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MOS Chair’s Column

June 15, 2018. The ISMP in Bordeaux is only a few weeks away

when I write this column. I am looking forward to the opening ses-

sion with some appropriate tension! But, I am sure that the wine

tasting on Sunday, meeting up with all colleagues, some of whom I

have not seen since Pittsburgh, will make everything fall into place.

It has been a hectic winter and spring, but when I see how many

people are involved in the whole process of making the symposium

a success, I am humbled. The organizers and program committee

have been busy over a long period. But we have also had seven ju-

ries working hard on selecting the prize winners, the Publications

Committee searching for new editors, and the Executive Commit-

tee helping out with a lot of practical issues. MOS is a society ran

by volunteers and I am very grateful to all of you who invest consid-

erable time in the activities of the Society! A BIG thank you to you

all!

Since the last column we have new Editors-in-Chief for MPA and

MPB. Jon Lee succeeded Alexander Shapiro as E-i-C for MPA, and

Sven Leyffer succeeded Jong-Shi Pang as E-i-C for MPB. Both jour-

nals are in great shape and are for many of us the first choice as

scientific outlet. This OPTIMA issue is also the last issue edited by

Volker, Sam, Jeff, and Christoph as a team, since Volker, Sam, and Jeff

step down. You have given us a series of really interesting newslet-

ters that are very much valued. Thanks to all our editors and their

boards, and good luck to the new teams!

See you in Bordeaux!

Karen Aardal

Delft Institute of Applied Mathematics

k.i.aardal@tudelft.nl

Note from the Editors

Dear MOS members,

It has been a great pleasure to edit this newsletter over the last

couple of years for at least two reasons: The fascinating contribu-

tions made by the authors and interview partners and the excellent

and devoted technical production work of Christoph Eyrich – many

thanks! In this issue, Sebastian Sager takes us on a journey through

several applications of optimization in medicine. Enjoy reading this

and all the upcoming issues of Optima!

Sam Burer, Co-Editor, Volker Kaibel, Editor,

Jeff Linderoth, Co-Editor
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Sebastian Sager

Optimization and

Clinical Decision Support

1 Introduction

Well known to readers of Optima, mathematical optimization has a

long standing tradition of influential impact on many aspects of mod-

ern life. There is an abundance of application areas which have been

profiting from mathematical optimization technology. It has been ap-

plied for the design, layout, operation, control, calibration, or anal-

ysis of products, networks, processes, and systems. Synergistically,

almost all of these application areas have been stimulating mathe-

matical research. The goal of this article is to illustrate how clinical

decision support may profit from optimization and provide new chal-

lenges for the optimization community.

There are hence two main claims and take-away messages for the

reader. First, despite the obvious complexity, diversity, and uncer-

tainty of human bodies and what is going on inside them, surpris-

ingly simple mathematical models combined with optimization may

give accurate and extremely useful insight. It is my firm conviction

that there are many cases where this goes far beyond what could be

achieved, e.g., with pure data-driven machine learning approaches.

Some mathematical models capture the main characteristics and are

based on medical knowledge – while they are also accessible for

real-time optimization and personalizable with measurements.

Second, new and interesting optimization problem classes and ap-

proaches may arise from clinical decision support problems. A par-

ticular challenge is that the determination (or personalization) of the

mathematical model and the optimization of it interact and have to

be performed at the same time. Surprising structures may arise, e.g.,

when the dimension of the optimization variables depends on the

optimal solution itself.

We present three case studies from the ongoing European Re-

search Council (ERC) Consolidator Grant project MODEST, all

based on a close cooperation with medical partners. Naturally, this

is only a very subjective selection and many more success stories in

the intersection of optimization and clinical decisions have already

been written by others. Yet, it hopefully helps to raise awareness of

an interesting and important application area for optimization. All

three examples are presented in a consistent manner with the clin-

ical background, the related optimization problem, modeling issues,

challenges and solution approaches, as well as results. Finally, a spec-

ulative outlook is given into the direction of a model-based training

of clinical decision making.

2 Inverse Simulation for Cardiac Arrhythmia

Clinical Background and Optimization Question

There are several dozen different types of cardiac arrhythmia. While

most of them can be easily differentiated by cardiologists, the dis-

crimination between atrial fibrillation (AFib) and regular atrial ar-

rhythmias including atrial flutter (AFlu) and focal atrial tachycardia

mailto:k.i.aardal@tudelft.nl
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poses a diagnostic challenge. The usually available data, a surface

electrocardiogram (ECG), looks very similar in both cases, to lay-

men, physicians, and computerized algorithms alike. Misinterpreta-

tion rates of up to 80 % have been reported [19], which is even

more concerning as different treatments (often antiarrhythmics in

AFib and ablation in AFlu) are implied by the diagnosis. Further-

more, atypical forms of AFlu are becoming increasingly important in

clinical practice as a complication of left atrial ablation procedures.

