of non-spherical shapes

In the paper [14] Dostert, Guzmán, Oliveira, and Vallentin com-

puted upper bounds for translative packing of three-dimensional su-

perballs; unit balls of the l
p
3 -norm, with p ≥ 1:

B
p
3 = {(x1, x2, x3) ∈ R

3 : |x1|
p + |x2|

p + |x3|
p ≤ 1}.

Jiao, Stillinger, and Torquato [24] constructed by computer search

the densest known packings of Bp
3 for many values of p. Although

they principally allow congruent packings in their computer simula-

tions, the dense packings they find all have the structure of a lattice.

They subdivide the range p ∈ [1,∞) into four different regimes

p ∈ [1, 2 ln 2/ ln 4 = 1.5849 ...] ∪ [1.5849 ... , 2] ∪ [2, 2.3018 ...]

∪ [2.3018 ... ,∞)

and give for every regime a family of lattices determining dense pack-

ings (O1, O0, C0, C1 as defined in [24]). There is a direct relation

to materials science as three-dimensional superballs has been syn-

thesized experimentally as colloids, see Rossi et al. [42].

As motivation for their study Jiao, Stillinger, and Torquato write:

Understanding the organizing principles that lead to the dens-

est packings of nonspherical particles that do not tile space is

of great practical and fundamental interest. Clearly, the effect

of asphericity is an important feature to include on the way to

characterizing more fully real dense granular media.

[. . . ]

On the theoretical side, no results exist that rigorously prove

the densest packings of other congruent non-space-tiling parti-

cles in three dimension.

For computing our upper bounds we used the following theorem

of Cohn and Elkies [6], which falls into the framework of two-point

bounds.

Theorem 5.1. Let K be a convex body in R
n and let f : Rn → R be

a continuous L1-function. Let

f̂ (u) =

∫

Rn

f (x)e−2πiu·x
dx

denote the Fourier transform of f at u. Suppose f satisfies the following

conditions

(i) f̂ (0) ≥ 1,

(ii) f is of positive type, i.e. f̂ (u) ≥ 0 for every u ∈ R
n ,

(iii) f (x) ≤ 0 whenever K◦ ∩ (x +K◦) = ∅.

Then the density of any packing of translates of K in R
n is at most

f (0) volK.

The Cohn–Elkies bound provides the basic framework for proving

the best known upper bounds for the maximum density of sphere

packing. For a long time it was conjectured to provide tight bounds

in dimensions 8 and 24 and there was very strong numerical evi-

dence to support this conjecture, see Cohn and Miller [9]. How-

ever, the only thing missing was a rigorous proof. Very recently, in

March 2016, such a proof was found by Viazovska [52] for dimen-

sion 8 and a few days later, building on Viazovska’s breakthrough

result, by Cohn, Kumar, Miller, Radchenko, and Viazovska [8] for di-

mension 24. Here the construction of optimal functions f uses the

theory of quasimodular forms from analytic number theory.

Figure 4. Lower and upper bounds for superball packings in dimension 3

To find good functions f for superball packings we used tools from

polynomial optimization. In particular we used invariant theory of re-

flection groups G to give an explicit parametrization of G -invariant

Hermitian symmetric polynomials which are complex versions of

sums of squares. The upper bounds we obtained are given in Fig-

ure 4. In [14] we also computed new upper bounds for the optimal

density of translative packing densities of several polytopes, like the

regular tetrahedron.

For values p ≥ 3 the upper bounds are remarkably close to the

lower bounds. Maybe the two-point bounds are strong enough to

prove optimality of some of the lattice packings of Jiao, Stillinger and

Torquato? Being in a very optimistic mood one could imagine that

the question: “For every dimension n there is a constant P(n) < ∞

so that the bound is tight for all values of p ≥ P(n)?” has a positive

answer. Even more optimistically: “Is it true that P(8) ≤ 2 and that

P(24) ≤ 2?”

5.3 Four-point bounds for energy minimization

The last puzzling open problem we would like to mention concerns

four-point bounds for the five-electron case of Thomson’s problem.

We want to distribute five points x1, ... , x5 on the unit sphere S2 so

that the Riesz s-potential energy

∑

1≤i<j≤5

1

‖xi − xj‖s

is minimized. It is well known, but only experimentally, that there are

two competing configurations: For the values 0 ≤ s ≤ 15.04 ... the

vertices of the triangular bipyramid (two antipodal points and three

points forming an equilateral triangle on the equator) seem to be

the unique minimizer, and for the other values s ≥ 15.04 ... the ver-

tices of a square pyramid (where the lattitude of the base depends

on the specific values of s) are believed to be the unique minimizer.

