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MOS Chair’s Column

March 30, 2011. The Mathematical Optimization Society is alive
and active, and the best proof of this statement is the number of
innovations that have taken place within the Society since I wrote
my last column in Optima. Let me review these innovations briefly.

The first innovation, especially from the researcher point of view,
is the new internet support which has been introduced for our main
scientific journal, Mathematical Programming (Series A). This change
(described in another column in this issue of Optima) aims at pro-
viding better service to the optimization research community, and, I
am certain, will be beneficial for this community.

The second important event I wish to bring to your attention is
the creation of “Named Lectureships” at the Mathematical Program-
ming International Symposium. These lectureships are intended to
honour prominent researchers in optimization and related fields by
selecting a scientist to give a special lecture during the Symposium
(and possibly attributing a cash prize associated with the lecture-
ship). Fittingly, the first such named lectureship, which has been ac-
cepted by the Council of the Society, is the “Paul Y. Tseng Memorial
Lectureship in Continuous Optimization”. It will be presented for
the first time at the Twenty First International Symposium of Math-
ematical Programming (ISMP) in 2012, and triennally at each ISMP
thereafter. This lectureship was established on the initiative of fam-
ily and friends of Professor Tseng, with financial contributions to
the associated endowment also coming from universities and com-
panies in the Asia Pacific region. The purposes of the lectureship are
to commemorate the outstanding contributions of Professor Tseng
in continuous optimization and to promote the research and appli-
cations of continuous optimization in the Asia Pacific region. The
Council of the Society has not excluded that other named lecture-
ships could be established in the future, and has modified the bylaws
of the Society (available on the MOS website) to establish suitable
rules and conditions.

Needless to say, I am extremely pleased and proud of this new
valuable development, and I am truly looking forward to the first
Paul Tseng Lecture in Berlin.

A third potentially important decision has been taken by the MOS
Council regarding the collection of the Society’s membership fees.
It is a very unfortunate fact that so far the MOS membership falls
significantly once the memberships granted during the International
Symposium expire. As it turns out, many members forget to re-
new their membership and this puts the whole Society in a difficult
situation, because this happens in the period during which the next
Symposium is being organized. During this period a healthy member-
ship is needed to give the organizers a stronger negotiating position
with local facilitators, such as hotels or universities. The council has
therefore decided to propose financially attractive multi-year mem-
bership packages during the registration process of the Symposium.
The first such offer will be made available at the registration for the
Berlin 2012 Symposium.

This last topic provides the necessary transition for my (admit-
tedly repeated) urgent call to all: Please consider being a MOS member,
or to renew your membership for 2011 if you have not yet done so.
Please suggest MOS membership to your colleagues and students.
We need a strong society to represent our research community and
help the organizers of the fantastic forthcoming Berlin Symposium.

Note from the Editors

Dear MOS Members,
We are pleased to take over the editorship of the Optima newslet-
ter from the extremely capable team of editor Andrea Lodi and
co-editors Alberto Caprara and Katya Scheinberg (who has been
promoted to editor). We thank them for their tremendous service!

We want to briefly introduce the new team, which is as ge-
ographically and scientifically diverse as ever. Katya Scheinberg
(katyas@lehigh.edu) works in various areas of continuous optimiza-
tion with special interests in derivative free optimization and appli-
cations of statistical learning. Sam Burer (samuel-burer@uiowa.edu)
conducts research in convex optimization and strives to write fast,
accurate optimization code. Volker Kaibel’s (kaibel@ovgu.de) main
scientific interest is in discrete optimization with special emphasis
on polyhedral aspects.

As the editorial board, our hope is to continue Optima as a timely
newsletter with high quality contributions. We will retain the format
established by the previous board with one main scientific contri-
bution per issue and a discussion column on a related topic. We
hope that the readers will continue finding this format stimulating.
Please let us know if you have a contribution yourself or if there is a
particular topic you would like to see covered in Optima.

In this issue we present an article by our own new co-editor,
Volker Kaibel, and two discussion pieces all on the topic of extended
formulations.

Katya Scheinberg, Editor
Sam Burer, Co-Editor
Volker Kaibel, Co-Editor
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Volker Kaibel

Extended Formulations in

Combinatorial Optimization

1 Introduction

Linear Programming based methods and polyhedral theory form the
backbone of large parts of Combinatorial Optimization. The basic
paradigm here is to identify the feasible solutions to a given prob-
lem with some vectors in such a way that the optimization problem
becomes the problem of optimizing a linear function over the fi-
nite set X of these vectors. The optimal value of a linear function
over X is equal to its optimal value over the convex hull conv(X) =

{
∑
x∈X λxx :

∑
x∈X λx = 1, λ ≥ O} of X. According to the Weyl–

Minkowski Theorem [33, 25], every polytope (i.e., the convex hull of
a finite set of vectors) can be written as the set of solutions to a
system of linear equations and inequalities. Thus one ends up with a
linear programming problem.

As for the maybe most classical example, let us consider the set
M(n) of all matchings in the complete graph Kn = (Vn, En) on n
nodes (where a matching is a subset of edges no two of which share
a common end-node). Identifying every matching M ⊆ En with its
characteristic vector χ(M) ∈ {0,1}En (where χ(M)e = 1 if and only
if e ∈ M), we obtain the matching polytope Pmatch(n) = conv{χ(M) :

M ∈M(n)} . In one of his seminal papers, Edmonds [13] proved
that Pmatch(n) equals the set of all x ∈ REn+ that satisfy the inequal-
ities x(δ(v)) ≤ 1 for all v ∈ Vn and x(En(S)) ≤ ⌊|S|/2⌋ for all
subsets S ⊆ Vn of odd cardinality 3 ≤ |S| ≤ n (where δ(v) is the
set of all edges incident to v , En(S) is the set of all edges with both
end-nodes in S , and x(F) =

∑
e∈F xe). No inequality in this system,

whose size is exponential in n, is redundant.
The situation is quite similar for the permutahedron Pperm(n),

i.e., the convex hull of all vectors that arise from permuting the
components of (1,2, . . . , n). Rado [29] proved that Pperm(n) is
described by the equation x([n]) = n(n + 1)/2 and the in-
equalities x(S) ≥ |S|(|S| + 1)/2 for all 0 6= S ⊊ [n] (with
[n] = {1, . . . , n}), none of the 2n − 2 inequalities being redun-
dant. However if for each permutation σ : [n] → [n] we con-
sider the corresponding permutation matrix y ∈ {0,1}n×n (sat-
isfying yij = 1 if and only if σ(i) = j) rather than the vec-
tor (σ(1), . . . , σ(n)), we obtain a much smaller description of
the resulting polytope, since, according to Birkhoff [7] and von
Neumann [32], the convex hull Pbirk(n) (the Birkhoff-Polytope) of
all n × n-permutation matrices is equal to the set of all doubly-

stochastic n × n-matrices (i.e., nonnegative n × n-matrices all of
whose row- and column sums are equal to one). It is easy to
see that the permutahedron Pperm(n) is a linear projection of
the Birkhoff-polytope Pbirk(n) via the map defined by p(y)i =∑n
j=1 jyij . Since, for every linear objective function vector c ∈ Rn,

we have max{〈c,x〉 : x ∈ Pperm(n)} = max{
∑n
i=1

∑n
j=1 jciyij :

y ∈ Pbirk(n)}, one can use Pbirk(n) (that can be described by n2

nonnegativity inequalities) instead of Pperm(n) (whose description
requires 2n − 2 inequalities) with respect to linear programming re-
lated issues.

In general, an extension of a polytope P ⊆ Rn is a polyhe-
dron Q ⊆ Rd (i.e., an intersection of finitely many affine hyper-
planes and halfspaces) together with a linear projection p : Rd → Rn

satisfying P = p(Q). Any description of Q by linear equations and
linear inequalities then (together with p) is an extended formulation

of P . The size of the extended formulation is the number of in-
equalities in the description. Note that we neither account for the

number of equations (we can get rid of them by eliminating vari-
ables) nor for the number of variables (we can ensure that there
are not more variables than inequalities by projecting Q to the or-
thogonal complement of its lineality space, where the latter is the
space of all directions of lines contained in Q). If T ∈ Rn×d is
the matrix with p(y) = Ty , then, for every c ∈ Rn, we have
max{〈c,x〉 : x ∈ P} =max{〈T tc,y〉 : y ∈Q}.