The electrical pacemaker signal which eventually stimulates the

mechanical pumping of the heart originates in the sine node. It prop-

agates via the atrial chambers and the atrioventricular (AV) node

towards the ventricular chambers. In AFib, already the electrical ac-

tivation of the atria is chaotic and intrinsically irregular. In AFlu the

activation of the atria is regular, but due to a complex blocking mech-

anism in the AV node also here the ventricular response is irregular.

Whereas in theory it should be possible to see differences in the low

voltage flutter waves that correspond to atrial polarizations, they are

hardly discernible in practice. In summary, we deal with a situation

where only time points of the clearly visible R waves (the beeps of a

heart rate monitor) corresponding to ventricular activation are pro-

vided as input data for the diagnosis. We furthermore assume that

a previous diagnosis already assured that either AFib or AFlu is the

cause for the observed arrhythmia.

We use a mathematical model for the complex, but deterministic

blocking behavior in the AV node and optimization to personalize

this model to input data. A small optimal function value (i.e., a good

match between simulation and measured data) is interpreted as a

high likelihood for regular behavior (AFlu), a high optimal function

value as a high likelihood for chaotic behavior which cannot be ex-

plained by the model (AFib).

Mathematical Modeling of the Dynamics

and of the Optimization Problem

There are many algorithmic approaches to analyze cardiac arrhyth-

mia, e.g., based on Fourier transformations, wavelets, clustering of

RR times, machine learning, cellular automata, or nonlinear time se-

ries analysis. However, none of these approaches yields satisfactory

results for our task and short ECGs [12]. Also many mathemati-

cal models have been proposed to represent electrical conductivity

in the heart, most prominently the Noble adaptation [13] of differ-

ential equations, for which Hodgkin and Huxley were distinguished

with the Nobel Prize in 1963. In this mathematical model the elec-

trical potential across the membrane changes due to ion currents

and is related to sodium and potassium currents. A mathematical

model with four differential states and several estimated model pa-

rameters successfully predicted several so far unknown phenomena

and led to many extensions; see [14] for a survey article. Investigat-

ing the first-principle model for the behavior on a cellular level one

observes periodically stable solutions. Changes in model parameters

do not modify the qualitative behavior of ion concentrations which

can be related to so-called refractory times in which the cell is not

yet able again to conduct another incoming signal. But they modify

the length of these time windows. Therefore we decided to con-

centrate on simple mathematical models which focus directly on the

length of refractory periods of larger cell compounds located in the

AV node, and to neglect details about underlying cell dynamics which

are of no interest for the diagnosis question.

We developed a mathematical multi-level model that is based on

phenomenological observations. It builds on filters of a n + 1 : n

type, i.e., out of n + 1 incoming signals exactly n continue their way

through the AV node. The travel time can vary, e.g., increase linearly

from signal to signal, until it is reset after n+1 incoming signals. From

a first-principle point of view this corresponds to signals reaching the

cell at different time points of the stable oscillations. From a model-

ing point of view these times are formulated as

x
l
i = x

l−1
j + τ

l
const + k

l
i ,jτ

l
lin (1)

where l denotes the blocking level, i the number of the outgoing sig-

nal, and j of the corresponding incoming signal. The times τ lconst and

τ
l
lin are model parameters and thus degrees of freedom. The counter

k li ,j increases n times, until it is reset to 0.

Assuming a regular (AFlu) behavior, the objective function is the

deviation from simulated signaling behavior from the real measure-

ments (R wave peak times). In an appropriate norm, one minimizes

‖xnl − x̄‖, where x̄ are the measured R wave time points. The vector

xnl of time points on the lowest level nl is the result of a forward

simulation of a regular, but unknown signal vector x0 in the atrial

chambers through nl different blocking levels. Thus, the optimiza-

tion problem can be summarized as follows.

min ‖xnl − x̄‖ subject to (2)

◦ bounds and integrality,

◦ signal xnl is the result of a forward simulation based on (1),

◦ the incoming signal x0 (atrial activation) is regular.

The independent discrete variables are the number of blocking lev-

els nl and the value n which specifies the n+1 : n blocking behavior

on level l . The independent continuous variables are the transition

times τ
l
const, τ

l
lin and the distance between two atrial signals given by

∆x0 := x0i − x0i−1. Dependent variables are the signal times x li and

the counters k li ,j .

In a more involved formulation it should be considered that the

blocking behavior may change between n + 1 : n and n + 2 : n + 1

during the considered time horizon, because the blocking behavior

depends also on the frequency of the incoming signals, and the atrial

activation interval sometimes increases or decreases by a few mil-

liseconds.

Challenges to the State-of-the-Art of Optimization

For fixed independent optimization variables (e.g., from an outer op-

timization loop) the dependent variables and hence all constraints

and the objective function can be evaluated. It is however by no

means trivial to write (2) in a closed compact form which would

allow a solution with a standard MINLP solver. The difficulties com-

prehend the following.

