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Appendix: Details on Experiments
(Counting and Estimating Lattice Points)

Here we present details for experiments with the Gaussian esti-
mation of Barvinok and Hartigan. As described in the article, we
needed the maximum objective values and the unique optimal solu-
tions of the strictly concave optimization problems from Theorems
1 and 2 in order to calculate the Gaussian estimations. These values
were obtained using LOQO and the rest of the calculation was imple-
mented inside MAPLE version 12. There is no need for any sophisti-
cated computation, one can easily calculate the covariance matrices
and the lattice index using a Smith normal form calculation. Overall
the evaluation step takes a negligible amount of time in all instances,
so we do not record any time of computation.

A.1 General knapsacks
The first set of problems consist of knapsack-constrained simplices.
The majority of the instances were randomly generated with co-
efficients between 1 and 20, but we also used a few famous hard
knapsack problems from [1] and a few instances with coefficients in
arithmetic progressions. The presence of these two kinds of tests

we hope is useful on investigating how suitable are these techniques
for feasibility detection and to test the sensitivity of the estimate
to the variation of right-hand-side vectors. Tables 1 and 2 present
the data used here and the results. On the line below any instance
ax = b we report the relative error of the estimation after 5000
samples and the true number of lattice points.

In Table 2 we present the results of estimation using the maxi-
mum entropy Gaussian estimate: Although there are a few difficult
cases, the majority of instances has relative error less than one.

The Aardal-style knapsacks (examples 13, 14 in the tables) [1]
show a dramatically poor behavior which seems to be correlated to
the objective function value γ of the convex function we maximize.
By Theorem 1 this number is a close indicator of success to gener-
ate a lattice point during sampling. For example, problem number 7

with right-hand-side 22382774 has no solutions, but if we increase it
by one unit there are 218842 integer solutions. In both cases the val-
ues for γ and probability parameters were identical (γ = 47.58769).
Through sampling we expect to require e47.6 = (4.7)×1020 samples
before finding a lattice point.

Nevertheless, for the Aardal examples, in addition to the stan-
dard convex maximization of Theorem 1 we also used the weighted
version and we were surprised to see that in both instances we
found an actual integral feasible solution already using the convex

Table 1. Knapsack tests using sampling algorithm, information on relative error (best possible among three sampling tests).

Problem ax = b, sampling error, and number of solutions

#1 a=[2, 11, 18, 4, 17, 19, 6, 9, 2, 10, 16, 4, 18, 1, 15, 6, 17, 2, 8, 10, 7, 19, 7, 10, 14] b=5000
Error=0.0309433 numsols=8569641458133826414663483924452506094742800

#2 a=[5, 10, 10, 2, 8, 20, 15, 2, 9, 9, 7, 4, 12, 13, 19] b=34
Error=0.01329 numsols=2056

#3 a=[10, 15, 9, 12, 11, 20, 8, 9, 17, 18, 11, 20, 13, 8, 17] b=19
Error=0 numsols=6

#4 a=[15, 13, 6, 2, 12, 4, 6, 5, 17, 8, 5, 2, 18, 20, 11] b=500
Error=0.06840749 numsols=242818430132799

#5 a=[19, 14, 18, 15, 8, 10, 14, 12, 9, 13, 16, 1, 6, 13, 14] b=500
Error=0.290757 numsols=3489295417911

#6 a=[7, 7, 3, 14, 15, 15, 19, 12, 19, 8, 3, 17, 17, 3, 5] b= 50
Error=0.015823 numsols=8438

#7 a=[20601, 40429, 40429, 45415, 53725, 61919, 64470, 69340, 78539, 95043] b=22382775
Error=1 numsols=218842

#8 a=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] b=255
Error=0.131238 numsols=71660385050

#9 a=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] b=24
Error=0.019237 numsols=1380

#10 a=[9, 1, 19, 4, 6, 3, 4, 10, 8, 2] b=50
Error=0.0159488 numsols=47761

#11 a=[16, 2, 11, 15, 11, 3, 5, 14, 7, 2] b=500
Error=0.037474 numsols=65552595947

