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MOS Chair’s Column

September 15, 2014. We are moving into the prize-nomination
season of the society’s three-year cycle. Over the past several
months, working together with the American Mathematical Society,
the Chinese Mathematical Programming Society, and SIAM, all of our
prize committees have been assembled. The action now shifts to our
society members to put together nomination packages for the great
work that has been published in recent years.

I want to thank the 25 people who have graciously agreed to serve
on our prize committees. And in particular I thank the chairs of the
committees: Karen Aardal (Tucker Prize), Mihai Anitescu (Lagrange
Prize), Robert Bixby (Beale-Orchard-Hays Prize), Michele Conforti
(Fulkerson Prize), Margaret Wright (Dantzig Prize), and Yinyu Ye
(Tseng Lectureship). The chairs are ready and waiting for your nom-
ination letters. Details can be found in the calls for nominations pub-
lished in this issue of Optima.

ISMP 2015 in Pittsburgh is only a year away, and so it is also time
to start the planning for ISMP 2018. Jan Karel Lenstra is chairing the
Symposium Advisory Committee that will make the recommenda-
tion to the MOS Council for the site of the next symposium. By
tradition, only locations outside of Canada and the USA will be eli-
gible to host ISMP 2018. I’m hoping for exciting bids!

Bill Cook, University of Waterloo
bico@uwaterloo.ca

Note from the Editors

Dear members of MOS:
Martin Jaggi (ETH Zürich) and Zaid Harchaoui (INRIA Grenoble)
jointly with Federico Pierucci organized a workshop on “Greedy
Algorithms, Frank-Wolfe and Friends – A modern perspective” at
the annual conference of the Neural Information Processing Systems
Foundation in 2013 (NIPS 2013) at Lake Tahoe, Nevada. On that oc-
casion they had the chance to interview Marguerite Frank about the
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invention of the Frank–Wolfe algorithm she developed together with
Philip Wolfe in the 1950’s. We are very happy to have a column in
this issue in which she shares with us her memories on this impor-
tant moment in the history of mathematical optimization dating back
some 60 years. How influential her’s and Philip Wolfe’s invention was
can be seen also from the scientific article in this issue, in which Mar-
tin Jaggi and Zaid Harchaoui describe recent succesful applications
of the method.

We hope that you will enjoy both the historical and the current
aspects of this issue – and that you don’t stop reading after the
scientific part, because this might cause you to miss important in-
formation about the upcoming ISMP to be held July 12–19, 2015 in
Pittsburgh and the prizes to be awarded there.

Sam Burer, Co-Editor
Volker Kaibel, Editor

Jeff Linderoth, Co-Editor

Martin Jaggi and Zaid Harchaoui

Preluding Remarks

In 1956, Marguerite Frank and Philip Wolfe published a paper en-
titled “An Algorithm for Quadratic Programming” [1] in Naval Re-
search Logistics Quarterly. The paper’s title was a strong understate-
ment, given that it introduces a new algorithm not only for quadratic
convex, but general convex optimization, and proves the O(1/t)

convergence rate. The Frank–Wolfe algorithm is widely considered
the very first method for general constrained convex optimization.

Originating in the famous Logistics Project group at Princeton,
which was the most prominent place in linear programming and
game theory at the time, the new collaboration between Marguerite
Frank and Phil Wolfe (both coming from quite different scientific
backgrounds) aimed at the following research question: Given the
recent successes and tools of linear programming, is it possible to
derive a method for the more general case, that is quadratic convex
programming, or even general convex programming? The answer
is well known to the reader at this point, and in our opinion marks
some of the birth hours of the research field of convex optimization,
and a significant and brave departure from the linear programming
territory.

Since then, the powerful core idea of the Frank–Wolfe method
– to decompose a (hard) general optimization problem into a se-
quence of (easy) linear problems – has proven fertile numerous
times in a surprisingly large variety of applications, and is continu-
ing to have impact in many fields.

We feel extremely honored that Marguerite Frank, co-author of
the original paper, and one of the first female PhD students in math-
ematics at Harvard University, has agreed to share her thoughts on
these interesting birth years of mathematical optimization.

We would also like to thank Hallie Wolfe, P. Wolfe’s wife, and
Isabelle Frank, M. Frank’s daughter, and Anna Nagourney for their
constant kindness and generous help in preparing this article. We

mailto:bico@uwaterloo.ca
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are indebted to the editors of Optima, Volker Kaibel, Sam Burer,
Jeff Linderoth and Katya Scheinberg for many valuable comments, as
well as to to Alexandre d’Aspremont, Rob Freund, Anatoli Juditsky,
Simon Lacoste-Julien, Claude Lemaréchal and Arkadi Nemirovski for
fruitful discussions.

Reference
[1] Marguerite Frank and Philip Wolfe. An Algorithm for Quadratic Program-

ming. Naval Research Logistics Quarterly, 3:95–110, 1956.

Marguerite Frank

The History of the Frank–Wolfe Algorithm

As far as I can remember – from my idealized early past in Paris, then
Toronto, I was interested in math (Euclid, algebra), reading and ideas.
When majoring in math and physics at the University of Toronto, I
was mostly inspired by Harold Scott MacDonald Coxeter, Leopold
Infeld and especially Richard Brauer. Graduating in 1947, I went on
to Radcliffe-Harvard as a Teaching Fellow at the age of 20. When I
left in 1949 with all but a PhD thesis, neither the logic of Willard Van
Orman Quine, nor the algebraic geometry of Oscar Zariski worked
as substitutes for algebra (I was only 23 years old back then).

During a break of two Parisian years, I got a diploma in History of
Mathematics with Alexandre Koyré, and incidentally met my future
husband, whom I then followed to the University of Chicago, where
I had the great fortune to be accepted as an auditor by the algebraist
Abraham Adrian Albert. This led to my defining of new simple Lie
algebras, the first in several years, and to more such new classes
later [14, 12].