◦ The dimensions of the vectors x l depend on the optimization vari-

able ∆x0. The smaller ∆x0, the more signals arrive at subsequent

levels.

◦ In the objective function the jth measured R wave has to be com-

pared to the jth signal that arrives at level nl . Whether a signal

x
nl
i

is indeed preceded by i− j+1 blocked signals depends on the

optimization variables, though. One modeling possibility is the in-

troduction of a matrix Φ ∈ {0, 1}m1×m2 which has entries Φi ,j

which are 1 if and only if this is the case. Then the objective func-

tion could be formulated as min ‖Φxnl − x̄‖. How to efficiently

formulate the logical constraints to determine Φ is unclear, espe-

cially given the dependence of m1 on ∆x0.

◦ The values x li depend on the counters k li ,j ∈ {0, ... , n − 1}, com-

pare (1), which depend on the n+1 : n blocking behavior on level

l . The very first signal of a block has an unknown offset, whereas

all following values result from augmentation and resetting. Re-

setting may also occur if no input signal arrives for a certain time

period. Introducing k li ,j as optimization variables leads to a non-

linear right hand side in (1).

◦ The objective function is by no means uniquely specified. How

many signals should be compared (too few can always be ex-

plained, too many usually come with variations in ∆x0), which
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norm shall be used, how shall a difference in the number of simu-

lated and measured signals be penalized?

Finding a good closed formulation is an open problem.

Solution Approach

We implemented a comprehensive approach for clinical decision

support. It starts with automatic data generation with a smartphone.

Our mobile app HEAT can extract R wave times from ECG pictures

and from beep recordings of a heart rate monitor. The data is sent

via a secure connection to our computation solver where the op-

timization problem is solved. Results are directly exported as PDF

files and sent back to the app.

To solve the optimization problem we developed a tailored

Branch and Bound algorithm. The effect of the currently chosen

multi-level block is evaluated by forward simulation. We enumer-

ate discrete variables and the continuous variables like ∆x0 on a ms

grid. This allows to move in a particular order through the forward

simulations and to prune subtrees when clinically motivated con-

straints or the logical implications are violated. The CPU times for

three blocking levels and 22 R waves are in the range of 1–3 seconds

on a standard notebook.

(Preliminary) Results and Outlook

Figure 1 shows an exemplary result for AFlu. It is one among 380 dif-

ferent ECGs from a benchmark database which we generated to-

gether with our clinical partners in Heidelberg. All of them come

with the highest possible gold standard, expert-interpreted intrac-

ardiac measurements. Such measurements are only available in spe-

cific clinical circumstances, and not in everyday clinical practice. Our

optimization-driven approach resulted in a sensitivity (percentage of

AFlu cases diagnosed as such) of 0.81 and a specificity (percentage

of AFib cases diagnosed as such) of 0.87. Looking at the main clas-

sification indicator of diagnostic tests, the Area Under the Curve

value of the Receiver Operating Characteristic [4], our approach is

classified as excellent with a value of 0.9. More details can be found

in the paper [18] and in the PhD thesis [12].

The general approach is patented [17] and the startup company

mathe.medical GmbH currently investigates possibilities of dissemi-

nating the technology into clinical practice.

Comment by Jeremi Mizerski, PhD, heart surgeon and senior researcher at the

Interdisciplinary Center for Mathematical and Computational Modeling, Warsaw,

Poland: The project covers the problem of the most common rhythm

disturbances in human hearts. Atrial fibrillation and atrial flutter are benign

in nature, but severe in consequences. Medical treatment of the first one is

entirely different than the latter. The correct diagnosis and differentiation

are hence of utmost importance due to a rising prevalence according to the

aging of our societies. The power and the beauty of modern science arise

from convergence and interdisciplinary approaches. This tight coupling of

medical research and optimization is an excellent example for this.

3 Guiding the Quest for the Ablation Point

Clinical Background and Optimization Question

Another source of unhealthy cardiac arrhythmia are premature beats

(PBs). They are common in patients with a structural heart disease,

and often a catheter ablation is the method of choice. It results in

non-conductivity of the ablated area on the heart surface, and hence

modified spatio-temporal dynamics of the electrical activation po-

tential. An obvious challenge is to identify quickly (to minimize side

effects) and reliably the spatial site of origin of PBs.

3D electroanatomic mapping systems are increasingly applied for

this task. They provide a graph representation of the heart surface,

with 3D positions of the nodes. The ablation device cannot only

scar tissue, but also measure activation. This is used to map the

measurements of local activation times (LATs) onto nodes of the

graph representation of the heart surface.

The optimization task is to choose the measurement nodes such

that with a high probability only few measurements are necessary to

find the node with the smallest LAT. At closer inspection, two differ-

ent online optimization tasks arise. First, to estimate for the so-far

available data which node is the current best guess. And second, if

the associated uncertainty is still too high, which measurement node

will reduce this uncertainty most.