For the cases s = 1 and s = 2 Schwartz [48] proved this by essen-

tially enumerating all possibilities. Recently, Schwartz [49] extended

his result to the entire interval 0 ≤ s ≤ 6 using an observation of

Tumanov [51].

De Laat [27] computed (numerically) the four-point bound E2

which we defined in Section 3 for the values s = 1, 2, 4. In all three

cases the numerical results he obtained indicate that the four-point

bound is sharp. It even might be the case that the bound E2 is uni-

versally sharp for all values of s . This would be a fascinating example

of the validity of a very general conjecture posed by Cohn and Woo

[10]:

Conjecture 5.2. If there exists a completely monotonic potential

function that is k-point sharp for N points in Sn−1 and is not a
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polynomial, then every completely monotonic potential function is

k-point sharp for N points in Sn−1.
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Etienne de Klerk

Computer-assisted proofs and

semidefinite programming

When asked to write a discussion column on the paper of Frank

Vallentin that appears in this issue of OPTIMA, I recalled a recent

interview with Roger Fletcher that also appeared in this newsletter

[Optima 99 (12/2015)].

In this interview Roger Fletcher mentions some early work of his

on semidefinite programming (SDP), in particular on SDP problems

related to the educational testing problem. This was in the days be-

fore interior point methods, necessitating some novel algorithmic

ideas on his part. Later in the interview, he continues (on the topic

of applications):

I think for us in numerical analysis – in optimization in particu-

lar – [. . . ] the purpose [is] to optimize; it’s not to produce pure

mathematics in my view, differing from other people’s view. But

it’s to solve problems.

The paper of Frank Vallentin sheds an interesting light on these re-

marks, since it reviews how computational optimization, and in par-

ticular SDP, can be useful in producing results in pure mathematics

(some packing and covering problems in discrete geometry, to be

precise).

At first glance this work both illustrates and contradicts the com-

ments by Fletcher! In my view, a good way to reconcile these things

is to recognize pure mathematics as an area of application of com-

putational optimization.

Optimization for packing and covering problems

The most famous example of the use of computational optimization

for proving a result in geometry must surely be the work by Thomas

Hales [4] in using LP to prove the Kepler conjecture.

Vallentin and his co-authors have continued in this spirit by deriv-

ing new results for several problems, like bounds on kissing numbers

in several dimensions; see Figure 1.

The basic plan of attack follows three steps:

1. Reformulate the packing/covering problem in question as a max-

imum stable set problem in an infinite graph; e.g., for the kissing

number problem, the vertex set is the unit sphere, and two points

on the unit sphere are deemed adjacent if one cannot place two

unit balls to touch the sphere at these points without overlapping.

2. Generalize the Lasserre SDP hierarchy for the maximum stable

set problem to infinite graphs to obtain a sequence of semi-

infinite SDP problems;

3. Exploit symmetry via harmonic analysis to reduce the semi-

infinite SDP problems to finite ones, and solve the resulting prob-

lems numerically to obtain bounds.

This simplification belies the mathematical sophistication of the ap-

proach, but already hints at the amount of theory involved. This in

turn begs the question on whether there is not a simpler way to

compute bounds of a similar quality. Indeed, for many (if not most)

combinatorial optimization problems there are good computational

alternatives to compute bounds for given instances, without invoking

SDP.

For the packing and covering problems surveyed by Vallentin,

however, it does seem that – at the moment at least – SDP often

provides the best bounds. To give one example that is not explicitly

mentioned in Vallentin’s survey, Bachoc and Vallentin [1] have used

the above methodology to show an upper bound of 45 on the kissing

number in 5 dimensions (a lower bound of 40 is known by an ex-

plicit construction). This improved the previously best known upper

bound, namely 46. Although this may seem like a small improvement,

Figure 1. The kissing number in a given dimension is the largest number of

Euclidean unit balls that can simultaneously touch a central ball. In R2 it is 6 (left

picture) and in R3 it is 12 (right picture). (Pictures courtesy of Anja Vallentin)

kissing numbers have been studied extensively, and any progress is

deemed very significant. On the other hand, it would be nice if the

approach surveyed by Vallentin could lead to the solution of a major

open problem, like settling the kissing number in some dimension.

Cross-fertilization

If SDP solvers have proved useful for some discrete geometry prob-

lems, the reverse has also been true to some extent. The typical SDP

instances that are solved are often very ill-conditioned numerically,

while accurate dual solutions are needed to give formal proofs. This

can lead to some tedious ‘reverse engineering’, where an approxi-

mately feasible dual solution is ‘massaged’ until it becomes feasible;

see, e.g., the discussion in [3, Section 5.3].