Then, in 1955, I followed my husband, Joseph Frank, to Prince-
ton, where he was invited as a Gauss Lecturer on the topic of “Ex-
istentialism and Dostoevsky”. During this time I was fortunate to
become a Visitor in Princeton’s prestigious Logistics Project, run by
Albert W. Tucker and Harold W. Kuhn. These were the exciting
days of Game Theory (von Neumann & Morgenstern, Nash et al.),
and of the reigning technique of Linear Programming and the Sim-
plex method of George Dantzig, which served as strong inspirations.
There was talk of computers, but none to be actually seen as I recall.
A complete neophyte in these new esoteric disciplines, I immersed
myself as best I could, attempting to master Linear Programming, La-
grange Multipliers and their new Kuhn-Tucker optimality conditions
for inequality constraints, as well as getting used to the subtleties of
competitive games.

I was assigned to work with the then post-doc instructor Philip
Wolfe – who was already well-trained in the general field of op-
timization. Our assigned joint goal was to seek a procedure that
might yield the optimum solution for a suitably shaped quadratic
function under linear inequality constraints. It all occurred a very
long time ago, and what I remember mostly is – working at home
– I had no office – covering, as usual, sheets of paper with symbols
related – now – by linear inequalities instead of equations. I also at-
tended the famous Fine Hall Afternoon Teas, a daily and informal
departmental meeting.

I seem to remember presenting some jottings to Phil in his office-
and his exclaiming “I think Marguerite has solved the quadratic prob-
lem” – then reproaching me for not having established the “conver-
gence” – and immediately doing so himself... But this evokes more
specifically the later general “convex problem” so my memory may
be at fault. In any case, Phil rewrote both procedures in their present
form [13], and chose the (at the time) original title. He then contin-
ued to work brilliantly in the field.

For me this brief foray in optimization made it easier later to ob-
tain – after various research and part time jobs – a tenured position
in the nearby Rider University Business School, and a later one as
Fellow in Stanford’s Engineering School O.R. department, where I
finally met George Dantzig.

I never received any special acknowledgment or a single bitcoin
for the article – only the usual professional interest from Anna
Nagourney, and Stella Dafermos, who befriended me in my new
guise. Hence my astonishment at being alerted by Michel Balinski, in
the fall of 2013, about the NIPS Workshop,1 at nearby Lake Tahoe
– and then invited there by Martin Jaggi and Zaid Harchaoui. I was
stunned to learn, as was Phil Wolfe whom I contacted by phone,
that Frank–Wolfe when translated into computer code had become
useful in various places, including major companies in the current
digital economy.

Thinking about the current times of digitalization in general, I find
it ironic that abstract Boolean algebra – that could not possibly have
emerged fully formed from a mind-deprived brain, nor from a data
cloud – is at the root of what is surely our present technological /
cultural paradigm shift.

Note
1. NIPS’13 Workshop on Greedy algorithms, Frank–Wolfe, and Friends:
https://sites.google.com/site/nips13greedyfrankwolfe/

Martin Jaggi and Zaid Harchaoui

The Recent Revival of the Frank–Wolfe
Algorithm

In this article, we attempt to give a brief, non-comprehensive
overview of the Frank–Wolfe algorithm, also called the conditional
gradient method, its variants and properties, and some recent suc-
cessful applications of this class of first-order optimization methods.
The aim of this review is to complement the preceding fascinat-
ing first-hand account of the birth of this algorithm, by Marguerite
Frank, co-author of the groundbreaking original paper [13] from
1956 together with Phil Wolfe.

1 Introduction
The Frank–Wolfe algorithm [13], also known as the conditional gradi-
ent method, was historically the earliest algorithm for general con-
strained convex optimization, that is for problems of the form

min
xxx∈D

f (xxx) . (1)

Here we assume that the objective function f is convex and differen-
tiable, and the domain (or feasible set) D is a bounded convex subset
of some arbitrary vector space (that can be infinite-dimensional).

The method is given by the following simple first-order optimiza-
tion scheme:

Algorithm 1: Frank–Wolfe / Conditional Gradient

Let xxx(0) ∈ D
for t = 0 ...T do

Compute sss := LMOD
(
∇f (xxx(t))

)
Let γ := 2

t+2

Update xxx(t+1) := (1− γ)xxx(t) + γsss

end

https://sites.google.com/site/nips13greedyfrankwolfe/
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Figure 1. Linearization (middle) of a convex function f : R2 → R (top) at xxx , and
the corresponding Frank–Wolfe step. The domain D ⊂ R2 is visualized at the
bottom.

The core element of the algorithm is the LMOD(.) procedure,
that is the Linear Minimization Oracle associated with the domain D.
This routine is defined to return a minimizer of a linear subproblem
over D, i.e. a point satisfying

LMOD(ddd) ∈ argmin
sss∈D

〈ddd ,sss〉 .

We allow the choice of any minimizer, in case there are several.
Interpreting the Frank–Wolfe (FW) algorithm, we see that the

method in each iteration considers the linearization of the objective
at the current iterate, that is f (xxx(t)) + 〈yyy −xxx(t),∇f (xxx(t))〉, and em-
ploys this as a surrogate of the objective. The update direction sss is
obtained as the minimizer of the linearization.

The name conditional gradient comes from the following interpre-
tation of the main step of the algorithm. In projected gradient (gra-
dient projection) algorithms, first a gradient step is taken uncondi-
tionally to the constraint set (i.e., that may move to a non-feasible
point), which is then projected onto the constraint set by a projec-
tion operator. In contrast, the conditional gradient algorithm makes
steps that are conditional to the constraint set (i.e., that stay feasible,
by construction), and does not require any further projection step.

Properties, and Comparison to Proximal Gradient Methods. Given that
the FW method only uses first-order information, it is important to
discuss the relation to classical gradient or proximal gradient meth-
ods. The two classes of methods perform fundamentally different
updates in each iteration: FW moves towards a feasible point of best
inner product with the gradient, which in general is different from
the gradient direction itself (except, e.g., in the special case when
the domain D is the Euclidean ball).