Mathematical Modeling of the Dynamics and

of the Optimization Problem

We use two major simplifications compared to the first-principle

models of electrical activation mentioned above. First, we restrict

our considerations to the given graph representation of the heart

Figure 1. Exemplary illustration of our optimization-driven solution approach from [12]. The input data, the observed ventricular (V) signals, is extracted from the surface

ECG (bottom of figure). As a result of the optimization, three blocking levels with corresponding model parameters were calculated such that the calculated signal in the

atrial chambers (A) is regular and the forward simulation in V is close to the measured data. The intracardiac measurements are shown for illustrative purposes (top).
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Figure 2. (adapted from [20]). Linear regression approach for a simplified graph

with equal weights 1 (distances and velocity). Left plots: The source is assumed

to be node x which is different from the real source k (right plots). Comparing

measured times (which correspond to the shortest distances to the real source k)

with the shortest distances between x (or k) and the measurement nodes a, b,

and c gives the plots in the bottom row. The linear regression on the left has a

larger residual, indicating that x is not a good candidate for the unknown node of

origin.

surface. Second, we assume a constant and homogeneous velocity v

of the electrical activation, i.e., the difference in LATs is proportional

to the weights of the graph (Euclidean distances). The model for the

LAT ti on node i is given by

ti = t0 +
dik

v
(3)

where t0 is the earliest activation time (offset of the relative time

measurements), dik is the shortest distance between node i and the

(unknown) source node k , and v is the velocity. Figure 2 illustrates

how linear regressions for different possible source nodes k can be

compared.

Challenges to the State-of-the-Art of Optimization

There are two different interpretations of the optimization task.

First, it can be seen as a parameter estimation problem where one

“parameter”, the source node k ∈ V , has a combinatorial nature.

Second, it can be seen as a model discrimination problem where

card(V ) different models, corresponding to different assumptions

on the source node, compete in explaining the measurements. The

main challenge arises from the observation that the current best

guess for the node of origin is not necessarily the measurement

node that yields most information. Calculating this node can be in-

terpreted as a special case of optimal experimental design.

Theoretical questions to be considered are the minimum number

of LAT measurements to determine the node of origin in a determin-

istic setting via the metric dimension of the graph, and the connec-

tion to the bound from Carathéodory’s Theorem. Algorithmic ques-

tions are related to the sequential setting (alternating sequence of

measurements and optimizations) and the question when to switch

from a “maximizing information gain” measurement node to a “max-

imizing probability of being the origin” measurement node. The clin-

ical setting requires that solutions need to be calculated quickly, i.e.,

preferably in a fraction of a second.

Interestingly, a quite similar setting can be found in different

source detection areas, such as contagion phenomena like drink-

ing water pollution or influenza pandemics. The main difference in

our setting is the sequential availability of only one measurement,

and the possibility to verify that a node is the origin from a measure-

ment (because of the specific shape of the LAT curve at the origin).

Comment by Prof. Dr. Eberhard Scholz, Head of Electrophysiology Lab at Univer-

sity Hospital Heidelberg, Germany: Imagine you are part of a rescue team

searching for an avalanche victim, knowing that every elapsed minute could

reduce the probability of survival. Would you dig here and there to find the

victim by incidence or would you rather follow a systematic search routine

using an avalanche transceiver to speed up the process? Interestingly, the

localization of focal arrhythmia sources exhibits striking parallels to the sit-

uation sketched above. A small cluster of cardiac cells that is located at an

unknown position of the heart muscle every now and then sends out an

electric signal. However, in contrast to an experienced rescue team, most

operators follow a heuristic search path to locate the arrhythmia source

thereby loosing valuable time. The algorithm described in this article uses

mathematical optimization to guide the operator on the shortest and hence

quickest way to the desired location. This project gives an excellent exam-

ple of how nicely mathematical optimization can provide decision support

to physicians and might open the door to a new dimension of mapping

algorithms in cardiac electrophysiology.

Solution Approach

We induce a shortest path metric on the graph and calculate all

shortest distances between any two nodes a priori. Enumerating

over all candidate nodes for the next measurement, this shortest

path metric allows the comparison of linear regression results, as

illustrated in Figure 2. The current best guess for the site of origin is

the node which results in the smallest residual. The uncertainty can

be estimated from the variance-covariance matrix of the parameter

estimate.

In a first phase of the algorithm we compare the calculated vari-

ances (e.g., with respect to the offset t0) and choose the node which

results in the smallest value as the next measurement node. If the

residuum of the current best guess is small enough, we choose in a

second phase this best guess as the next measurement node.

(Preliminary) Results and Outlook

We performed a retrospective simulation study with real clinical data

from 17 patients. The data was exported with the Carto 3D map-

ping system and consisted of the heart geometry, all measurements

made by an operator, and the measured LAT. Our algorithm reduced

the mean number of 42± 7.0 LAT measurements to 11± 0.89, indi-

cating the huge potential for clinical improvement. More details can

be found in the paper [20].