#12 a=[8, 10, 9, 17, 2, 9, 3, 2, 5, 20] b=25
Error=0.00589 numsols=267

#13 a=[12137, 24269, 36405, 36407, 48545, 60683] b=58925135
Error=1 numsols=2

#14 a=[12223, 12224, 36674, 61119, 85569] b= 89643482
Error=1 numsols=1

#15 a=[1, 2, 3, 4, 5, 6] b=25
Error=0.03970 numsols=612

#16 a=[9, 10, 17, 5, 2] b=73
Error=0.00208 numsols=209

#17 a=[9, 11, 14, 5, 12] b=26
Error=0.015148 numsols=3

#18 a=[5, 3, 1, 4, 2] b=15
Error=0.02186 numsols=84

#19 a=[5, 13, 2, 8, 3] b=17
Error=0.02991 numsols=12

#20 a=[8, 12, 11] b=50
Error=0.1535 numsols=1
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optimization procedure. The weights were generated at random, so
this raises the issue of understanding whether for good weights one
can find integer solutions systematically.

Table 2. Knapsack tests for Gaussian estimation, we report the relative error.

Problem ax = b, Gaussian estimate relative error, and number of solutions

#1 a=[2, 11, 18, 4, 17, 19, 6, 9, 2, 10, 16, 4, 18, 1, 15, 6, 17, 2, 8, 10, 7, 19, 7, 10,
14] b=5000
Error = 0.00334 numsols =8569641458133826414663483924452506094742800

#2 a=[5, 10, 10, 2, 8, 20, 15, 2, 9, 9, 7, 4, 12, 13, 19] b=34
Error = 0.00585 numsols =2056

#3 a=[10, 15, 9, 12, 11, 20, 8, 9, 17, 18, 11, 20, 13, 8, 17] b=19
Error = 0.97855 numsols =6

#4 a=[15, 13, 6, 2, 12, 4, 6, 5, 17, 8, 5, 2, 18, 20, 11] b=500
Error = 0.79371 numsols =242818430132799

#5 a=[19, 14, 18, 15, 8, 10, 14, 12, 9, 13, 16, 1, 6, 13, 14] b=500
Error = 0.00618 numsols =3489295417911

#6 a=[7, 7, 3, 14, 15, 15, 19, 12, 19, 8, 3, 17, 17, 3, 5] b= 50
Error = 0.96326 numsols =8438

#7 a=[20601, 40429, 40429, 45415, 53725, 61919, 64470, 69340, 78539,95043]
b=22382775
Error = 118163207.8 numsols =218842

#8 a=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] b=255
Error = 0.89587 numsols =71660385050

#9 a=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] b=24
Error = 0.02503 numsols =1380

#10 a=[9, 1, 19, 4, 6, 3, 4, 10, 8, 2] b=50
Error = 0.01428 numsols =47761

#11 a=[16, 2, 11, 15, 11, 3, 5, 14, 7, 2] b=500
Error = 3.16010 numsols =65552595947

#12 a=[8, 10, 9, 17, 2, 9, 3, 2, 5, 20] b=25
Error = 0.04816 numsols =267

#13 a=[12137, 24269, 36405, 36407, 48545, 60683] b=58925135
Error = 2634013736 numsols =2

#14 a=[12223, 12224, 36674, 61119, 85569] b= 89643482
Error = 95905325.28 numsols =1

#15 a=[1, 2, 3, 4, 5, 6] b=25
Error =0.02599 numsols =612

#16 a=[9, 10, 17, 5, 2] b=73
Error = 0.03213 numsols =209

#17 a=[9, 11, 14, 5, 12] b=26
Error = 0.81445 numsols =3

#18 a=[5, 3, 1, 4, 2] b=15
Error =0.02923 numsols =84

#19 a=[5, 13, 2, 8, 3] b=17
Error = 0.40546 numsols =12

#20 a=[8, 12, 11] b=50
Error = 1.0890 numsols =1

A.2 Contingency tables and network flows
We continue our investigations with the class of multiway contingency
tables. A d-table of size (n1, . . . , nd) is an array of non-negative in-
tegers v = (vi1 ,...,id ), 1 ≤ ij ≤ nj . For 0 ≤ m < d, an m-marginal
of v is any of the