We briefly summarize a few more distinctive properties of FW
methods, in contrast to classical gradient based methods:
1. Iteration Cost. Another fundamental difference is that the FW sub-

problem (LMOD) is linear, whereas classical proximal (or pro-
jected) gradient methods require solving a quadratic problem in
every iteration. For several classes of domains – some of which
we will mention below – the linear oracle can be much eas-
ier to compute than a proximal operator or a projection step.
For example for the domain being the matrices of bounded nu-
clear norm, projection onto D requires computing a full singular
value decomposition (SVD), while the linear problem LMOD only
needs the top singular vector pair, as we explain in more detail in
Section 5.

2. Sparse Iterates. After t iterations, the iterate xxx (t) will always be
represented as a convex combination of at most t extreme points
of the domain. In several applications, this can be very benefi-
cial for efficiently storing the iterate for large scale problems,
and also benefits interpretability. The sparse representation is in
strong contrast to gradient based methods, where no such com-
pact representation is possible in general.

3. Infinite dimensional domains. The FW algorithm allows application
to infinite dimensional domains, in particular when those are rep-
resented as convex hulls of a set of atoms (as we discuss in Sec-
tion 2 below), such as e.g. wavelet functions in the time-frequency
domain in signal processing and harmonic analysis. The only re-
quirement for application of the method is the availability of an
LMOD oracle.

Convergence. In terms of convergence, it has been known from the
early papers that the optimization error attained by the iterates1 of
Algorithm 1 decreases with rate O(1/t), as shown in [13, 6, 10],
under the assumptions of convexity, smoothness of f , and bound-
edness of D. Also, this rate is optimal for the class of algorithms
moving towards one vertex of D per iteration [26]. We give a com-
pact proof of the convergence rate in Section 4 below, and also give
a modern view on the algorithm properties, highlighting primal-dual
convergence and affine invariance (independence of the algorithms
and proofs from the geometry or choice of a norm).

Significant parts of the material presented here are taken from
the recent overview papers [26] and [21], and ICML 2014 tutorial
https://sites.google.com/site/frankwolfegreedytutorial.

2 Atomic Domains
A significant part of the renewed interest in Frank–Wolfe type meth-
ods is owed to its suitability for optimizing over atomic domains, that
is domains of the form D = conv(A) for a set of atoms A, chosen
as any set of points in a vector space.

Traditionally, the usual way of specifying the optimization do-
main D was by imposing (e.g., linear) constraints, such as in linear
programming and in the original paper [13]. When instead consid-
ering domains represented as the convex hull of a set of atoms,
it became more clear in recent years that FW type methods are
even more convenient to apply, for the following reason. Writing
D = conv(A) for a set of atoms A, the solutions of the linear sub-
problems are always attained by one of the atoms sss ∈ A, meaning
that we can assume sss := LMOD(ddd) ∈ A. In consequence, the al-
gorithm in every iteration moves towards one of the atoms, and
maintains the iterate xxx(t) as a (convex) combination of at most t

atoms after t iterations.
This simple yet powerful interpretation makes FW an instance of

the general type of greedy optimization methods of the form

xxx(t+1) := αxxx (t) + βsss for sss ∈ A .

where α,β ∈ R are some specified weights, and sss is the new atom
selected in the current iteration. Greedy methods of this type have
seen very significant research interest recently e.g. in signal process-
ing, where the most prominent application is matching pursuit, cor-
responding to the case where D is the unit ball of the �1-norm, i.e.
that A is the set of unit basis vectors together with their negatives.

We consider this interpretation of FW methods for the applica-
tion to convex hulls as one of the most significant reasons for the
recent surge of renewed interest in this kind of method. The work of
[5, 8, 39, 25, 38, 37, 26] and [9, Appendix D] were among the ones
popularizing this algorithmic perspective for atomic sets, while [4]
has first considered the atomic norm concept.

https://sites.google.com/site/frankwolfegreedytutorial
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3 Algorithm Variants, and a Brief Historical Overview
Since the original breakthrough paper [13] (see the accompanying
first-hand account of Marguerite Frank), there has been a lot of re-
search on FW related methods in the last 60 years, and unfortu-
nately the available space here does not permit us to give credit to
all the important developments.

Still, one should definitely mention the important contributions of
Levitin and Polyak [31], Demyanov and Rubinov [6, 7], Pshenichny
and Danilin [36], Dunn [10], and Patriksson [34]. The term condi-
tional gradient method for the same algorithm was coined by [31],
and from then on was used most frequently in the optimization lit-
erature.

The analysis was generalized to arbitrary Banach spaces in [6, 7],
as in the setting here (note that the algorithm as well as the anal-
ysis presented in Section 4 only depend on inner products). In the
70’s, [10] investigated approximate linear minimizers of the subprob-
lems, as we describe in Section 3.4 below.

In recent years, Frank–Wolfe / conditional gradient methods have
seen both renewed research interest as well as a revival in several
application areas. We will outline some of these more recent results
as well as active research directions in Section 6 below.

3.1 Step-Sizes, and Line Search
Instead of the fixed sequence of step-sizes 2/(t+2) in Algorithm 1, a
natural alternative is to move to the best possible point on the line-
segment between the iterate xxx (t) and sss . This is obtained by replacing
the choice of γ in the algorithm by

γ := arg min
γ∈[0,1]

f
(
(1− γ)xxx(t) + γsss

)
.

The same convergence results as presented here also hold for the
line-search variant, by using the fact that the decrease in objective is
always at least as good as for the original method. Traditionally, the
earlier literature has not used the simpler 2/(t +2) step length, but
instead employed line-search on the objective f , or on a quadratic
upper bound on f . Such a bound is given for example by a Lipschitz-
gradient assumption with constant L, for which line-search then gives
an explicit step-size γ = g(xxx)/L ‖xxx − sss‖2 as introduced by [6], with
g(xxx) :=

〈
xxx − sss,∇f (xxx)

〉
. The original paper [13] used the tighter

non-uniform quadratic upper bound given by the Hessian of f , which
then appears in the denominator instead of L.