Future work will concentrate on less restrictive assumptions, i.e.,

more realistic non-constant velocities and consider also scarred tis-

sue. A prospective study based on an integration of our algorithm

into commercial mapping software is desirable.

4 Towards Optimized Blood Cancer Treatment

Clinical Background and Optimization Question

Oncologists and hematologists – and often also patients who are in-

volved in the decision making process – need to choose between

different available treatment alternatives for blood cancer. When

applying chemotherapy, this choice includes combinations of dif-

ferent drugs and immune-boosters, scheduling of the treatments,

and dosages. Additional issues like the balancing between positive

(killing) impact on cancerous cells and negative (killing) impact on

cells of the immune system highlight the importance to understand

the body as a complex dynamical system. Obviously, simulations

(what would happen if?) and optimization (what is the best treat-

ment?) would be of tremendous value, if they were reliably applicable

and personalized to the specific case. So far we have been focusing

on three different kinds of decision support related to blood cancer,

based on pressing practical questions and retrospective data from

our clinical partners.
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First, we have been investigating consolidation therapy for acute

myeloid leukemia (AML) in adults. Acute means severe and sudden in

onset (in contrast to chronic). Myeloid refers to where the differen-

tiation and proliferation of blood cells takes place, here in the bone

marrow. And leukemia refers to a disease affecting leukocytes, the

white blood cells. The most important chemotherapeutic treatment

consists of several cycles of induction therapy, followed by up to four

cycles of consolidation therapy. They differ in the cytotoxic agents,

dosages, and timings that are used, but also in their goals. Induction

therapy tries to eradicate blasts (cancerous proliferating cells), while

consolidation therapy starts when almost no more cancerous cells

can be measured and tries to avoid a relapse. We have been studying

the chemotherapeutical agent cytarabine, the most important com-

ponent of AML treatment. Applying it, e.g., twice a day on days 1,

3, and 5 of a consolidation cycle, leads to a delayed decrease in the

number of circulating (in the blood) white blood cells. This number

can be seen as a surrogate for the strength of the immune system,

a low number is associated with a high risk of severe side effects.

The time period in which the number of white blood cells is below

a certain threshold is called leukopenia. It is of high clinical relevance

to be able to predict the length and depth of a leukopenia, and to

avoid it, if possible, by modifying the treatment. Optimization can be

applied to personalize mathematical models and predict the future

dynamics of white blood cells. It can also be applied to calculate op-

timal experimental designs, i.e., measurement times and treatments

that result in small confidence regions of parameter estimates. And,

eventually, it can be used to optimize the chemotherapy schedules

and dosages.

Second, we have been looking at consolidation therapy for acute

lymphoblastic leukemia (ALL) in children. In ALL blasts occur in the

lymph (the fluid circulating through the lymphatic system) and not

in the bone marrow. The typical consolidation therapy for children

is applied almost continuously, with orally administered drugs every

two weeks over periods of several years. The clinical task consists in

keeping the number of white blood cells in a target range by modify-

ing dosage and timing of the drugs. This is usually extremely difficult,

due to uncertainties, delays, and nonlinearities.

Third, we have been investigating polycythemia vera (PV) in adults.

In PV, the bone marrow produces too many erythrocytes (red blood

cells). The increase in the number of red blood cells leads to a thick-

ening of the blood, which may be fatal if untreated due to a higher

possibility of thromboembolic events. As the condition cannot (yet)

be cured, treatment focuses on treating symptoms. It consists pri-

marily of phlebotomy (blood letting), like in medieval times. Letting

blood actually makes sense, as the time scale on which new red

blood cells are being produced is weeks, while the blood plasma re-

covers within hours. As a result, the hematocrit (percentage of red

blood cells in the blood) decreases after a phlebotomy. Possible side

effects are well known to all blood donators and include dizziness,

fatigue, or headaches. An intriguing clinical question is if personalized

simulations and optimization can be used to schedule phlebotomies,

e.g., to reduce the overall number, or to avoid collisions with im-

portant professional or private appointments. This could restore at

least some of the patient’s quality of life.

Mathematical Modeling of the Dynamics and

of the Optimization Problem

There are many different levels on which cancer dynamics can be

modeled [3], even for the special case of blood cancer where no

spatial aspects of tumor growth need to be considered. In the spe-

cific blood cancer decision support tasks outlined above, an impor-

tant ingredient is the mathematical modeling of hematopoiesis (the

formation of blood cellular components by differentiation and mat-

uration originating from hematopoietic stem cells). A rich literature

exists with elaborated models with complex pathways, delays, game

theoretic approaches to biological competition, or partial differential

equations with cell maturation age as a spatial dimension. Such com-

plicated models usually come with lots of model parameters, lead-

ing to identifiability issues, and are not well suited for optimization-

driven decision support in real time.