(
d
m

)
possible m-tables obtained by summing the

entries over all but m indices.
Contingency tables appear naturally in statistics and operations

research under various names such as multi-way contingency tables,
or tabular data. Table counting has several applications in statistical

analysis, in particular for independence testing, and has been the fo-
cus of much research (see [38] and the extensive list of references
therein). Given a specified collection of marginals for d-tables of
size (n1, . . . , nd) (possibly together with specified lower and up-
per bounds on some of the table entries) the associated multi-index
transportation polytope is the set of all non-negative real valued arrays
satisfying these marginals and entry bounds. The counting problem
can be formulated as that of counting the number of integer points
in the associated multi-index transportation polytope.

First we treat two-way contingency tables. The polytope defined by
a two-way contingency table is called the transportation polytope. We
present the results in Table 3. This family of polytopes has been stud-
ied in their lattice points by several authors [8, 14, 16, 32, 72] and
thus are good for testing accuracy of the estimation. We used sev-
eral examples of 4×4 transportation polytopes, as presented in the
table below. In all cases the relative error was very similar to the
performance with simplices, but in this case we are simply using the
Gaussian estimator proposed by Barvinok and Hartigan [15]. The
results are good. It should be remarked that sampling did not do
well at all for these instances. In fact, in all problems with multiple
constraints (non-knapsack) we had a bad performance of sampling,
thus we aggregated the constraints in a few instances, but that did
not improve the behavior.

Another closely related set of instances are those coming from
flows on networks, which are the lattice points of flow polytopes.
Again, testing accuracy of the estimation we looked at a simple net-
work on the complete 4-vertex and the complete 5-vertex tourna-
ments (directed complete graphs). Consider the directed complete
graph Kn. We assign a number to each node of the graph. Then,
we orient the arcs from the node of smaller index to the node of
bigger index. Let N be the node set of the complete graph Kn, let
wi be a weight assigned to node i for i = 1,2, . . . , n, and let A be
the arc set of Kl. Then, we have the following constraints, with as
many variables as arcs:

∑

(j,i)arc entersi
xji −

∑

(i,j)arc has taili
xij = wi ∀i ∈ N,

xij ≥ 0 ∀(i, j) ∈ A.

These equalities and inequalities define a polytope and this polytope
is a special case of network flow polytope. Some tests for the com-
plete graphs K4 and K5 , with different weight vectors, are shown in
Table 4.

Next we tested more complicated situations. We consider 3-
way transportation polytopes where the constraints are given by
1-margins. In the first half of Table 5 one can see the behavior is
like that of the 2-way transportation polytopes in Table 3. The sec-

Table 3. Testing for 4× 4 transportation polytopes.

Margins exact # of lattice points Error on estimation

[1,1,1,1], [1,1,1,1] 24 0.36277
[300,300,300,300], [300,300,300,300] 20269699596926337751 0.12179
[220, 215, 93, 64], [108, 286, 71, 127] 1225914276768514 0.06062
[109, 127, 69, 109], [119, 86, 108, 101] 993810896945891 0.11770
[72, 67, 47, 96], [70, 70, 51, 91] 25387360604030 0.08014
[179909, 258827, 224919, 61909], [190019, 90636, 276208, 168701] 13571026063401838164668296635065899923152079 0.03177
[229623, 259723, 132135, 310952], [279858, 170568, 297181, 184826] 646911395459296645200004000804003243371154862 0.07002
[249961, 232006, 150459, 200438], [222515, 130701, 278288, 201360] 319720249690111437887229255487847845310463475 0.08213
[140648, 296472, 130724, 309173], [240223, 223149, 218763, 194882] 322773560821008856417270275950599107061263625 0.04441
[65205, 189726, 233525, 170004], [137007, 87762, 274082, 159609] 6977523720740024241056075121611021139576919 0.01276
[251746, 282451, 184389, 194442], [146933, 239421, 267665, 259009] 861316343280649049593236132155039190682027614 0.08974
[138498, 166344, 187928, 186942], [228834, 138788, 189477, 122613] 63313191414342827754566531364533378588986467 0.08647
[20812723, 17301709, 21133745, 27679151], [28343568, 18410455,19751834,
20421471]