In the example described above, Pbirk(n) thus provides an ex-
tended formulation of Pperm(n) of size n2. It is not known whether
one can do something similar for the matching polytopes Pmatch(n)

(we will be back to this question in Section 4.2). However there
are many other examples of nice and small extended formulations
for polytopes associated with combinatorial optimization problems.
The aim of this article is to show a few of them and to shed some
light on the geometric, combinatorial and algebraic background of
this concept that recently has received increased attention. The pre-
sentation is not meant to be a survey (for this purpose, we refer to
Vanderbeck and Wolsey [31] as well as to Cornuéjols, Conforti,
and Zambelli [11]) but rather an appetizer for investigating alterna-
tive possibilities to express combinatorial optimization problems by
means of linear programs.

While we will not be concerned with practical aspects here, ex-
tended formulations have also proven to be useful in computations.
You will find more on this in Laurence Wolsey’s discussion column
below. Fundamental work with respect to understanding the con-
cept of extended formulations and its limits has been done by Mihalis
Yannakakis in his 1991-paper Expressing Combinatorial Optimization

Problems by Linear Programs [34] (see Sect. 3.3 and 4). We are very
happy that he shares with us some of his thoughts on the subject in
another discussion column.

2 Some Examples

2.1 Spanning Trees

The spanning tree polytope Pspt(n) associated with the complete
graph Kn = (Vn, En) on n nodes is the convex hull of all character-
istic vectors of spanning trees, i.e., of all subsets of edges that form
connected and cycle-free subgraphs. In another seminal paper, Ed-
monds [14] proved that Pspt(n) is the set of all x ∈ REn+ that satisfy
the equation x(En) = n−1 and the inequalities x(En(S)) ≤ |S|−1

for all S ⊆ Vn with 2 ≤ |S| < n. Again, none of the exponentially
many inequalities is redundant.

However, by introducing additional variables zv,w,u for all or-
dered triples (v,w,u) of pairwise different nodes meant to encode
whether the edge {v,w} is contained in the tree and u is in the
component of w when removing {v,w} from the tree, it turns
out that the system consisting of the equations x{v,w} − zv,w,u −
zw,v,u = 0 and x{v,w} +

∑
u∈[n]\{v,w} zv,u,w = 1 (for all pairwise

different v,w,u ∈ Vn) along with the nonnegativity constraints
and the equation x(En) = n − 1 provides an extended formula-
tion of Pspt(n) of size O(n3) (with orthogonal projection to the
space of x-variables). This formulation is due to Martin [23] (see
also [34, 11]). You will find an alternative one in Laurence Wolsey’s
discussion column below.

2.2 Disjunctive Programming

If Pi ⊆ Rn is a polytope for each i ∈ [q], then clearly P =

conv(P1 ∪ · · · ∪ Pq) is a polytope as well, but, in general, it is diffi-
cult to derive a description by linear equations and inequalities in Rn

from such descriptions of the polytopes Pi. However constructing
an extended formulation for P in this situation is very simple. In-
deed suppose that each Pi is described by a system Aix ≤ bi of fi
linear inequalities (where, in order to simplify notation, we assume
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that equations are written, e.g., as pairs of inequalities). Then the
system Aizi ≤ λib

i for all i ∈ [q],
∑q
i=1 λi = 1, λ ≥ O with vari-

ables zi ∈ Rn for all i ∈ [q] and λ ∈ Rq is an extended formulation
for P of size f1 + · · · + fq + q, where the projection is given by
(z1, . . . , zq, λ) ֏ z1 + · · · + zq. This has been proved first by Balas
(see, e.g., [3]), even for polyhedra that are not necessarily polytopes
(where in this general case P needs to be defined as the topological
closure of the convex hull of the union).

2.3 Dynamic Programming

When a combinatorial optimization problem can be solved by a dy-
namic programming algorithm, one often can derive an extended for-
mulation for the associated polytope whose size is roughly bounded
by the running time of the algorithm.

A simple example is the 0/1-Knapsack problem, where we are
given a nonnegative integral weight vector w ∈ Nn, a weight
bound W ∈ N, and a profit vector c ∈ Rn, and the task is to
solve max{〈c,x〉 : x ∈ F(w,W)} with F(w,W) = {x ∈ {0,1}n :

〈w,x〉 ≤ W}. A classical dynamic programming algorithm works by
setting up an acyclic directed graph with nodes s = (0,0), t, and
(i,ω) for all i ∈ [n], ω ∈ {0,1, . . . ,W} and arcs from (i,ω) to
(i′,ω′) if and only if i < i′ and ω′ = ω +wi′ , where such an arc
would be assigned length ci′ , as well as arcs from all nodes to t (of
length zero). Then solving the 0/1-Knapsack problem is equivalent
to finding a longest s-t-path in this acyclic directed network, which
can be carried out in linear time in the number α of arcs.

The polyhedron Q ⊆ Rα+ of all s-t-flows of value one in that
network equals the convex hull of all characteristic vectors of s-t-
paths (due to the total unimodularity of the node-arc incidence ma-
trix), thus it is easily seen to be mapped to the associated Knapsack-

polytope Pknap(w,W) = conv(F(w,W)) via the projection given by
y ֏ x, where xi is the sum of all components of y indexed by
arcs pointing to nodes of type (i,⋆). As Q is described by nonneg-
ativity constraints, the flow-conservation equations on the nodes
different from s and t and the equation ensuring an outflow of value
one from s, these constraints provide an extended formulation for
Pknap(w,W) of size α.

However quite often dynamic programming algorithms can only
be formulated as longest-paths problems in acyclic directed hy-

pergraphs with hyperarcs of the type (S,v) (with a subset S of
nodes) whose usage in the path represents the fact that the opti-
mal solution to the partial problem represented by node v has been
constructed from the optimal solutions to the partial problems rep-
resented by the set S . Martin, Rardin, and Campbell [24] showed
that, under the condition that one can assign appropriate reference

sets to the nodes, also in this more general situation nonnegativity
constraints and flow-equations suffice to describe the convex hull of
the characteristic vectors of the hyperpaths. This generalization al-
lows one to derive polynomial size extended formulations for many
of the combinatorial optimization problems that can be solved in
polynomial time by dynamic programming algorithms.

2.4 Others

A common generalization of the techniques to construct extended
formulations by means of disjunctive programming or dynamic pro-
gramming is provided by branched polyhedral systems (BPS) [20]. In
this framework, one starts from an acyclic directed graph that has as-
sociated with each of its non-sink nodes v a polyhedron in the space
indexed by the out-neighbors of v . From these building blocks, one
constructs a polyhedron in the space indexed by all nodes. Under
certain conditions one can derive an extended formulation for the
constructed polyhedron from extended formulations of the polyhe-
dra associated with the nodes.

Some very nice extended formulations have recently been given
by Faenza, Oriolo, and Stauffer [16] for stable set polytopes of claw-
free graphs. Here the crucial step is to glue together descriptions
of stable set polytopes of certain building block graphs by means
of strip compositions. One of their constructions can be obtained by
applying the BPS-framework, though apparently the most interesting
one they have cannot.

An asymptotically smallest possible extended formulation of size
O(n logn) for the permutahedron Pperm(n) has been found by Goe-
mans [18]. His construction relies on the existence of sorting net-

works of size r = O(n logn) (Ajtai, Komlós, and Szemerédi [1]),
i.e., sequences (i1, j1), . . . , (ir , jr ) for which the algorithm that in
each step s swaps elements ais and ajs if and only if ais > ajs
sorts every sequence (a1, . . . , an) ∈ R into non-decreasing order.
The construction principle of Goemans has been generalized to the
framework of reflection relations [21], which, for instance, can be
used to obtain small extended formulations for all G-permutahedra

of finite reflection groups G (see, e.g., Humphreys [19]), including ex-
tended formulations of size O(logm) of regular m-gons, previously
constructed by Ben-Tal and Nemirovski [6]. Another application of
reflection relations yields extended formulations of size O(n logn)

for Huffman-polytopes, i.e., the convex hulls of the leaves-to-root-
distances vectors in rooted binary trees with n labelled leaves. Note
that linear descriptions of these polytopes in the original spaces are
very large, rather complicated, and unknown (see Nguyen, Nguyen,
and Maurras [26]).