We analyzed models that capture only the most important dy-

namics for blood cells and “agglomerate” different physiological ef-

fects into simplifying expressions. Often we also neglect dynamics

of cancerous cells, as no measurable quantities are present and the

focus is on the number of white or red blood cell counts, anyway.

If drugs are involved, pharmacokinetics (PK; how an organism af-

fects a drug) and pharmacodynamics (PD; how the drug affects the

organism) are important. The mathematical models we have been

using are compartment models. Cells of different maturation age

that share common behavior, e.g., proliferating or differentiating, are

clustered in compartments. In the AML project, we have been work-

ing with amounts x1 and x2 of the chemotherapeutic agent cytara-

bine in two PK compartments and with counts xpr of proliferating

cells, xtr,1, ... , xtr,ntr of differentiating cells in ntr transient compart-

ments, and xma of mature, circulating white blood cells. The time

dependent dosage of cytarabine is denoted by u(t). The system

of ordinary differential equations for hematopoiesis, pharmacokinet-

ics and pharmacodynamics is based on the gold-standard model of

chemotherapy–induced myelosuppression by [8],

ẋ1(t) = −(k10 + k12) x1(t) + k21 x2(t) + u(t) (4a)

ẋ2(t) = k12 x1(t)− k21 x2(t) (4b)

ẋpr(t) = −ktr xpr(t) + F (x , ktr, γ,B, slope) xpr(t) (4c)

ẋtr,1(t) = ktr xpr(t)− ktr xtr,1(t) (4d)

ẋtr,2(t) = ktr (xtr,1(t)− xtr,2(t)) (4e)

...

ẋtr,ntr(t) = ktr (xtr,ntr−1(t)− xtr,ntr(t)) (4f)

ẋma(t) = ktr xtr,ntr(t)− kmaxma(t) (4g)

with a function F that models the pharmacodynamical effect of cy-

tarabine and possible feedback mechanisms on the proliferating cells.

The model parameters and initial values that can be used to person-

alize (4) are p = (B, ktr, γ, slope, xpr(t0), xtr(t0), xma(t0)), others are

fixed to values obtained from independent in vitro studies. Figure 3

shows an exemplary result for clinical data. The model was fitted to

white blood cell count measurements (≈ xma) from one consolida-

tion cycle. Data from a second consolidation cycle was compared to

a prediction as a cross-validation.

The models for ALL and PV are structurally similar. The predictive

accuracy of (4) is quite high, and surprisingly stable against different

modeling approaches of F . While this is a nice feature for simulations

with a fixed treatment schedule, a model may not be appropriate to

evaluate or even optimize dosage and timing of chemotherapy. The

agglomerative nature of the mathematical models leads to a choice

of model parameters that is not only personalized to the patient,

but also to the applied schedule. It is ongoing (unpublished) work to

identify mathematical models that are able to predict the outcome of

different schedules well, e.g., on days 1, 2, and 3 instead of days 1, 3,

5. Obviously a validation with measurements is difficult, as identical

repetitions with different treatments are not possible.

Assuming the availability of a validated personalized model, there

is an abundance of optimization questions. Are high dosage or low

dosage (or singular arc solutions) preferable? What impact has the

timing of the chemotherapy? How important is the delay between

two consolidation cycles? What is a good time to give growth stimu-
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Figure 3. Exemplary data from a patient suffering from acute myeloid leukemia

from [11]. The chemotherapy schedule is indicated on the x-axis. The dots are

white blood cell (WBC) counts. The trajectory shows the solution xma(·) of a per-

sonalized model of type (4), based on the measurements from the first consolida-

tion cycle. A cross-validation with the measurements from a second consolidation

cycle illustrates the predictive accuracy of the mathematical model.

lating factors (immune boosters)? How do all these modifications

impact the relapse probability? How much do the results depend on

the choice of the objective function? E.g., if xma shall be as large as

possible, would you rather maximize xma(tf) or
∫ tf

0 xma(τ ) dτ ? Usu-

ally, the related objective functions are simple functions or integrals

of the differential states and controls in (4).

Note that optimization can also be used in a clever way to evalu-

ate the potential of modified treatments to check if all this is worth

the trouble in the first place. In [7] we proposed to minimize and

maximize the objective function. If the overall amount of chemother-

apy is fixed in the constraints this allows to answer the question

how much the objective function differs between the best and the

worst treatment. If this percentage is not significantly larger than

the associated level of uncertainty, the whole approach would be

meaningless.

The availability of mathematical models allows another interest-

ing experiment of thoughts. What, if some of the model parameters

were control functions? In our abstracted problem formulations it is

straightforward to replace constant parameters by time–dependent

functions that can be optimized. Optimal solutions of these artificial

control problems might give valuable hints for promising research

directions for oncologists and pharmacologists, on which kinds of

drugs are necessary to exploit the nonlinear dynamics.