665711555567792389878908993624629379187969880179721169068827951 0.99997

[15663004, 19519372, 14722354, 22325971], [17617837, 25267522, 20146447,
9198895]

63292704423941655080293971395348848807454253204720526472462015 0.99987

[13070380, 18156451, 13365203, 20567424], [12268303, 20733257, 17743591,
14414307]

43075357146173570492117291685601604830544643769252831337342557 0.99925
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Table 4. Gaussian estimation for four and five network problems.

Weights on Nodes Number of Lattice points Error

[−, 2569, −3820, 1108, 5281] 14100406254 0.1179212818
[−3842, −3945, 6744, 1043] 1906669380 0.07844816179
[−47896, −30744, 46242, 32398] 19470466783680 0.08633129132
[−54915, −97874, 64165, 88624] 106036300535520 0.1903691374
[−69295, −62008, 28678, 102625] 179777378508547 0.2495250224
[−3125352, −6257694, 926385, 8456661] 34441480172695101274 0.9847314633
[−12, −8, 9, 7, 4]; 14805; 0.9331835846
[−125, −50, 75, 33, 67]; 6950747024 0.8060985686
[−763, −41, 227, 89, 488] 222850218035543 0.4040804721
[−52541, −88985, 1112, 55665, 84749] 39971216842426033014442665332 0.9727043353
[−45617, −46855, 24133, 54922, 13417] 39971216842426033014442665332 0.9999790656
[−69295, −62008, 28678, 88725, 13900] 65348330279808617817420057 0.9998969873
[−8959393, −2901013, 85873, 533630, 11240903] 6817997013081449330251623043931489475270 0.9173160458

Table 5. Testing for 3-way transportation polytopes. The top half deals with 1-margins and the second half with 2-margins.

Margins # of lattice points Error

[38,26,87], [69,11,71], [77,74] 2626216761994 0.02956
[381,264,871], [690,123,703],
[672,844]

969328784998192447450409 0.02201

[179909, 258827, 224919], [190019,
276208, 197428], [331827,331828]

10996570128188103700571192439719329377965299537177538734365 0.10601

[31,22,87], [50,13,77], [42,87,11] 8846838772161591 0.00185
[531,992,787], [750,913,577],
[742,587,911]

75262943725025193225827940796161419321644384 0.11337

[11531,9922,13787],
[13750,9913,11577],
[9742,13587,11911]

131537460708108801553237287957587623890623217109985417250150842074021 0.12606

[1153100, 992200, 1378700],
[1375000, 991300, 1157700], [974200,
1358700, 1191100]

13047034222952410155948716772275006229691435459379246218796390438655039 21583490166934483708040820516427400011 0.12628
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⎡
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⎤
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⎡
⎣
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⎤
⎦ ,

⎡
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4 1

⎤
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441 1.10058

(3 copies of)

⎡
⎢⎢⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎥⎥⎦ 12 12.3843

ond half has three 3-way transportation polytopes given by sets of
2-margins. Due to the difference of error the examples indicate that
the method of estimation seems to have its best performance when
the number of variables is much larger than the number of con-
straints. This is particularly evident in the last two examples of Table
5. The first considers a 2-margin 2× 3× 3 transportation polytope
taken from [45]. Second, the 3×3×3 analogue of the Birkhoff poly-
tope has clear inaccuracy. Again, as we observed before, when the
computation involves large entries the convex optimization problem
becomes much harder to solve.