The list of combinatorial problems for which small (and nice)
extended formulations have been found comprises many others,
among them perfect matching polytopes of planar graphs (Bara-
hona [5]), perfectly matchable subgraph polytopes of bipartite
graphs (Balas and Pulleyblank [4]), stable-set polytopes of dis-
tance claw-free graphs (Pulleyblank and Shepherd [28]), packing
and partitioning orbitopes [15], subtour-elimination polytopes (Yan-
nakakis [34] and, for planar graphs, Rivin [30], Cheung [9]), and cer-
tain mixed-integer programs (see, e.g., Conforti, di Summa, Eisen-
brand, and Wolsey [12]).

3 Combinatorial, Geometric, and Algebraic

Background

3.1 Face Lattices

Any intersection of a polyhedron P with the boundary hyperplane
of some affine halfspace containing P is called a face of P . The empty
set and P itself are considered to be (non-proper) faces of P as
well. The proper faces of a three-dimensional polytope thus are its
vertices, edges, and the polygons that make up the boundary of P .
Partially ordered by inclusion, the faces of a polyhedron P form a
lattice L(P), the face lattice of P . The proper faces that are maximal
with respect to inclusion are the facets of P . Equivalently, the facets
of P are those faces whose dimension is one less than the dimen-
sion of P . An irredundant linear description of P has exactly one
inequality for each facet of P .

If Q ⊆ Rd is an extension of the polytope P ⊆ Rn with a lin-
ear projection p : Rd → Rn, then mapping each face of P to its
preimage in Q under p defines an embedding of L(P) into L(Q).
Figure 1 illustrates this embedding for the trivial extension Q =

{y ∈ RV+ :
∑
x∈X yx = 1} of P = conv(X) via p(y) =

∑
x∈X yxx

for X = {e1,−e1, . . . ,e4,−e4} (thus P is the cross-polytope in R4

with 16 facets and Q is the standard-simplex in R8 with 8 facets). As
this figure suggests, constructing a small extended formulation for a
polytope P means to hide the facets of P in the fat middle part of
the face lattice of an extension with few facets.
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Figure 1. Embedding of the face lattice of the 4-dimensional cross-polytope into the face lattice of the 7-dimensional simplex

3.2 Slack Representations

Let P = {x ∈ A : Ax ≤ b} ⊆ Rn be a polytope with affine hull A=

aff(P), A ∈ Rm×n, and b ∈ Rm. The affine map ϕ : A → Rm with
ϕ(x) = b − Ax (the slack map of P w.r.t. Ax ≤ b) is injective. We
denote its inverse (the inverse slack map) on its image, the affine sub-
space Ã = ϕ(A) ⊆ Rm, by ϕ̃ : Ã →A. The polytope P̃ = Ã∩Rm+ ,
the slack-representation of P w.r.t. Ax ≤ b, is isomorphic to P with
ϕ(P) = P̃ and ϕ̃(P̃ ) = P .

If Z ⊆ Rm+ is a finite set of nonnegative vectors whose convex conic

hull ccone(Z) = {
∑
z∈Z λzz : λ ≥ O} ⊆ Rm+ contains P̃ = Ã ∩ Rm+ ,

then we have P̃ = Ã∩ccone(Z), and thus, the system
∑
z∈Z λzz ∈ Ã

and λz ≥ 0 (for all z ∈ Z) provides an extended formulation of P
of size |Z| via the projection λ ֏ ϕ̃(

∑
z∈Z λzz). Let us call such an

extension a slack extension and the set Z a slack generating set of P
(both w.r.t. Ax ≤ b).

Now suppose conversely that we have any extended formulation
of P of size q defining an extension Q that is pointed (i.e., the poly-
hedron Q does not contain a line). As for polytopes above (which
in particular are pointed polyhedra), we can consider a slack repre-
sentation Q̃ ⊆ Rq of Q and the corresponding inverse slack map ψ̃.
Then we have ϕ(p(ψ̃(Q̃))) = P̃ , where p is the projection map of
the extension. If the system Ax ≤ b is binding for P , i.e., each of
its inequalities is satisfied at equation by some point from P , then
one can show (by using strong LP-duality) that there is a nonnega-

tive matrix T ∈ Rm×q+ with ϕ(p(ψ̃(z̃))) = T z̃ for all z̃ ∈ Q̃, thus
P̃ = TQ̃. Hence the columns of T form a slack generating set of P
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(w.r.t. Ax ≤ b), yielding a slack extension of size q. As every non-
pointed extension of a polytope can be turned into a pointed one
of the same size by projection to the orthogonal complement of
the lineality space, we obtain the following result, where the exten-

sion complexity of a polytope P is the smallest size of any extended
formulation of P .

Theorem 1 ([17]). The extension complexity of a polytope P is equal

to the minimum size of all slack extensions of P .

As every slack extension of a polytope is bounded (and since all
bounded polyhedra are polytopes), Theorem 1 implies that the ex-
tension complexity of a polytope is attained by an extension that
is a polytope itself. Furthermore, in Theorem 1 one may take the
minimum over the slack extensions w.r.t. any fixed binding system of
inequalities describing P . In particular, all these minima concide.

3.3 Nonnegative Rank

Now let P = conv(X) = {x ∈ aff(P) : Ax ≤ b} ⊆ Rn be a polytope
with some finite set X ⊆ Rn and A ∈ Rm×n, b ∈ Rm. The slack ma-

trix of P w.r.t. X and Ax ≤ b is Φ ∈ R[m]×X+ with Φi,x = b−〈Ai,⋆, x〉.
Thus the slack representation P̃ ⊆ Rm of P (w.r.t. Ax ≤ b) is the
convex hull of the columns of Φ. Consequently, if the columns of a

nonnegative matrix T ⊆ R[m]×[f ]+ form a slack generating set of P ,

then there is a nonnegative matrix S ∈ R[f ]×X+ with Φ = TS . Con-
versely, for every factorization Φ = T ′S′ of the slack matrix into

nonnegative matrices T ′ ∈ R[m]×[f
′]

+ and S′ ∈ R[f
′]×X

+ , the columns
of T ′ form a slack generating set for P .

Therefore constructing an extended formulation of size f for P
amounts to finding a factorization of the slack matrix Φ = TS into
nonnegative matrices T with f columns and S with f rows. In par-
ticular, we have derived the following result that essentially is due to
Yannakakis [34] (see also [17]). Here, the nonnegative rank of a ma-
trix is the minumum number f such that the matrix can be written
as a product of two nonnegative matrices, where the first one has f
columns and the second one has f rows.

Theorem 2. The extension complexity of a polytope P is equal to the

nonnegative rank of its slack matrix (w.r.t. any set X and binding system

Ax ≤ b with P = conv(X) = {x ∈ aff(P) : Ax ≤ b}).

Clearly, the nonnegative rank of a matrix is bounded from below
by its usual rank as known from Linear Algebra. There is also quite
some interest in the nonnegative rank of (not necessarily slack) ma-
trices in general (see, e.g., Cohen and Rothblum [10]).

4 Fundamental Limits

4.1 General Lower Bounds

Every extension Q of a polytope P has at least as many faces as P , as
the face lattice of P can be embedded into the face lattice of Q (see
Sect. 3.1). Since each face is the intersection of some facets, one
finds that the extension complexity of a polyhedron with β faces is
at least logβ. This observation has first been made by Goemans [18]
in order to argue that the extension complexity of the permutahe-
dron Pperm(n) is at least Ω(n logn).