Challenges to the State-of-the-Art of Optimization

The largest challenge originates from the assumed availability of a

validated personalized model, which is obviously wrong. Personal-

ized models with small standard deviations of parameters (and hence

small uncertainty of predictions) require a certain number of mea-

surements, which become available only during a treatment. Hence,

new questions arise. What is a good treatment strategy when the

uncertainty of the model is still very high? When should measure-

ments be taken to get accurate parameter estimates? How does the

chemotherapy or phlebotomy schedule influence the confidence re-

gion of subsequent state and parameter estimates? Does it make

sense to give small dosages of chemotherapy when there is no di-

rect medical benefit from it, but an indirect one from less uncertain

models and more reliable predictions? The dual control task is to

optimize the result of the treatment, which depends on a model

prediction which depends also on the chosen treatment. The stan-

dard experimental design approach which minimizes a criterium of

the variance-covariance matrix may lead to accurate state and pa-

rameter estimates, but in hindsight to a poor treatment.

We want to develop algorithms that suggest therapy details that

lead both to an accurate real-time, patient-specific calibration of the

mathematical model and to an optimal trade-off between infection

risk and the therapy objectives. Although several formulations have

been proposed in the literature, compare [10], there are many open

theoretical and algorithmic questions in dual control.

Also of importance are the aspects of sparse controls (as patients

want to and should spend as little time in hospital as possible), in-

dicator constraints related to logical relations from law or clinical

practice, and global optima.

Solution Approach

Our algorithms are based on a first-discretize, then-optimize ap-

proach (school of Georg Bock). We extended it in several research

directions. On the top level we have been developing new concepts

and algorithms for dual control [10] that sequentially use optimiza-

tion to calculate personalized models, optimal measurement times,

and optimal treatment choices. The building blocks are methods

from moving horizon state and parameter estimation, robust op-

timal experimental design, model discrimination, nonlinear model

predictive control, mixed-integer optimal control, and dual control.

We developed a new sequential quadratic programming algorithm

and solver for nonlinear optimization that exploits block structures

as they also arise from optimal control problems, [9]. Our algorith-

mic developments are usually driven by clinical data, e.g., [11, 15].

To use information from other patients, we have been extending our

methods to so-called mixed-effect models, which provide population

parameters and their distributions, as well as individual parameters.

(Preliminary) Results and Outlook

In AML, optimally selecting 20–30 measurement times (almost daily)

for one consolidation cycle by experimental design reduces the un-

certainty of parameter estimates by approximately 50 % [11]. Op-

timal measurements from one consolidation cycle usually lead to

standard deviations of parameters of approximately 10 % and thus

to sufficiently accurate predictions of subsequent consolidation cy-

cles.

These predictions can be used for optimization. In fact, they

should be used for optimization. Even for quite simplistic models

that do not take pharmacokinetics or effects on the immune system

into account, the timing of the drug (with a fixed overall amount over

the time horizon) has a large impact and may be non-intuitive, [7].

This result has been confirmed so far for the more complex pro-

cesses associated with AML, ALL, and PV (all ongoing and unpub-

lished work). We developed new mathematical models that have

been personalized and cross-validated with clinical data. Using these

Comment by Prof. Dr. Thomas Fischer, Director of Department of Hematology

and Oncology, University Hospital Magdeburg, Germany: Simulation and op-

timization may become a game changer for blood cancer treatment. For

example, reliable predictions could be used for providing better care to

AML patients receiving consolidation treatment. Analyzing the period of

chemotherapy-induced profound leukopenia and applying optimized treat-

ment schedules might enable prevention of severe infectious complications,

sepsis, and thus delay to undergo subsequent treatment cycles. The density

of chemotherapy cycles might be increased and thus deeper remissions and

lower relapse rates might be achieved. This might ultimately translate into

improved overall survival rates.
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models we found a mathematical explanation for the superiority of

dense chemotherapy treatments and a novel dynamic stratification

for blood cancer patients. Our analysis indicates many cases where

an optimized schedule might have avoided a leukopenia.

From my point of view, the proposed models, algorithms, and re-

sults are important steps on the way to a personalized real-time

algorithm that exploits the nonlinear dynamics and combinatorial

complexity of (blood) cancer treatments. Many questions and appli-

cation in prospective clinical trials are still open, though.

Outlook: Optimization for Clinical Decision Training

Assuming the availability of mathematical models and tailored opti-

mization algorithms, it is a natural question whether they can also be

put to use in a training context. Simulators are already used to learn

how to drive, fly, design energy-efficient houses, cars and airplanes,

control large gas or water networks, determine ticket prices, or

to some extent even how to construct financial regulations. While

education in general will probably see many changes related to as-

pects like virtual reality or artificial intelligence fueling personalized

trainers, also simulation and optimization can make important con-

tributions.