3.2 Accelerated Frank–Wolfe by Simplicial Decomposition
After the addition of a new atom (or search direction) sss , the classical
FW method updates the iterate as xxx(t+1) := (1 − γ)xxx(t) + γsss . An
improved and slightly harder-working variant of the FW method re-
places this step by re-optimizing the objective f over the previously
used atoms [24, 33], i.e. using the update

xxx(t+1) := argmin
xxx∈conv(sss(0),...,sss (t+1))

f (xxx) .

Compared to the original FW algorithm, the idea is that the variant
here will hopefully make more progress per iteration, and there-
fore result in iterates xxx being combinations of even fewer atoms
(i.e. better sparsity). This however comes at a price, namely that the
internal problem in each iteration now becomes harder to solve.
The presented update variant is often called the “simplicial decom-
position method” [2], or fully corrective. Alternatively, algorithm vari-
ants which only re-optimize over the convex hull of some of the
previously used atoms together with the current iterate, are often
called partially corrective or memory-based FW. In the case of an �1-
domain, fully corrective FW corresponds to orthogonal matching
pursuit [32] in signal processing. For the same convergence rates

to hold, the re-optimization subproblems do not have to be solved
exactly – it is enough that the point returned has an objective
value at least as good as the one obtained by the simple FW step
xxx(t+1) := (1− γ)xxx(t) + γsss for γ := 2/(t + 2).

3.3 Composite Frank–Wolfe
In several machine learning applications, the optimization problem of
interest is a norm-regularized composite minimization problem

min
xxx∈K

f (xxx) + λ‖xxx‖A ,

where K is a closed convex cone (such as R
d ), and ‖.‖A is an

atomic norm in an ambient Hilbert space. More formally, ‖xxx‖A :=

infr≥0 {r | xxx ∈ rD} is the gauge function associated with the con-
vex set (“unit-ball”) D = conv(A). The function f is assumed to
satisfy the same properties as in the previous sections. The term
λ ‖xxx‖A usually corresponds to a regularization or roughness penalty,
parametrized by λ, that allows a flexible control of the regularity
properties of the solution to the problem. Classical FW cannot be
applied in general to such a problem, as the norm ‖.‖A might be
non-smooth, and K is unbounded.

For such a composite minimization problem with atomic-norm
regularization, a Composite Conditional Gradient algorithm (or Com-
posite Frank–Wolfe) can be designed, again using a linear minimiza-
tion oracle and first-order information. The algorithm works on the
epigraph form of the composite minimization problem

min
zzz

Fλ(zzz) := f (xxx) + λr ,

using the shorthand variable zzz := [xxx , r ]. In the following, R̄ is an
a priori guess on the norm of the optimal solution. This algorithm
summarized below was introduced in [21], where a O(1/t) conver-
gence rate, independent of the choice of R̄ , was proved. An accel-
erated version in the sense of Section 3.2, called AtomDescent, was
proposed in [8, 9], along with an equivalent coordinate-descent for-
mulation.

Algorithm 2: Composite Frank–Wolfe / Conditional Gradient

Let zzz(0) = [0, R̄], with R̄ such that ‖xxx�‖A ≤ R̄

for t = 0 ...T do

Compute sss := R̄ · [ LMOD
(
∇f (xxx(t))

)
, 1 ] Let

(α, β) := argminα,β≥0; α+β≤1 Fλ

(
αsss + βzzz(t)

)

Update zzz(t+1) := βzzz(t) + αsss

end

In fact, classical FW can be recovered from the composite FW
algorithm when working in a more general setting with a regular-
ization penalty that can be the indicator function of a convex set.
Therefore, the composite FW algorithm can be seen as generalizing
FW for both composite minimization and constrained minimization
problems, only requiring first-order and linear minimization oracles.

3.4 Approximate Linear Minimization Oracles
An exact linear minimization oracle – which is needed in every itera-
tion of the FW algorithm – might not be available for all applications.
We can replace the exact oracle LMOD(ddd) by an approximate linear
oracle LMOD ,εt (ddd) which returns sss s.t.

〈ddd ,sss〉 ≤ min
sss∈D

〈ddd ,sss〉+ εt ,

a criterion which was first proposed by [10]. As it turns out, the
same convergence rate will hold for this approximate algorithm vari-
ant, if εt := Cf /(t +2), decreasing with the iteration counter t . The
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only effect will be that the error decrease given by the convergence
Theorem 1 below will be multiplied by a factor of two. See the next
section for the definition of the constant Cf .

Alternatively, it is also possible to assume multiplicative approxi-
mation quality for the internal oracle. This is particularly suitable if
the domain is symmetric, such as, e.g., a norm ball. Examples of such
cases were considered in [6] or [29, Appendix C].

3.5 Approximate Gradients
Irrespective of the linear oracle being exact or not, the gradient in-
formation used at each iteration might also be noisy or inexact in
some applications. If we assume that we only have access to a noisy
and randomized estimate d̂ddx of the true gradient, and we suppose
that this vector d̂ddx satisfies

E
[ ∥∥∥d̂ddx − dddx

∥∥∥∗
]
≤ εt

diam‖.‖(D)
, (2)

for some arbitrary choice of norm ‖.‖, and dddx := ∇f (xxx). Then we
can use LMOD(d̂ddx ) instead of the true LMOD(dddx ) in the FW algo-
rithm. Here the expectation is over the randomness in d̂ddx .

Again, analogous to the case of approximate oracles, the FW al-
gorithm in the setting here – using d̂ddx instead of the true dddx in each
iteration – is known to have the same convergence rate [26] (up
to a factor of two), assuming the quality of the estimator is cho-
sen as εt := Cf /(t + 2). More recently, [15] used an affine invariant
counterpart of (2), also maintaining the convergence rate.

4 A Modern Perspective and Convergence Analysis
We present a short analysis of the convergence rate of the FW
method, which also extends to those algorithm variants which we
have detailed above. Furthermore, the analysis here has the advan-
tage of being affine invariant, i.e., independent of the parameteriza-
tion of the input problem, in terms of choice of geometry or norm.