Suppose that Φ = TS is a factorization of a slack matrix Φ of
the polytope P into nonnegative matrices T and S with columns
t1, . . . , tf and rows s1, . . . , sf , respectively. Then we can write

Φ =
∑f
i=1 t

isi as the sum of f nonnegative matrices of rank one.
Calling the set of all non-zero positions of a matrix its support, we
thus find that the nonnegative factorization Φ = TS provides a way
to cover the support of Φ by f rectangles, i.e., sets of the form
I × J, where I and J are subsets of the row- and column-indices

of Φ, respectively. Hence, due to Theorem 2, the minimum num-
ber of rectangles by which one can cover the support of Φ yields
a lower bound (the rectangle covering bound) on the extension com-
plexity of P (Yannakakis [34]). Actually, the rectangle covering bound
dominates the bound discussed in the previous paragraph [17]. As
Yannakakis [34] observed furthermore, the logarithm of the rectan-
gle covering bound of a polytope P is equal to the nondeterministic

communication complexity of the predicate on the pairs (v, f) of ver-
tices v and facets f of P that is true if and only if v 6∈ f .

One can equivalently describe the rectangle covering bound as
the minimum number of complete bipartite subgraphs needed to
cover the vertex-facet-non-incidence graph of the polytope P . A fool-

ing set is a subset F of the edges of this graph such that no two of
the edges in F are contained in a complete bipartite subgraph. Thus
every fooling set F proves that the rectangle covering bound, and
hence, the extension complexity of P , is at least |F|. For instance,
for the n-dimensional cube it is not too difficult to come up with a
fooling set of size 2n, proving that for a cube one cannot do better
by allowing extended formulations for the representation. For more
details on bounds of this type we refer to [17].

Unfortunately, all in all the currently known techniques for deriv-
ing lower bounds on extension complexities are rather limited and
yield mostly quite unsatisfying bounds.

4.2 The Role of Symmetry

Asking, for instance, about the extension complexity of the match-
ing polytope Pmatch(n) defined in the beginning, one finds that not
much is known. It might be anything between quadratic and expo-
nential in n. However, in the main part of his striking paper [34], Yan-
nakakis established an exponential lower bound on the sizes of sym-

metric extended formulations of Pmatch(n). Here, symmetric means
that the extension polyhedron remains unchanged when renumber-
ing the nodes of the complete graph, or more formally that, for each
permutation π of the edges of the complete graph that is induced by
a permutation of its nodes, there is a permutation κπ of the variables
of the extended formulation that maps the extension polyhedron to
itself such that, for every vector y in the extended space, apply-
ing π to the projection of y yields the same vector as projecting the
vector obtained from y by applying κπ . Indeed, many extended for-
mulations are symmetric in a similar way, for instance the extended
formulation of the permutahedron by the Birkhoff-polytope men-
tioned in the Introduction as well as the extended formulation for
the spanning tree polytope discussed in Section 2.1.

In order to state Yannakakis’ result more precisely, denote
by Mℓ(n) the set of all matchings of cardinality ℓ in the complete
graph with n nodes, and by Pmatch

ℓ (n) = conv{χ(M) : M ∈Mℓ(n)}

the associated polytope. In particular, Pmatch
n/2 (n) is the perfect-

matching-polytope (for even n).

Theorem 3 (Yannakakis [34]). For even n, the size of every symmet-
ric extended formulation of Pmatch

n/2 (n) is at least Ω(
(

n
⌊(n−2)/4⌋

)
).

Since Pmatch
⌊n/2⌋(n) is (isomorphic to) a face of Pmatch(n), one easily de-

rives the above mentioned exponential lower bound on the sizes of
symmetric extended formulations for Pmatch(n) from Theorem 3.

At the core of his beautiful proof of Theorem 3, Yannakakis shows
that, for even n, there is no symmetric extended formulation in
equation form (i.e., with equations and nonnegativity constraints
only) of Pmatch

n/2 (n) of size at most
(
n
k

)
with k = ⌊(n − 2)/4⌋. From

such a hypothetical extended formulation EF1, he first constructs an
extended formulation EF2 in equation form on variables yA for all
matchings A with |A| ≤ k such that the 0/1-vector valued map s⋆

on the vertices of Pmatch
n/2 (n) defined by s⋆(χ(M))A = 1 if and only

if A ⊆ M is a section of EF2, i.e., s⋆(x) maps every vertex x to a
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preimage under the projection of EF2 that is contained in the ex-
tension polyhedron. Then it turns out that an extended formulation
like EF2 cannot exist. In fact, for an arbitrary partitioning of the node
set into two parts V1 and V2 with |V1| = 2k+ 1, one can construct
a nonnegative point y⋆ in the affine hull of the image of s⋆ (thus
y⋆ is contained in the extension polyhedron of EF2 that is defined
by equations and nonnegativity constraints only) with y⋆{e} = 0 for
all edges e connecting V1 and V2, which implies that the projection
of the point y⋆ violates the inequality x(δ(V1)) ≥ 1 that is valid
for Pmatch

n/2 (n) (since |V1| = 2k+ 1 is odd). The crucial ingredient for
constructing EF2 from EF1 is a theorem of Bocherts’ [8] stating that
every subgroup G of permutations of m elements that is primitive
with |G| > m!/⌊(m + 1)/2⌋! contains all even permutations. Yan-
nakakis constructs a section s for EF1 for that he can show – by
exploiting Bochert’s theorem – that there is a nonnegative matrix C
with s(χ(M)) = C · s⋆(χ(M)) for all M ∈Mn/2(n), which makes it
rather straight forward to construct EF2 from EF1.

With respect to the fact that his proof yields an exponential lower
bound only for symmetric extended formulations, Yannakakis [34] re-
marked “we do not think that asymmetry helps much” in construct-
ing small extended formulations of the (perfect) matching polytopes
and stated as an open problem to “prove that the matching (. . . )
polytopes cannot be expressed by polynomial size LP’s without the
symmetry assumption”. As indicated above, today we still do not
know whether this is possible. However, at least it turned out re-
cently that requiring symmetry can make a big difference for the
smallest possible size of an extended formulation.

Theorem 4 ([22]). All symmetric extended formulations of Pmatch
⌊logn⌋(n)

have size at least nΩ(logn), while there are polynomial size non-symmetric

extended formulations for Pmatch
⌊logn⌋(n) (i.e., the extension complexity

of Pmatch
⌊logn⌋(n) is bounded from above by a polynomial in n).

Thus, at least when considering matchings of size ⌊logn⌋ instead of
perfect (or arbitrary) matchings, asymmetry indeed helps much.

While the proof of the lower bound on the sizes of symmetric
extended formulations stated in Theorem 4 is a modification of Yan-
nakakis’ proof indicated above, the construction of the polynomial
size non-symmetric extended formulation of Pmatch

⌊logn⌋(n) relies on
the principle of disjunctive programming (see Section 2.2). For an
arbitrary coloring ζ of the n nodes of the complete graph with 2k

colors, we call a matching M (with |M| = k) ζ-colorful if, in each
of the 2k color classes, there is exactly one node that is an end-
node of one of the edges from M . Let us denote by Pζ the convex
hull of the characteristic vectors of ζ-colorful matchings. The crucial
observation is that Pζ can be described by O(2k +n2) inequalities
(as opposed to Ω(2n) inequalities needed to describe the polytope
associated with all matchings, see the Introduction). On the other
hand, according to a theorem due to Alon, Yuster, and Zwick [2],
there is a family of q such colorings ζ1, . . . , ζq with q = 2O(k) logn

such that, for every 2k-element subset W of the n nodes, in at least
one of the colorings the nodes from W receive pairwise different
colors. Thus we have Pmatch

k (n) = conv(Pζ1
∪ · · · ∪ Pζq), and hence

(as described in Section 2.2) we obtain an extended formulation
of Pmatch

k (n) of size 2O(k)n2 logn, which, for k = ⌊logn⌋, yields the
upper bound in Theorem 4.

Yannakakis [34] moreover deduced from Theorem 3 that there
are no polynomial size symmetric extended formulations for the
traveling salesman polytope (the convex hull of the characteristic
vectors of all cycles of lengths n in the complete graph with n
nodes). Similarly to Theorem 4, one can also prove that there are
no polynomial size symmetric extended formulations for the poly-
topes associated with cycles of length ⌊logn⌋, while these polytopes
nevertheless have polynomially bounded extension complexity [22].