Making clinical decisions can be seen as a special case of Complex

Problem Solving (CPS), a research direction rooted in psychology. It is

defined as a high-order cognitive process that involves decision mak-

ing. The main intention is to understand how certain variables influ-

ence a solution process. In general, personal and situational variables

are distinguished. The most typical and frequently analyzed personal

variable is intelligence. How intelligence influences CPS is an ongo-

ing debate. Other interesting personal variables are working mem-

ory, amount of knowledge, and emotion regulation. Situational variables

such as the impact of goal specificity and observation, feedback, and

time constraints have attracted less attention. Some questions on a

more general level are: Why is it difficult for humans to judge and

balance the consequences of decisions? What influence do cognitive

representation, emotions, and feedback have?

There are two major methodological obstacles to answering

these questions. How to measure performance in complex envi-

ronments in an objective way? And how to systematically improve

the performance by training of CPS competencies? I believe that a

model-based optimization approach can help to overcome these ob-

stacles. Although studying the interplay between optimization and

Comment by Prof. Dr. Joachim Funke, Department of Psychology, University of

Heidelberg, Germany: Europe’s decision makers in politics, industry, tech-

nology, and science are facing the challenge of increasing complexity. Con-

sequently, the OECD PISA consortium defined Complex Problem Solving

(CPS) competencies as an essential part of human education to help stu-

dents prepare for life. For the analysis and training of CPS competencies a

synergetic approach is necessary. On the one hand, the underlying cogni-

tive processes need to be understood. On the other hand, powerful op-

timization methods are required to construct training environments with

certain properties, to analyze the performance of participants, and to give

optimization-based feedback.

For the first time in CPS research, the optimization of complex CPS tasks

allows for an evaluation of a participant’s performance in absolute units.

This is a fundamental improvement because previous assessments since the

advent of CPS tasks in the late 1970s made only statements about relative

positions of participants (better or worse in terms of the analyzed popula-

tion of participants). In addition, the evaluation of individual decisions in the

course of multi-step decision making and new feedback and training oppor-

tunities are opening the door for future research in CPS. CPS researchers

can start right away by addressing important questions such as the connec-

tion between cognitive representations, feedback, and emotion regulation

with CPS performance. Results on analysis and training are expected to

boost further research in this direction.
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Figure 4. Scheme of control (indicated with a diamond) and state variables in

every round of the tailorshop mircoworld [5]. Arrows show dependencies. Some

decisions are integer, some relations are nonlinear.

clinical decision training is still ongoing work, we have achieved en-

couraging results from first studies with an economical setting. The

“fruit fly” of CPS research, the tailorshop microworld, is illustrated in

Figure 4.

In [16] we could address the first question of how to get a reli-

able performance indicator using a mathematical model of the tailor-

shop. An optimization is performed for every round of the partici-

pant’s data, starting with exactly the same conditions as the partici-

pant. The differences between the optimal objective function values

of rounds ns and ns + 1, the How-much-is-still-possible-function, in-

dicate how good the performance is when compared to optimal-

ity. This measure is objective and yields a performance for each

round ns , thus taking the temporal evolution into account. This

novel methodological approach has been combined with experimen-

tal studies, [1, 2, 16]. In [2] it was shown that participants who re-

ceive a negative feedback perform better than those who receive pos-

itive feedback. In [1, 16] the ability to regulate emotion was additionally

considered. As a main result, an interaction between feedback and

emotion regulation could be shown: participants with a high emotion

regulation ability perform better when they get negative feedback,

while those with a low ability to regulate their emotions perform

badly for negative and well for positive feedback.

In [5, 6] we addressed the second question in an online study

with two main hypotheses: optimization-based feedback in a training

phase improves the performance in a subsequent performance phase

and increases model knowledge compared to a control group. Both

hypotheses could be shown to be true based on data from more

than 100 participants. In particular, we used graphical visualizations

of optimal decisions and of Lagrange multipliers corresponding to

participants’ decisions. The results indicate the large potential to

improve learning using optimization, although questions like the best

way to visualize results or local minima or measure the efficiency of

the exploration of microworlds are still open. From an optimization

point of view, the corresponding problems are challenging mixed-

integer nonlinear programs with nonconvex relaxations. For the tai-

lorshop, we developed a tailored decomposition and underestimation

technique to get good bounds on the global optima.

Summary

We have presented several case studies that highlight the large im-

pact that optimization may have on clinical decision support and

training, and vice versa. Personalized medicine is often identified with

(or defined as) stratification based on genomics. I believe in the large
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potential of a complementary dynamic stratification, based on fitted

parameterized mathematical models.

The largest impact is related to the expected change of paradigm

in clinical practice. This allows, e.g., a physician to first simulate the

impact of his decisions on a computer and to consider optimized

solutions. In the future, it will be the rare and unwanted exception

that an important decision cannot be backed up by consultation of

a model-driven decision support system or based upon a systematic

model-driven training.

Sebastian Sager, Faculty of Mathematics, Otto-von-Guericke Universität

Magdeburg, Germany. sager@ovgu.de
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