Theorem 1 (Primal Convergence Rate). For each t ≥ 1, the iter-
ates xxx(t) of the Frank–Wolfe algorithm satisfy

f (xxx(t))− f (xxx�) ≤ 2Cf
t + 2

.

Proof. Let Cf be a constant s.t.

f (yyy) ≤ f (xxx) + γ 〈sss − xxx ,∇f (xxx)〉︸ ︷︷ ︸
−g(xxx)

+γ2

2 Cf

for all xxx ,sss ∈ D and yyy := xxx + γ(sss − xxx) for γ ∈ [0, 1].
Writing h(xxx(t)) := f (xxx(t)) − f (xxx�) for the objective error, we

have

h(xxx(t+1)) ≤ h(xxx (t))− γg(xxx(t)) +
γ2

2
Cf

≤ h(xxx (t))− γh(xxx(t)) +
γ2

2
Cf

= (1− γ)h(xxx(t)) +
γ2

2
Cf ,

where the first inequality is by definition of Cf , and the second one
h(xxx) ≤ g(xxx) follows from convexity of f , using that the graph of f
lies above its linearization, see also the discussion below.

From here, the decrease rate follows from a simple induction
for the sequence of numbers h(xxx(t)) for γ = 2/(t + 2), see, e.g.,
[26].

The Curvature Constant. The convergence analysis given above re-
lied on the following curvature constant, measuring the non-linearity
of the objective function f over the domain D.

Cf := sup
xxx,sss∈D,
γ∈[0,1],

yyy=xxx+γ(sss−xxx)

2

γ2
(
f (yyy)− f (xxx)− 〈yyy − xxx ,∇f (xxx)〉) . (3)

The curvature constant Cf provides us a single “condition” number
to measure the complexity of a constrained smooth optimization
problem of the form (1), by incorporating both degrees of “diffi-
culty” coming from the objective function f , as well as well as from
the domain D. The quantity was introduced by [5] for D being the
unit simplex, and by [25, 26] for general domains.

Interestingly, the curvature constant Cf (as well as the algorithm)
does not depend on the choice of a norm. But still, the assumption
of bounded curvature Cf closely relates to a Lipschitz assumption
on the gradient of f (sometimes called Cf -strong smoothness), as for-
mulated in following Lemma 2 taken from [26].

Lemma 2. Let f be a convex and differentiable function with its gradi-
ent ∇f being Lipschitz-continuous w.r.t. some norm ‖.‖ over the domain
D with Lipschitz-constant L‖.‖ > 0. Then

Cf ≤ diam‖.‖(D)2L‖.‖ .

Duality Gap, and Certificates of Optimization Accuracy. For a con-
strained convex optimization problem of the form (1) and a feasible
point xxx ∈ D, one can define the following simple duality gap function
[6, 7, 23, 5, 26]

g(xxx) := max
sss∈D

〈
xxx − sss,∇f (xxx)

〉
.

The quantity g(xxx) serves as a useful certificate for the current op-
timization quality, by upper-bounding the (unknown) error g(xxx) ≥
f (xxx)− f (xxx�). This property (weak duality) is directly implied by con-
vexity of f , giving that the linearization f (xxx)+

〈
sss−xxx ,∇f (xxx)

〉
always

lies below the graph of the function f , as again illustrated in the fig-
ure. While the optimal value f (xxx�) is unknown in most problems of
interest, the quantity g(xxx) for a candidate xxx is often easy to com-
pute.

f

f (x)

g(x)

s
x

D

For example, the duality gap is “automatically” computed as a by-
product of every iteration of the FW Algorithm 1: Whenever sss is a
minimizer of the linearized problem at xxx as returned by LMOD , then
this same sss is a certificate for the current gap g(xxx) =

〈
xxx−sss,∇f (xxx)

〉
.

Such certificates for the optimization error are useful not only for
the algorithms considered here, but in fact for any optimizer of a
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constrained problem of the form (1), e.g. as a stopping criterion,
or to verify the numerical stability. The O(1/t) convergence rate of
the FW algorithm is known to not only hold for the primal error
f (xxx(t))− f (xxx�), but also for the duality gap g(xxx (t)) [5, 26]. The only
change to the rate of Theorem 1 above is that the constant will be
6.75Cf instead of 2Cf , and the error is guaranteed for one of the
iterates up to t , not necessarily for the last one.

Affine Invariance. Interestingly, the Frank–Wolfe algorithm – as well
as the convergence analysis presented here – is invariant under affine
transformations and linear re-parameterizations of the input prob-
lem, and in this sense independent of the chosen geometry [26]. If
one re-parameterizes the domain D, by a surjective linear or affine
map M : D̂ → D, then the “old” and “new” optimization prob-
lem variants minxxx∈D f (xxx) and minx̂xx∈D̂ f̂ (x̂xx) for f̂ (x̂xx) := f (Mx̂xx) look
completely the same to the FW algorithm: More precisely, every it-
eration will remain exactly the same, and also the convergence with
Cf /t is unchanged, since the curvature constant Cf by its defini-
tion (3) is also invariant (using that ∇f̂ = MT∇f ). A natural exam-
ple of such a re-parameterization is the use of bary-centric coordinates,
when D is a convex hull of finitely many vectors (then M contains
these vectors as columns, and D̂ is the unit simplex).

Up to our knowledge, FW is the only first-order method for gen-
eral constrained problems which features this property. Note that
classical (proximal) gradient methods are not affine invariant, since
they depend on the choice of a norm or a proximal function.

Optimality in Terms of Sparsity and Iteration Complexity. We have seen
above that the FW algorithm in t iterations delivers an O(1/t)-
approximate solution of sparsity t (meaning the iterate is a convex
combination of at most t atoms). This trade-off between the opti-
mization error and the sparsity of the iterate is crucial of the success
of FW methods, as the efficiency and memory requirement usually
scales directly with the sparsity.