Pashkovich [27] further extended Yannakakis’ techniques in order
to prove that every symmetric extended formulation of the permu-
tahedron Pperm(n) has size at least Ω(n2), showing that the Birkhoff-
polytope essentially provides an optimal symmetric extension for the
permutahedron.

5 Conclusions

Many polytopes associated with combinatorial optimization prob-
lems can be represented in small, simple, and nice ways as projec-
tions of higher dimensional polyhedra. Moreover, though we have
not touched this topic here, sometimes such extended formulations
are also very helpful in deriving descriptions in the original spaces.
What we currently lack are on the one hand more techniques to
construct extended formulations and on the other hand a good un-
derstanding of the fundamental limits of such representations. For
instance, does every polynomially solvable combinatorial optimiza-
tion problem admit an extended formulation of polynomial size? We
even do not know this for the matching problem. How about the
stable set problem in perfect graphs? The best upper bound on the
extension complexity of these polytopes for graphs with n nodes
still is nO(logn) (Yannakakis [34]).

Progress on such questions will eventually shed more light onto
the principle possiblities to express combinatorial problems by
means of linear constraints. Moreover, the search for extended for-
mulations yields new modelling ideas some of which may prove to
be useful also in practical contexts. In any case, work on extended
formulations can lead into fascinating mathematics.
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Discussion Column

Laurence A. Wolsey

Using Extended Formulations in Practice

Though Dantzig-Wolfe decomposition [7] dating from 1960 and the
description of the convex hull of the union of polyhedra of Balas
[2] from the early 1970s can both be seen as results about using
additional variables in modeling, systematic interest in what we now
call extended formulations (EFs) seems to have begun in the 1980s.
The flurry of activity in polyhedral combinatorics in the 1970s con-
centrated on the development of valid inequalities to strengthen the
formulation of both easy and NP-hard integer programs, and only
later was the question of adding variables to obtain tighter formula-
tions raised systematically.

In this short discussion, we try to indicate a few of the areas in
which EFs have been used computationally, as well as the different
ways in which they have been tested. Two recent surveys [5] and
[22] contain many more examples of EFs and the techniques avail-
able for constructing such formulations, the first concentrating more
on combinatorial optimization problems and the second more on in-
teger programming. Note that we do not discuss the use of an EF to
generate valid inequalities in the original space of variables, as in the
case of Benders’ algorithm [4] or lift-and-project [3].

Lot-sizing, network design and routing models are three of the
areas in which EFs have been effective computationally. Below we
will first describe one or two EFs in each of these areas. Then we
will briefly indicate different ways in which they have been used.

Lot-Sizing – Direct Use of an MIP Solver

Lot-sizing problems provide perhaps the richest class of problems
for which EFs have been developed that are small in size and compu-
tationally effective. Two reasons for this are the fact that the single
item problem can be viewed as a fixed charge network flow prob-
lem and that the uncapacitated and constant capacity variants typi-
cally can be solved in polynomial time via dynamic programming. In
1977 Krarup and Bilde [13] published a reformulation of the single-
item uncapacitated lot-sizing problem as an uncapacitated facility lo-
cation problem and showed that for the specific objective function
obtained for lot-sizing, the linear programming relaxation had inte-
ger solutions. Another way to explain this reformulation is as a mul-
ticommodity reformulation of the initial fixed charge network flow
formulation in which the demand for each time period is treated as
a separate commodity. Recently such a multicommodity reformula-
tion has been shown to be effective computationally [15] for 2-level
production-transportation problems with on the order of 2–5 pro-
duction sites, 5–10 items, 10–40 clients and 12–24 time periods.

In an important paper in 1987 Eppen and Martin [8] showed that a
shortest path EF of the same single item uncapacitated problem was
actually an integer polytope. More generally they showed how in
many cases a dynamic programming algorithm for optimization over
a discrete set X leads through LP duality to an extended formula-
tion whose projection onto the original space of variables gives the
convex hull of solutions conv(X). They developed EFs for several dif-
ferent lot-sizing variants and among others solved to near-optimality
multi-item big bucket lot-sizing problems with up to 200 products
and 10 time periods.

Pochet and Wolsey [17] and Constantino [6] developed compact
and tight EFs for several variants of the constant capacity single-item
lot-sizing problem. Based on this work, Günlük and Pochet [12] later

http://www-math.mit.edu/~goemans/publ.html
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showed that the important structure underlying many of these re-
sults was a simple mixed integer set of the form {(s,x) ∈ R × Zn :

s + xt ≥ bt , t = 1, . . . , n}, called the mixing set. The book [18]
describes an automatic reformulation procedure to enable the user
to benefit from these EFs and contains several production planning
case studies using them. The direct approach used for the computa-
tional results cited so far is to take the multi-item problem, add the
EFs for each item, and then feed the resulting formulation directly to
an MIP solver.

The Tree Polytope and Routing – Using Approximate EFs

A well-known formulation for the set X of incidence vectors of
spanning trees in a graph consists of degree constraints and an ex-
ponential number of subtour elimination constraints using variables
x ∈ R|E| where xe = 1 denoting that edge e is in the spanning
tree. Wong [23] proposed an EF for the symmetric traveling sales-
man problem that provides a tight formulation for the spanning tree
polytope. Specifically to model the connectivity of a spanning tree,
one chooses a root node r and then constructs an arborescence
rooted at r in which it is possible to direct a unit of flow from
the root to each node i ≠ r . This leads to a formulation as a sin-
gle source fixed charge network flow problem on the graph (V, E):
{(x,y, f) ∈ {0,1}|E|×{0,1}|A| ×R|A|+ : xe = yij +yji e = (i, j) ∈

E,
∑
j fij−

∑
j fji = −1 i ≠ r , fij ≤ (|V |−1)yij (i, j) ∈ A}, where

yij = 1 if arc (i, j) is in the arborescence and fij is the flow in arc
(i, j). Again introducing a distinct commodity for each node k ≠ r ,
one obtains the EF {(x,y,w) ∈ {0,1}|E| × {0,1}|A| × R|A|(|V |−1)

+ :

xe = yij + yji ∀e = (i, j) ∈ E,
∑
j w

k
ij −

∑
j w

k
ij = 0 ∀k, i ≠

r , k,
∑
jw

k
jk = 1 ∀k ≠ r , wkij ≤ yij∀(i, j) ∈ A, k} where wkij = 1

if the directed path from the root to node k passes through the arc
(i, j). With the cardinality constraint

∑
e∈E xe = |V | − 1, this EF is

an alternative to that of Martin for the convex hull of incidence vec-
tors of spanning trees described above by Kaibel. This formulation
involves O(n3) variables and constraints if n = |V | which leads to
formulations that are too large for practical use if n exceeds 30-40.
In [21], see also [1], one relaxes or approximates this formulation
to get one of more reasonable size. Specifically the idea is to drop
the k, i flow conservation constraint if node i is not within some
selected neighborhood of node k, as well as the variables wkij ,w

k
ji if

neither i or j is in the neighborhood. This relaxation allows one to
solve traveling salesman problems with 70 or so nodes directly with
an MIP solver.

Multi-commodity Fixed Charge Network Flows – Column and Row

Generation

Magnanti et al. [14] considered the following model for a single arc:
X = {(x,y) ∈ RK+ × Z

1
+ :

∑K
k=1 dkxk ≤ Cy,x ≤ 1}, and showed

that the exponential family of Residual Capacity or MIR inequali-
ties:

∑
j∈T djxj ≤ αT + βTy where T ⊆ {1, . . . , K}, ρT = ⌊

d(T)
C ⌋,

βT = d(T) − ρC and αT = (C − βT )ρT provide the convex hull.
Recently Frangioni and Gendron [9] have shown that the follow-
ing polyhedron Q provides an EF for conv(X): {(x,y,v,w) ∈
RK+ × R

1
+ × R

S
+ × R

KS
+ :

∑S
s=1 vs ≤ 1, (s − 1)Cvs ≤

∑
k dkwks ≤

sCvs ∀ s, wks ≤ vs ∀ k, s, y =
∑S
s=1 vs , xk =

∑S
s=1wks ∀ k},

where S = ⌈
∑K
k=1 dk
C ⌉ and we can interpret the additional variables

as follows: vs = 1 if y = s and vs = 0 otherwise, and wks = xk
if y = s and wks = 0 otherwise. Here the formulation obtained by
adding this EF for each arc is too large to be solved directly by an
MIP solver. The authors develop a column and row generation al-
gorithm which works with a subset of the variables and constraints,
solves an optimization problem over each single arc set to find miss-
ing variables that need to be added, and then simultaneously adds
the constraints in which these variables occur. The authors use the

approach to obtain strong lower bounds for multicommodity ca-
pacitated network design problems with up to 30 nodes and 400
commodities.