Thus high precision solvers like SDPA-GMP [5] have been called

on, and there has even been new work on interior point methods

for SDP using exact arithmetic [2]. This kind of cross-fertilization

is undoubtedly what Roger Fletcher was hinting at in his interview:

solving concrete instances provides necessary feedback for further

solver development.

Etienne de Klerk, TISEM, Econometrics and Operations Research,

Tilburg University, 5000LE Tilburg, The Netherlands. e.deklerk@uvt.nl
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Henry Cohn

When are semidefinite programming

bounds sharp?

The aspect of Vallentin’s paper I find most intriguing is the existence

of sharp bounds in exceptional cases. We should not generally ex-

pect sharp bounds, and there seems to be no hope of solving most

geometric optimization problems rigorously. For example, consider

the Thomson problem for 113 electrically charged particles confined

to the unit sphere: how can we choose unit vectors x1, ... , x113 in

R
3 so as to minimize the Coulomb energy

∑

1≤i<j≤113

1

|xi − xj |

between them? In principle the search space of 113-particle configu-

rations is large and complicated, but in practice the minimum is not

mailto:e.deklerk@uvt.nl
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so difficult to approximate numerically, for example by the conjugate

gradient algorithm. The minimal energy seems to be 5721.8249. . . ,

and it can be computed to many decimal places, but there is no

apparent way to prove that we are not merely stuck in a local op-

timum. It is unlikely that the number 5721.8249. . . or the particle

configuration has any simple description, and it is hard to believe

that humanity will ever find a rigorous proof of optimality. Instead,

the optimum is what it is, and we will probably never achieve a deep

conceptual understanding of why.

Of course one explanation for the difficulty of the 113-particle

Thomson problem is its complexity. If the answer is itself compli-

cated, why should we expect to find a proof? By contrast, two-point

bounds prove that the vertices of the regular icosahedron minimize

Coulomb energy for twelve particles [1], and the sharpness of this

bound is not so unreasonable. After all, the icosahedron is a much

simpler and more tractable object.

On the other hand, there is more to this distinction than just

counting particles or parameters. For example, rigorously resolving

the generalized Thomson problem with five particles and an arbi-

trary inverse-power-law potential function is a notorious unsolved

problem, despite the fact that everyone agrees on what the solution

must be. Vallentin discusses this problem at the end of his article,

and the numerical results of de Laat that he mentions are intriguing.

It would be wonderful if four-point bounds can settle this question,

but why should analyzing five particles be so much more difficult

technically than analyzing twelve? Two-point bounds are much eas-

ier to apply and optimize, but they do not suffice to analyze five

particles.

This is by no means an isolated occurrence. For example, the

solution of the sphere packing problem in three dimensions [6] is

far more complicated than in eight [8] or twenty-four dimensions

[5]. How difficult it is to prove optimality sometimes reflects subtle

aspects of the underlying symmetry, and from this perspective the

icosahedron is much better behaved than any five-particle configu-

ration.

Levenshtein [7] proposed a beautiful theory of optimality for

two-point bounds in terms of combinatorial or geometric designs.

Roughly, a point configuration will attain the two-point bound and

thus be optimal if its design strength is sufficiently high compared

with the number of distinct distances that occur between points in

the configuration. Levenshtein showed that this condition implies

the packing optimality of many beautiful and important structures,

and the same is true for energy minimization [4]. It does not cover

every case in which the two-point bounds are sharp, but it seemingly

covers almost all of them.

Three- and four-point bounds are a different story, and far fewer

cases are known in which they are sharp. Initially it was unclear

whether they were ever sharp, but Bachoc and Vallentin found the

first sharp case [2], and a number of others have since been found

(see the references in Table 2 in Vallentin’s paper). However, we lack

any unifying pattern or theory. Instead, based on our current knowl-

edge each case seems to arise for idiosyncratic reasons.

This mystery would not be so troubling if semidefinite program-

ming bounds were less central to geometric optimization, but in-

stead they encompass most of the field’s insights into packing, cod-

ing, ground states, and related problems. The sharp cases highlight

many of the most beautiful and important exceptional structures in

mathematics [3], and any progress in producing more such objects

would be valuable.

We need an optimality theory that offers conceptual insight into

where to look for further examples and how to analyze them. What

are the geometric principles behind sharp bounds? Levenshtein’s the-

ory for two-point bounds offers hope that an even broader theory

could be possible, and constructing it is an important open problem.
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