In [29] the authors introduced a class of small but rather difficult
problems for the purpose of detecting feasibility. Roughly speaking
these are problems of the form Ax = b,x ∈ {0,1} where A is an
m × 10(m − 1) matrix and the entries of A are integers between

0 and 99. The i-th entry of b is the sum of the corresponding row
of A, divided by 2 and rounded to the next integer value. We inves-
tigated the performance of estimation in this kind of problems. We
generated all instances using the generator available at http://did.mat.
uni-bayreuth.de/~alfred/marketsplit.html. We only investigated feasi-
ble instances withm = 2,m = 3 andm = 4. A very high percentage
of instances produced are in fact infeasible.

Unfortunately, when we tried the sampling technique in the six
feasible instances we found that most of the the time sampling never
found a single feasible solution. The second test was made using the
Gaussian estimation and it is presented in Table 6. We list the pre-
dicted number of solutions and the true number of solutions, if any.
The top part of the table consists of infeasible problems and there
the prediction is consistent with that fact.

http://did.mat.uni-bayreuth.de/~alfred/marketsplit.html
http://did.mat.uni-bayreuth.de/~alfred/marketsplit.html
http://did.mat.uni-bayreuth.de/~alfred/marketsplit.html
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Table 6. Testing gaussian estimation on feasible market-split problems. The problems on the top are infeasible and those in the block below have only one integer solution.
Thus, with one obvious exception, the estimated number of solutions is of comparable magnitude.

Constraints (of the form Lix =mi) predicted v.s. real number of solutions

L1 := [73,93, 88,63,65, 27,25,6,31, 70];m1 := 270;
L2 := [17,27, 32,35,36, 63,64,37, 91,93] :m2 := 247 0.0271 / 0
L1 := [30,29, 94,77,46, 10,63,40, 38,37];m1 := 232;
L2 := [16,92, 10,40,29, 16,51,11, 31,8];m2 := 152; 0.0435 / 0
L1 := [10,2, 88,39,33, 42,48,67,25, 74,86,34, 76,41,20, 32,42,78, 26,63];m1 := 463;
L2 := [15,94, 80,1,21, 99,54,48,10, 46,71,20, 0,60,11, 33,2,59,52, 79];m2 := 427; 0.0954 / 0
L3 := [85,39, 14,61,80, 86,46,23, 16,24,86, 31,19,18, 85,40,69, 39,40,79];m3 := 490;
L1 := [66,43, 98,18,69, 4,40,3,72, 41,20,52, 42,34,60, 70,27,43,64, 88];m1 := 477;
L2 := [98,17, 44,94,68, 84,77,70, 43,77,3,61, 72,53,79, 41,9,71,97, 81];m2 := 619; 0.0784 / 0
L3 := [12,69, 33,6,55, 45,29,82,88, 93,70,39, 62,67,85, 31,51,14, 1,46];m3 := 489;

L1 := [29,63,85, 80,64,87, 22,31,5,23, 96,8,14, 93,23,74,78, 72,0,30];m1 := 488;
L2 := [15,44,21, 83,13,49, 40,13,33, 46,42,62, 10,80,94, 26,19,68, 10,24];m2 := 396; 0.1049 / 2221
L3 := [43,6,84, 58,51,7,84, 29,79,36, 11,47,33, 32,30,46,33, 23,11,67];m3 := 405;
L1 := [39,65,40, 15,2,35, 74,87,33,46, 51,21,86, 80,70,60, 31,30,1,8];m1 := 437;
L2 := [12,23,87, 46,49,16, 14,88,91, 39,8,31,4, 0,46,58,36, 73,45,21];m2 := 393; 0.1363 / 748
L3 := [19,49,94, 58,29,17, 70,61,47, 71,21,59, 46,8,58,95, 76,72,36, 68];m3 := 527;
L1 := [69,0,89, 59,32,73, 56,26,49,42];m1 := 247; 0.02752 / 10
L2 := [42,69,59, 0,57,31, 84,95,61,77];m2 := 287;
L1 := [46,12,3, 91,76,7,39, 27,95,55];m1 := 225; 0.0334 / 8
L2 := [74,85,49, 39,80,22, 16,25,84, 11];m2 := 242;