Parallel Machine Scheduling – Cutting Planes

Given a set of n jobs, a natural first choice is the set of variables:
tj denoting the start time of job j. If the processing times of the
jobs are integer, the time-indexed variables [19] where wjt = 1 if
job j starts processing in time t is a common choice for additional
variables. These allow one to model many machine scheduling prob-
lems, but already the resulting extended formulations are too large
to be fed directly to an MIP solver. However surprisingly it can be of
interest to consider an even larger set of variables, such as zijt = 1

if job i finishes and job j starts at time t on the same machine,
and job 0 corresponds to idle. With these variables, it is not diffi-
cult to see that the following holds for any subset S ⊆ N of jobs:∑T
t=1

∑
i∈S,j∉S tzijt −

∑T
t=1

∑
i∉S,j∈S tzijt =

∑
j∈S pj , where T is

an upper bound on the time horizon. Setting ut =
∑
i∈S,j∉S zijt

and vt =
∑
i∉S,j∈S zijt , this becomes the knapsack set {(u,v) ∈

ZT+ × Z
T
+ :
∑T
t=1 tut −

∑T
t=1 tvt =

∑
j∈S pj}, for which one can gen-

erate cutting planes. Note that these cannot in general be converted
into cutting planes in either the tj variables or in the wjt variables.
In a recent paper of Pessoa et al. [16] such cutting planes form one of
the important computational steps of an algorithm allowing the solu-
tion of parallel machine scheduling problems with up to 4 machines
and 100 jobs. This idea appeared in a paper of Gouveia [11], and
has been used in several successful studies in vehicle routing, [10],
[20], etc. combining cutting planes in both the original and additional
variables and column generation, under the title branch-and-price-
and-cut.

We have not discussed in detail the size of the EFs presented
above. However if they are more than quadratic in the size of the
original formulation, it is typically not possible to solve them directly
with an MIP solver. In such cases considerable algorithmic original-
ity is required to successfully use EFs and this is an intriguing area
for research. Apart from the approaches discussed her, two more
standard directions include the use of EFs to develop heuristics, see
for instance [8], and to derive valid inequalities in the original space
(variants of Benders’ algorithm).

Laurence A. Wolsey, Center for Operations Research and Economet-
rics (CORE), Université catholique de Louvain, Voie du Roman Pays 34,
1348 Louvain-la-Neuve, Belgium. laurence.wolsey@uclouvain.be
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Mihalis Yannakakis

On Extended LP Formulations

In connection with his paper, Volker Kaibel asked me to give some
background on my paper “Expressing Combinatorial Optimization
Problems by Linear Programs" [3] regarding the motivation and
thoughts that guided that work. That research was carried out in
1987 and was presented first at the STOC’88 conference. It was mo-
tivated on the one hand by a claimed proof of P=NP that appeared
at that time and attracted a lot of attention in the community, and
on the other hand by the developments in the preceding years in
Linear Programming and the polyhedral approach to combinatorial
optimization.

In 1986–87 E. R. Swart circulated a paper that claimed to solve the
Traveling Salesman Problem using Linear Programming [2]. In partic-
ular, the paper constructed a large LP with many extra variables (n8

in the original version, n10 in a revision), which purportedly pro-
vided an extended formulation of the TSP polytope. Given the size
and complexity of the LP, it was rather hard to determine what was
exactly the effect of these variables and constraints and whether the
LP worked or not. It was clear that some methodology was needed
to understand what is possible to achieve with extra variables and
whether this approach could possibly work in principle.

The approach itself is actually a reasonable one to try if one be-
lieves that P=NP. First, Linear Programming is a P-complete prob-
lem, so it is in some sense a hardest, universal problem in P. Sec-
ond, we know that the introduction of extra variables (which are
then existentially quantified, i.e. projected out) is a powerful tool in
various domains that can increase drastically the expressive power
of a model, turning an exponential object into a polynomial one.
There are for example simple polytopes with an exponential num-
ber of facets, that can be expressed succinctly with extra variables.
In logic, every Boolean predicate can be represented by an equiv-
alent Boolean formula (in conjunctive normal form), but the for-
mula requires often exponential size. However, introducing extra
variables we can express any NP predicate by a polynomial-size for-
mula; this is essentially Cook’s theorem showing that Satisfiability is
NP-complete.

Another motivation came from the discovery of Khachian’s el-
lipsoid algorithm and its applications, and Karmakar’s algorithm.
Grötchel, Lovasz and Schrijver had shown that the ellispoid algo-
rithm could be used to solve in polynomial time various problems
(such as the clique and independent set problem on perfect graphs)
even though their standard LP formulation has an exponential num-
ber of constraints (provided there is a good separation algorithm for
the constraints). In view of the impracticality of the ellipsoid algo-
rithm, it would be desirable to use instead Karmakar’s algorithm (or
Simplex) for these problems; however this would require a polyno-
mial size LP description, which raises the question whether one can
construct such a formulation using any (small) set of extra variables
and constraints. The same question is relevant also for NP-hard
problems, such as the TSP, with respect to useful classes of their
facets; presumably (if P≠NP) we cannot construct exact extended
formulations in polynomial time, but perhaps we can express suc-
cinctly important classes of facets that provide useful cutting planes.

With this background I tried to take a systematic look to get
some understanding of what can and cannot be achieved with com-
pact extended LP formulations. The paper resolved partially some
questions and left many more open. For general polytopes a pleas-
ant surprise was that the complexity of the smallest extended LP
formulation can be characterized by a concrete parameter, the non-
negative rank of the slack matrix. The problem is that it is often
not that easy to compute the nonnegative rank. The paper pointed
out a connection to communication complexity, which can be used
sometimes to obtain lower or upper bounds, and applied it to the
independent (stable) set polytope for some classes of graphs. In gen-
eral however, we still need to develop good methods to estimate or
bound the nonnegative rank.

With respect to the question of expressing the TSP polytope by
a small LP, I could not show that this is impossible, but could rule it
out at least for the class of symmetric LPs (which includes the pro-
posed LP in Swart’s attempted proof): any such formulation must
have exponential size. It was easier to prove this result first for the
(perfect) matching polytope and then transfer it by reduction to the
TSP polytope. (The result holds for a somewhat larger class of LPs
but it was simpler to state it for symmetric LPs.) In subsequent years
there have been several more similar attempts to prove P=NP using
an extended LP formulation for the TSP; they are generally symmet-
ric or almost so (sometimes for example a particular node is singled
out as the starting node of the tour; the exponential lower bound
holds even if a constant fraction of nodes is singled out.) Symmetry
seems to be rather natural in the construction of exact LP formu-
lations, but as shown recently by Kaibel, Pashkovich and Theis [1],
nonsymmetry can save a superpolynomial amount in some cases.

It remains an intriguing open question whether the matching poly-
tope can be expressed by a polynomial-size (unrestricted) LP. For the
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TSP and the polytopes of other NP-hard problems, we expect that
this must be impossible. Is this tantamount to showing P≠NP? It
does not seem so. The P=NP question is equivalent to a related
but somewhat different question, reflecting in a sense the differ-
ence between decision and optimization problems: P=NP iff we can
construct efficiently a polynomial-size extended LP formulation of a
polyhedron that includes the characteristic vectors of Hamiltonian
graphs and excludes those of non-Hamiltonian. Such an LP could be
easily obtained from a compact LP formulation for the TSP poly-
tope, but the converse does not seem to hold in any obvious way.
I believe in fact that it should be possible to prove that there is no
polynomial-size formulation for the TSP polytope or any other NP-
hard problem, although of course showing this remains a challenging
task.