Interestingly, the trade-off is optimally characterized by Θ(1/t).
No algorithm adding only one new atom (vertex of the domain D)
per iteration can obtain a better accuracy in general. The following
lemma formalizes this by providing a lower bound of Ω(1/t) on the
optimization error, for any solutions of sparsity at most t . This result
also shows that the FW algorithm is optimal in terms of number of
iterations, and cannot be accelerated in general.

For the lower bound, the domain is chosen as the unit simplex,
D := Δn ⊆ R

n. The same matching sparsity upper and lower
bounds will also hold for optimizing over the �1-ball instead, and
also for the rank in trace-norm constrained optimization [25].

Lemma 3 ([26]). For f (xxx) := ‖xxx‖22, and 1 ≤ t ≤ n, we have

min
xxx∈Δn

card(xxx)≤t

f (xxx) =
1

t
.

In other words, for any vector xxx of sparsity ≤ t , the primal er-
ror f (xxx) − f (xxx�) is always at least 1/t − 1/n. A similar lower
bound holds for the duality gap in the same setting. Furthermore,
we observe that the convergence with Cf /t as attained by the FW
algorithm is optimal, since the curvature Cf scales in the same way
as in the bound here, when multiplying the objective function by a
constant.

Note that the bound presented here assumes that the problem
dimension n exceeds the number of iterations. Specifically for the
FW algorithm, and without considering sparsity, [3] has proved an
asymptotic lower bound of Ω(1/t1+μ) on the primal error of the
FW when run on a quadratic objective, for all μ > 0.

5 Applications
Since the early applications to network problems such as traffic as-
signment [16], FW-type methods have been applied to a surpris-
ingly large variety of applications in completely different fields. In the
following we briefly discuss a non-representative but relatively re-
cent example, focusing on the aspect that the FW algorithm returns
compact/sparse representations. This aspect is particularly interest-
ing for domains D which are the convex hull of an infinite set of
atoms A.

5.1 Matrix Factorizations via Frank–Wolfe methods
An interesting class of atomic domains is obtained when we consider
rank-one matrices or dyads of the form

A :=
{
uuuvvvT

∣∣∣ uuu∈Aleft
vvv∈Aright

}
⊂ R

n×m

for two given sets of vectors Aleft ⊂ R
n and Aright ⊂ R

m. By def-
inition, every iteration of a Frank–Wolfe type algorithm optimizing
over such a domain D will consist of a rank-one update. In other
words, the iterate xxx(t) ∈ R

n×m is always conveniently represented
as a low rank matrix factorization, more precisely of rank ≤ t after t

iterations. If the domain admits a linear minimization oracle LMOD ,
then FW algorithms are therefore a natural choice for obtaining
such low rank-matrix factorizations. While the resulting trade-off
between rank and optimization accuracy is worst-case optimal, not
all types of such domains admit an efficient LMOD oracle [26]. Us-
ing more than two atomic sets leads to a generalization to tensor
factorizations.

The Matrix Nuclear Norm Case. The most natural example of this
class of problems comes from the choice of Aleft and Aright as the
Euclidean unit-length vectors, in which case the domain

D := conv(A) = conv
({

uuuvvvT
∣∣∣ uuu∈R

n , ‖uuu‖2=1
vvv∈R

m, ‖vvv‖2=1

})

is known to be the unit ball of the matrix nuclear norm [11]. The
nuclear norm of a matrix is defined as the sum of its singular values,
or in other words the �1-norm applied to the spectrum.

Proximal gradient algorithms require a projection onto the nu-
clear norm ball for this class of problems, which amounts to comput-
ing a full SVD in each iteration. In contrast, the linear oracle for the
FW method is computationally much more efficient here: LMOD(ddd)

is attained by the top singular vector pair of ddd ∈ R
n×m. Further-

more, memory efficiency is significantly improved, as FW only needs
to store the t rank-1 factors of xxx(t), while the traditional methods
would need to store a dense matrix xxx(t) ∈ R

n×m, which does not
scale well to very large problems as for example in the following
application:

Recommender Systems. Recommender systems have become in-
creasingly important for suggesting relevant items of all sorts to
users, readers or potential customers. In an open competition from
2007 to 2009, the movie rental company Netflix has offered a 1M$
prize for the algorithm predicting the ratings of movies given by
users (measured on a scale from 1 to 5 stars). Mathematically, this
problem can be formulated as follows: Given the known entries
Ω ⊆ [n] × [m] of a matrix Y ∈ R

n×m, where n is the number of
users, and m is the number of movies, try to predict the unknown
entries of Y .

Matrix factorization techniques were among the most successful
approaches in the competition. Formally, those methods try to ap-
proximate the known entries of Y by a low-rank factorization UVT

with factors U ∈ R
n×k and V ∈ R

m×k .
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Figure 2. Matrix Completion for Recommender Systems

While finding the best approximation to the known entries Ω

under a rank constraint is NP-hard [19] (when using e.g. squared
error), the corresponding nuclear norm constrained problem – as
defined above – offers an attractive alternative. The nuclear norm
is the tightest convex relaxation of the rank in the spectral-norm
unit-ball [11].

In this light, FW here offers an attractive trade-off between low
rank and optimization error, and scales nicely to large problems due
to the cheap iterations and the low memory requirements, avoiding
dense matrices. Usually, the convex objective function is chosen as
the squared error f (xxx) :=

∑
ij∈Ω(Yij −xxx ij )

2. In the case of the Net-

flix competition where |Ω| = 108, n ≈ 500k , and m ≈ 20k , the FW
method is easy to implement, whereas projected gradient methods
are difficult to run on a single machine due to the memory require-
ments and expensive SVD computations per iteration. While as far
as we know, the Frank–Wolfe algorithm was not part of the winning
algorithms in the competition, it is arguably the simplest method
which still comes with a guaranteed convergence rate [27].

6 Current Research Topics, and Outlook
Interest in first-order optimization algorithms of FW-type (i.e., us-
ing a linear minimization oracle) has increased significantly in recent
years.