Table 7. Gaussian estimation for binary knapsack problems

Constraints (of the form Lx =m) # 0− 1 solutions Error

L := [116,192, 120, 401,129];m := 236; 1 0.75480
L := [11,17, 33,13,3,5,6, 7,4];m := 33 9 0.11174
L := [16,92, 10,40,29, 16,51,11,31, 8];m := 152; 4 0.65327
L := [46,12, 3,91,76,7,39, 27,95,55];m = 225; 7 0.33358
L := [9,17,16, 8,6,15,14, 7,8,11];m := 30; 11 0.13587
L := [1,2,3,4,5,6, 7,8,9,10];m := 12; 13 0.07061
L := [11,4,13, 7,3,5,10,5,6, 11];m := 33; 29 0.84788
L := [1,3,5,7,9,11, 13,15,17, 19];m := 19; 6 0.04771
L := [1,2,3,4,5,6, 7,8,9,10,11, 12,13,14,15];m := 15 27 0.02667
L := [1,3,5,7,9,11, 13,15,17, 19,21,23, 25,27,29, 31,33,35, 37,39];m = 39 41 0.05350
L := [1,3,5,7,9,11, . . . ,2i− 1, . . . ,47, 49];m := 49 93 0.03782
L := [1,2,3,4, . . . , i, . . . ,20];m := 20; 64 0.04844
L := [1,2,3,4, . . . ,30];m := 30; 296 0.04371
L := [1,2,3,4, . . . ,40];m := 40; 1113 0.04075
L := [1,2,3, . . . ,50];m := 50; 3658 0.03619

Table 8. Gaussian estimation for counting graphs with given degree sequences (feasible cases only)

Graph description or sequence number of graphs Error

3-regular graphs with 6 nodes 70 0.00262
3-regular graphs with 8 nodes 19355 0.06182
3-regular graphs with 10 nodes 11180820 0.05657
3-regular graphs with 12 nodes 11555272575 0.02772
3-regular graphs with 14 nodes 19506631814670 0.01170
4-regular graphs with 6 nodes 15 0.17947
4-regular graphs with 8 nodes 19355 0.06182
4-regular graphs with 10 nodes 66462606 0.38190
4-regular graphs with 12 nodes 480413921130 0.21204
4-regular graphs with 13 nodes 52113376310985 0.07909
4-regular graphs with 14 nodes 6551246596501035 0.06839
4-regular graphs with 17 nodes 28797220460586826422720 0.02703
[5,6,1,1,1,1,1,1,1,1,1,1,1] 7392 1.15481

Finally we considered ten instances of binary knapsack problems
in Table 7. The estimation we present was done using the Gaussian
heuristic. This time the error is again smaller.

There is a wide variety of combinatorial configurations that can be
described as the binary solutions of a problem of the form Ax = b.
For example, for matchings of bipartite graphs the matrix A is the
incidence matrix of the graph. Of course, this opens the possibil-
ity of using the Barvinok-Hartigan estimators to approximate var-
ious combinatorial enumeration problems. In this section we look
carefully at the performance of the estimation in one well-studied
combinatorial problem.

For experimentation we have selected the problem of estimating
the number of labeled graphs with a prescribed degree sequence.

Random graphs with given vertex degrees have interest as models
for complex networks (see [23]). The main reasons for choosing
this problem include: (1) There are well-known tests that allow us
to decide when there are no solutions (see [69]). (2) Researchers
have already documented this problem and there is a wide variety of
formulas available for verification, e.g., regular graphs appear listed in
Sloane’s online encyclopedia of integer sequences (see [23] and ref-
erences therein). Most of the results are collected in Table 8, but we
also try comparing the estimation with non-feasible instances, i.e.,
non-realizable degree sequences. We found here that the estimation
was truly off. For example, there are no 3-regular graphs with 13
nodes, but the Gaussian estimation predicted about 0.4445× 1012

such graphs.
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