Mihalis Yannakakis, Department of Computer Science, Columbia University.
mihalis@cs.columbia.edu
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Announcements

Mathematical Programming, Series A,

is going online

Starting in January, 2011 all submissions to Mathematical Program-

ming, Series A, should be made through Springer’s Online Manuscript

Submission, Review and Tracking System for the journal, at the web site
www.editorialmanager.com/mapr/.

Most scholarly journals published by major publishing companies
have such online submission systems, and the move to such a sys-
tem was long overdue for Mathematical Programming. There are many
advantages of such a system – starting with the submission, the ed-
itorial progress of each paper is recorded, the author can check on
the status of his/her submission, automatic reminders are sent to
the editors if they are late, etc. Moreover, statistics on the workload
and performance of each editor are easy to obtain. One important
detail is that the online system, at least initially, will be for the use of
authors and the editorial board only – all communications between
the editors and referees will remain on a personal level, outside of
the system.

We hope that this move will improve the overall performance of
the journal and will help to eliminate outlier cases where an author
waits in frustration for a long-overdue report on his/her paper. Of
course, as with any new system some tuning will probably be nec-
essary to deal with unforseen problems, but the initial testing phase
went smoothly. Once the online system is well established for Series

A of Mathematical Programming, it may also be adapted for the use of
Series B of the journal.

We believe that this change is an important step in the journal’s
organization, and are confident that it will result in a more reliable
and professional service to the optimization community.

Kurt Anstreicher (MPA Editor-in-Chief)
Alexander Shapiro (Chair of the MOS Publications Committee)
Philippe Toint (Chair of the MOS)

Call for nomination for the

2012 George B. Dantzig Prize

Nominations are solicited for the George B. Dantzig Prize, admin-
istered jointly by the Mathematical Optimization Society (MOS) and
the Society for Industrial and Applied Mathematics (SIAM). This
prize is awarded to one or more individuals for original research
which by its originality, breadth and depth, is having a major impact
on the field of mathematical optimization. The contribution(s) for
which the award is made must be publicly available and may belong
to any aspect of mathematical optimization in its broadest sense.

The prize will be presented at the 2012 International Symposium

on Mathematical Programming, to be held August 19–24, 2012, in
Berlin, Germany. The members of the prize committee are John
Birge (Chair), Gerard Cornuejols, Yuri Nesterov, and Eva Tardos.

Nominations should consist of a letter describing the nominee’s
qualifications for the prize, and a current curriculum vitae of the
nominee including a list of publications. They should be sent to

John Birge
University of Chicago
Booth School of Business
5807 South Woodlawn Avenue
Chicago, IL 60637, USA
Email: John.Birge@ChicagoBooth.edu

and received by 15 November 2011. Submission of nomination ma-
terials in electronic form is strongly encouraged.

Mixed Integer Programming 2011

June 20–23, 2011, University of Waterloo, Canada

You are cordially invited to participate in the upcoming workshop
in Mixed Integer Programming (MIP 2011). The 2011 Mixed Inte-
ger Programming workshop will be the eighth in a series of annual
workshops held in North America designed to bring the integer pro-
gramming community together to discuss very recent developments
in the field. The workshop is especially focused on providing oppor-
tunities for junior researchers to present their most recent work.
The workshop series consists of a single track of invited talks. MIP
2011 is scheduled immediately following IPCO XV, which will take
place at IBM T.J. Watson Research Center in Yorktown Heights, NY
from June 15–17 (http://ipco2011.uai.cl).

Confirmed speakers ◦ Amitabh Basu – UC Davis ◦ Gerard Cornuejols
– Carnegie Mellon University ◦ Claudia D’Ambrosio – University of
Bologna ◦ Santanu Dey – Georgia Tech ◦ Sarah Drewes – UC Berke-
ley ◦ Samir Elhedhli – University of Waterloo ◦ Marcos Goycoolea
– Universidad Adolfo Ibanez ◦ Willem-Jan van Hoeve – Carnegie
Mellon University ◦ Adam Letchford – Lancaster University ◦ Leo
Liberti – Ecole Polytechnique ◦ Marco Luebbecke – RWTH Aachen
University ◦ Susan Margulies – Rice University ◦ Alex Martin – Uni-
versitt Erlangen-Nrnberg ◦ Giacomo Nannicini – Carnegie Mellon
University ◦ Michael Perregaard – FICO ◦ Sebastian Pokutta – MIT
◦Oleg Prokopyev – University of Pittsburgh ◦ Sebastian Sager – Uni-
versity of Heidelberg ◦ Domenico Salvagnin – University of Padova
◦ Gautier Stauffer – University of Bordeaux 1 ◦ Laura Sanita – Ecole
Polythechnique Federale de Lausanne ◦ Levent Tuncel – University
of Waterloo ◦ Francois Vanderbeck – University of Bordeaux 1
◦ Robert Weismantel – ETH Zurich

The workshop is designed to provide ample time for discussion and
interaction between the participants, as one of its aims is to facili-

mihalis@cs.columbia.edu
mailto:mihalis@cs.columbia.edu
www.editorialmanager.com/mapr/
http://www.editorialmanager.com/mapr/
John.Birge@ChicagoBooth.edu
mailto:John.Birge@ChicagoBooth.edu
http://ipco2011.uai.cl
http://ipco2011.uai.cl
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tate research collaboration. Thanks to the generous support by our
sponsors, registration is free, and travel support is available.

Program Committee: Shabbir Ahmed (Georgia Institute of Tech-
nology), Ricardo Fukasawa (University of Waterloo), Ted Ralphs
(Lehigh University), Juan Pablo Vielma (University of Pittsburgh), Gi-
acomo Zambelli (London School of Economics).

www.math.uwaterloo.ca/~mip2011/

Optimization 2011

July 24–27, 2011, Lisbon (Caparica), Portugal, Department of Mathe-

matics, School of Sciences and Technology, New University of Lisbon

Optimization 2011 is the seventh edition of a series of Optimization
international conferences held every three or four years, in Portugal.
This meeting strives to bring together researchers and practitioners
from different areas and with distinct backgrounds, but with com-
mon interests in optimization. This conference series has interna-
tional recognition as an important forum of discussion and exchange
of ideas, being organized under the auspices of APDIO (the Por-
tuguese Operations Research Society).

In this edition, we feel honored to celebrate the 60th anniversary
of our dear colleague Joaquim Joao Judice (Univ. of Coimbra).

Confirmed plenary speakers: Gilbert Laporte (HEC Montreal),
Jean Bernard Lasserre (LAAS-CNRS, Toulouse), Jose Mario Martinez
(State University of Campinas), Mauricio G.C. Resende (AT&T Labs
– Research), Nick Sahinidis (Carnegie Mellon University), Stephen J.
Wright (University of Wisconsin).

We look forward to meeting you in Optimization 2011.
Ana Luisa Custodio (Co-chair of the Organizing Committee)
Paula Amaral (Co-chair of the Organizing Committee)

http://www.fct.unl.pt/optimization2011

MOPTA 2011

August 17–19, 2011, Lehigh University, Rauch Business Center, Bethle-

hem, PA, USA

MOPTA aims at bringing together a diverse group of people from
both discrete and continuous optimization, working on both theo-
retical and applied aspects. There will be a small number of invited
talks from distinguished speakers and contributed talks, spread over
three days.

Our target is to present a diverse set of exciting new devel-
opments from different optimization areas while at the same time
providing a setting which will allow increased interaction among
the participants. We strive to bring together researchers from
both the theoretical and applied communities who do not usually

have the chance to interact in the framework of a medium-scale
event.

Confirmed plenary speakers: Mark Daskin (U. of Michigan),
Michael Ferris (U. of Wisconsin), Adrian Lewis (Cornell U),
Jorge More (Argonne), Javier Pena (Carnegie Mellon), Cliff Stein
(Columbia U), Philippe Toint (U of Namur).

Organizing Committee: Katya Scheinberg (Chair), Tamás Terlaky,
Ted Ralphs, Robert Storer, Aurélie Thiele, Larry Snyder, Frank E.
Curtis.