Recent work has addressed primal-dual rates [5, 25], non-smooth
problems [30, 35], online variants [22], interpretation of the itera-
tions in terms of duality [1] and mirror descent, or variations using
different (non-)linear subproblems [34]. Other adaptations of FW
to more structured problems include norm-regularized instead of
constrained problem formulations [21], and block-structured prob-
lems [29]. Finally, a significant recent line of research addresses ac-
celerated convergence rates under additional assumptions on the
objective and the domain [31, 20, 17, 30, 28, 18]. We are looking
forward to following the developments of this exciting research area
in the next years.

Martin Jaggi, Department of Computer Science, ETH Zurich, Switzerland.
jaggi@inf.ethz.ch
Zaid Harchaoui, LEAR team, INRIA Rhone-Alpes Grenoble, France.
zaid.harchaoui@inria.fr

Notes
1. We note that most existing literature about Frank–Wolfe/conditional
gradient is not using the simple 2/(t + 2) step-size, but instead performs a
line-search for γ in every iteration. We refer the reader to Section 3.1 for
more details.
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Calls for Nominations

The following prizes will be presented at the 22nd International Sym-
posium on Mathematical Programming (ISMP 2015) to take place in
Pittsburgh, PA, USA, July 12–19, 2015.

Dantzig Prize
Nominations are solicited for the 2015 George B. Dantzig Prize, ad-
ministered jointly by the Mathematical Optimization Society (MOS)
and the Society for Industrial and Applied Mathematics (SIAM).
This prize is awarded to one or more individuals for original re-
search which by its originality, breadth and depth, is having a ma-
jor impact on the field of mathematical optimization. The con-
tribution(s) for which the award is made must be publicly avail-
able and may belong to any aspect of mathematical optimiza-
tion in its broadest sense. Past prize recipients are listed at
www.mathopt.org/?nav=dantzig#winners.

The members of the 2015 Dantzig Prize committee are:
◦ John Birge, University of Chicago
◦ Laurence Wolsey, Université catholique de Louvain
◦ Margaret Wright (Chair), New York University
◦ Stephen Wright, University of Wisconsin
Nominations should consist of a letter describing the nominee’s
qualifications for the prize, and a current curriculum vitae of the
nominee including a list of publications. They should be sent to

Professor Margaret Wright
Computer Science Department, Courant Institute
New York University
251 Mercer Street
New York, NY 10012, USA
mhw@cs.nyu.edu

and received by November 15, 2014. Submission of nomination ma-
terials in electronic form is strongly encouraged.

Beale–Orchard Hays Prize
Nominations are invited for the 2015 Beale-Orchard Hays Prize
for excellence in computational mathematical programming. The
prize is sponsored by the Mathematical Optimization Society, in
memory of Martin Beale and William Orchard-Hays, pioneers in
computational mathematical programming. Nominated works must
have been published between Jan 1, 2009 and Dec 31, 2014, and
demonstrate excellence in any aspect of computational mathemat-
ical programming. “Computational mathematical programming” in-
cludes the development of high-quality mathematical programming
algorithms and software, the experimental evaluation of mathemat-
ical programming algorithms, and the development of new methods
for the empirical testing of mathematical programming techniques.
Full details of prize rules and eligibility requirements can be found at
www.mathopt.org/?nav=boh.

The members of the 2015 Beale–Orchard Hays Prize committee
are:

◦ Robert Bixby (Chair), Gurobi Optimization
◦ Michael Ferris, University of Wisconsin
◦ Masakazu Kojima, Tokyo Institute of Technology
◦ Petra Mutzel, University of Dortmund
◦ Katja Scheinberg, Lehigh University

Nominations can be submitted electronically or in writing, and
should include detailed publication details of the nominated work.
Electronic submissions should include an attachment with the final
published version of the nominated work. If done in writing, submis-
sions should include five copies of the nominated work. Supporting
justification and any supplementary material are strongly encouraged
but not mandatory. The Prize Committee reserves the right to re-
quest further supporting material and justification from the nomi-
nees. Nominations should be submitted to:

Dr. Robert Bixby
3733-1 Westheimer Road, Box 1001
Houston, Texas 77027, USA
bixby@gurobi.com

The deadline for receipt of nominations is January 15, 2015.

Fulkerson Prize
Nominations are invited for the Delbert Ray Fulkerson Prize, spon-
sored jointly by the Mathematical Optimization Society (MOS)
and the American Mathematical Society. Up to three awards of
US$ 1,500 each are presented at each (triennial) International Sym-
posium of the MOS. The Fulkerson Prize is for outstanding papers
in the area of discrete mathematics.

Eligible papers should represent the final publication of the main
result(s) and should have been published in a recognized journal or
in a comparable, well-refereed volume intended to publish final pub-
lications only, during the six calendar years preceding the year of the
Symposium (thus, from January 2009 through December 2014). The
prizes will be given for single papers, not series of papers or books,
and in the event of joint authorship the prize will be divided.

The term “discrete mathematics” is interpreted broadly and is
intended to include graph theory, networks, mathematical program-
ming, applied combinatorics, applications of discrete mathematics
to computer science, and related subjects. While research work in
these areas is usually not far removed from practical applications,
the judging of papers will be based only on their mathematical qual-
ity and significance.

Further information about the Fulkerson Prize (including a list of
previous winners) can be found at mathopt.org/?nav=fulkerson.

The members of the 2015 Fulkerson Prize committee are:
◦ Michele Conforti (Chair), University of Padova
◦ Friedrich Eisenbrand, EPFL Lausanne
◦ Egon Schulte, Northeastern University, Department of Mathemat-

ics
Nominations (including reference to the nominated article and an
evaluation of the work) should be sent to

Professor Michele Conforti
Universita Di Padova
Dipartimento di Matematica
Via Trieste 63
35121 Padova
Italy
conforti@math.unipd.it

by February 15, 2015. Electronic submissions are preferred.

http://www.mathopt.org/?nav=dantzig#winners
mailto:mhw@cs.nyu.edu
http://www.mathopt.org/?nav=boh
mailto:bixby@gurobi.com
http://www.mathopt.org/?nav=fulkerson
mailto:conforti@math.unipd.it


September 2014 9

Tucker Prize
The A. W. Tucker Prize will be awarded to an outstanding doctoral
thesis. The thesis can deal with any area of mathematical optimiza-
tion. The Tucker Prize Committee will screen the nominations and
select at most three finalists. The finalists will be invited to give oral
presentations of their work at a special session of the International
Symposium on Mathematical Programming 2015. The Tucker Prize
Committee will select the winner before the symposium and present
the award prior to the conclusion of the symposium.