We look forward to seeing you at MOPTA 2011.
http://coral.ie.lehigh.edu/~mopta/

OR 2011

August 30 – September 2, 2011, Zurich, Switzerland

The main goal of the conference is to bring together members of the
international OR community to discuss scientific progresses in vari-
ous subfields of OR in a truly interdisciplinary spirit. The highlights
and core of the conference are the invited Keynote Speakers and
the parallel semi-plenary lectures on various topics representing the
state of the art in these fields. Certainly, the conference provides a
platform to present current research and to compete for a publica-
tion in the referred proceedings.

Plenary lectures: Dimitris J. Bertsimas (MIT, Cambridge): Advances

in stochastic and adaptive optimization; Kenneth L. Judd (Hoover Insti-
tution, Stanford): Numerically Efficient and Stable Algorithms for Solv-

ing Large Dynamic Programming Problems in Economics, Finance, and

Climate Change Models; William Pulleyblank (United States Military
Academy, West Point, NY): Challenges and Opportunities for Opera-

tions Research in the next decade.
Program committee: Karl Schmedders (Chair, University of

Zurich), Friedrich Eisenbrand (EPF Lausanne), Luca Gambardella
(IDSIA, Lugano), Diethard Klatte (University of Zurich), Ulrike
Leopold-Wildburger (University of Graz), Hans-Jakob Lüthi (ETH
Zurich), Stefan Nickel (Karlsruhe Institute of Technology), Stefan
Pickl (Universität der Bundeswehr München), Marion Rauner (Uni-
versity of Vienna), Brigitte Werners (Ruhr-Universität Bochum)

Organization: The Swiss Association of Operations Research
(SVOR) is the premier organization in Switzerland for advancing the
profession, practice, and science of operations research (OR) and
management science (MS). Every four years the german speaking
OR societies from Austria (ÖGOR), Germany (GOR) and Switzer-
land (SVOR) organize a joint international conference OR 2011.

The local organizers are the Institute for Operations Research
(IFOR, Prof. H.-J. Lüthi) of the ETH Zurich and the Institute for OR
(IOR, Prof. K. Schmedders) of the University of Zurich who – under
the patronage of SVOR – will share the organizational, financial and
scientific responsibilities.

http://www.or2011.ch
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IPCO 2011

The 15th Conference on Integer Programming and Combinatorial Optimization

IPCO XV will be held on June 15–17, 2011 at the IBM T. J. Watson
Research Center in Yorktown Heights, New York, USA.

Accepted papers (in order of submission) ◦ Amitabh Basu, Gerard Cornuejols
and Marco Molinaro. A probabilistic analysis of the strength of the split and
triangle closures ◦ Alexander Ageev, Yohann Benchetrit, Andras Sebo and
Zoltan Szigeti. An Excluded Minor Characterization of Seymour Graphs
◦ Stephan Held, Edward C. Sewell and William Cook. Safe Lower Bounds
For Graph Coloring ◦ Mathieu Van Vyve. Fixed-charge transportation on
a path: Linear programming formulations ◦ Britta Peis and Andreas Wiese.
Universal packet routing with arbitrary bandwidths and transit times ◦ San-
tanu S. Dey and Sebastian Pokutta. Design and Verify: A New Scheme for
Generating Cutting-Planes ◦ Jose A. Soto and Claudio Telha. Jump Number
of Two-Directional Orthogonal Ray Graphs ◦ Anna Karlin, Claire Math-
ieu and Thach Nguyen. Integrality Gaps of Linear and Semi-definite Pro-
gramming Relaxations for Knapsack ◦ Daniel Dadush, Santanu S. Dey and
Juan Pablo Vielma. On the Chvatal-Gomory Closure of a Compact Convex
Set ◦ Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna and Ni-
tish Korula. Approximability of Capacitated Network Design ◦ Deeparnab
Chakrabarty and Chaitanya Swamy. Facility Location with Client Latencies
◦ Satoru Iwata and Mizuyo Takamatsu. Computing the Maximum Degree of
Minors in Mixed Polynomial Matrices via Combinatorial Relaxation ◦ Pierre
Bonami. Lift-and-Project Cuts for Mixed Integer Convex Programs ◦ Fab-
rizio Grandoni and Thomas Rothvoss. Approximation Algorithms for Single
and Multi-Commodity Connected Facility Location ◦ Kenjiro Takazawa. Dis-
crete convexity and faster algorithms for weighted matching forests ◦ Tamas
Kiraly and Lap Chi Lau. Degree Bounded Forest Covering ◦ Monia Gian-
domenico, Adam Letchford, Fabrizio Rossi and Stefano Smriglio. A New
Approach to the Stable Set Problem Based on Ellipsoids ◦ Aman Dhesi,
Pranav Gupta, Amit Kumar, Gyana Parija and Sambuddha Roy. Contact
Center Scheduling with Strict Resource Requirements ◦ Volker Kaibel and
Kanstantsin Pashkovich. Constructing Extended Formulations from Reflec-
tion Relations ◦ Sylvia Boyd, Rene Sitters, Suzanne van der Ster and Leen

Stougie. TSP on Cubic and Subcubic Graphs ◦ Yu Hin Au and Levent Tuncel.
Complexity Analyses of Bienstock-Zuckerberg and Lasserre Relaxations
on the Matching and Stable Set Polytopes ◦ Mario Ruthmair and Günther
Raidl. A Layered Graph Model and an Adaptive Layers Framework to Solve
Delay-Constrained Minimum Tree Problems ◦ Inge Gortz, Marco Moli-
naro, Viswanath Nagarajan and R Ravi. Capacitated Vehicle Routing with
Non-Uniform Speeds ◦ S. Thomas McCormick and Britta Peis. A primal-
dual algorithm for weighted abstract cut packing ◦ Friedrich Eisenbrand,
Naonori Kakimura, Thomas Rothvoss and Laura Sanita. Set Covering with
Ordered Replacement – Additive and Multiplicative Gaps ◦ Oliver Fried-
mann. A subexponential lower bound for Zadeh’s pivoting rule for solv-
ing linear programs and games ◦ Claudia D’Ambrosio, Jeff Linderoth and
James Luedtke. Valid Inequalities for the Pooling Problem with Binary Vari-
ables ◦ Bissan Ghaddar, Juan Vera and Miguel Anjos. An Iterative Scheme
for Valid Polynomial Inequality Generation in Binary Polynomial Program-
ming ◦ Martin Bergner, Alberto Caprara, Fabio Furini, Marco Lübbecke,
Enrico Malaguti and Emiliano Traversi. Partial Convexification of General
MIPs by Dantzig-Wolfe Reformulation ◦ Trang Nguyen, Mohit Tawarmalani
and Jean-Philippe Richard. Convexification Techniques for Linear Comple-
mentarity Constraints ◦ William Cook, Thorsten Koch, Daniel Steffy and
Kati Wolter. An exact rational mixed-integer programming solver ◦ Ojas
Parekh. Iterative packing for demand matching and sparse packing ◦ Matteo
Fischetti and Michele Monaci. Backdoor branching

Program committee: Nikhil Bansal (IBM), Michele Conforti (Padova),
Bertrand Guenn (Waterloo), Oktay Günlük (IBM), Tibor Jordán
(ELTE Budapest), Jochen Koenemann (Waterloo), Andrea Lodi
(Bologna), Franz Rendl (Klagenfurt), Giovanni Rinaldi (Roma), Gün-
ter Rote (FU Berlin), Cliff Stein (Columbia), Frank Vallentin (Delft),
Jens Vygen (Bonn), Gerhard Woeginger (Eindhoven, chair).

Organizing committee: Sanjeeb Dash, Oktay Günlük (chair), Jon Lee,
Maxim Sviridenko.

Application for Membership

I wish to enroll as a member of the Society. My subscription is for my personal use
and not for the benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.
I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:

Mathematical Optimization Society
3600 Market St, 6th Floor
Philadelphia, PA 19104-2688
USA

Cheques or money orders should be made
payable to The Mathematical Optimization
Society, Inc. Dues for 2011, including sub-
scription to the journal Mathematical Pro-

gramming, are US $ 90. Retired are $ 45.
Student applications: Dues are $ 22.50.
Have a faculty member verify your student
status and send application with dues to
above address.

Faculty verifying status

Institution