The doctoral thesis must have been approved formally (with sig-
natures) by the nominee’s thesis committee between March 1, 2012
and March 1, 2015. The thesis may concern any aspect of mathemat-
ical optimization.

The winner will receive an award of US$ 1000 and a certificate.
The other finalists will also receive certificates. The Society will also
pay partial travel expenses for each finalist to attend the Symposium.
Reimbursements will normally be limited to US$ 750. The nominee’s
doctoral institution will be encouraged to assist any nominee se-
lected as a finalist with additional travel expense reimbursement.

The members of the 2015 Tucker Prize committee are:
◦ Karen Aardal (Chair), Delft University of Technology
◦ Satoru Iwata, University of Tokyo
◦ Benedetta Morini, Universita degli Studi di Firenze
◦ Danny Ralph, University of Cambridge
◦ Uday Shanbhag, Penn State University
Nominations must be made by electronic mail to:

Professor Karen Aardal
Faculteit EWI, Technische Universiteit Delft
Mekelweg 4
2627 CD Delft
The Netherlands
k.i.aardal@tudelft.nl

The nominator must be a faculty member at the institution that
awards the nominee’s doctoral degree, or a member of the nom-
inee’s thesis committee. Applications should consist of pdf files as
follows: a letter of nomination; the nominee’s thesis; a separate sum-
mary of the thesis’ contributions, written by the nominee, no more
than eight (8) pages in length; and a brief biographical sketch of the
nominee. Nominations and the accompanying documentation must
be written in a language acceptable to the Tucker Prize Commit-
tee (= English). The Tucker Prize Committee may request additional
information.

The deadline for nominations is March 15, 2015.

Lagrange Prize
The prize, established in 2002, is awarded jointly by the Mathemat-
ical Optimization Society and the Society for Industrial and Applied
Mathematics. It is awarded for outstanding works in the area of con-
tinuous optimization. Judging of works will be based primarily on
their mathematical quality, significance, and originality. Clarity and
excellence of the exposition and the value of the work in practical
applications may be considered as secondary attributes.

Works to be considered should form the final publication of the
main result(s) and should have been published between the years of
2009 to 2014 either as an article in a recognized journal, or in a
comparable, well-referenced volume intended to publish final publi-
cations only; or as a monograph consisting chiefly of original results
rather than previously published material. Extended abstracts and
prepublications, and articles in published journals, journal sections

or proceedings that are intended to publish non-final papers, are
not eligible.

The award will include a certificate containing the citation and a
cash prize of US$ 1,500. In the event of joint authorship, the prize
will be divided.

The members of the 2015 Lagrange Prize committee are:
◦ Mihai Anitescu (Chair), Argonne National Laboratory
◦ Kurt Anstreicher, University of Iowa
◦ Larry Biegler, Carnegie Mellon University
◦ Werner Römisch, Humboldt-Universität zu Berlin
Nominations should include a letter evaluating the contribution(s)
of the work and citing the works to be considered. For questions,
please contact via email:

Mihai Anitescu
Mathematics and Computer Science Division
Argonne National Laboratory, Building 240
9700 S. Cass Avenue Argonne, IL 60439, USA
anitescu@mcs.anl.gov

Nominations should be sent by e-mail to lagrange-prize@mcs.anl.gov,
so as to arrive by February 1, 2015.

Tseng Lectureship
The Mathematical Optimization Society invites nominations for the
Paul Y. Tseng Memorial Lectureship in Continuous Optimization.
This prize was established in 2011 and will be presented for the
second time at the International Symposium on Mathematical Pro-
gramming 2015. The lectureship was established on the initiative of
family and friends of Professor Tseng, with financial contributions to
the endowment also from universities and companies in the Asia-
Pacific region. The purposes of the lectureship are to commemo-
rate the outstanding contributions of Professor Tseng in continuous
optimization and to promote the research and applications of con-
tinuous optimization in the Asia-Pacific region.

The lectureship is awarded to an individual for outstanding con-
tributions in the area of continuous optimization, consisting of origi-
nal theoretical results, innovative applications, or successful software
development. The primary consideration in the selection process is
the quality and impact of the candidate’s work in continuous opti-
mization. See more details at www.mathopt.org/?nav=tseng.

The members of the 2015 Paul Y. Tseng Memorial Lectureship
committee are:
◦ Xiaojun Chen, Hong Kong Polytechnic University
◦ Yu-Hong Dai, AMSS, Chinese Academy of Sciences
◦ Tom Luo, University of Minnesota
◦ Yinyu Ye (Chair), Stanford University
The nomination must include a nomination letter of no more than
two pages and a short CV of the candidate (no more than two
pages, including selected publications). In addition, the nominator
should also arrange for 1-2 letters of recommendation. All nomina-
tion materials should be sent (preferably in electronic form, as pdf
documents) to:

Professor Yinyu Ye
Department of Management Science and Engineering
Huang Engineering Center 308
475 Via Ortega
School of Engineering
Stanford University, CA 94305-4121, USA
yyye@stanford.edu

All nomination materials must be received by December 31, 2014.

mailto:k.i.aardal@tudelft.nl
mailto:anitescu@mcs.anl.gov:
mailto:lagrange-prize@mcs.anl.gov
http://www.mathopt.org/?nav=tseng
mailto:yyye@stanford.edu
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ISMP 2015 in Pittsburgh

The 22nd International Symposium on Mathematical Programming
(ISMP 2015) will take place in Pittsburgh, PA, USA, July 12–19, 2015.
ISMP is a scientific meeting held every three years on behalf of the
Mathematical Optimization Society (MOS). It is the world congress of
mathematical optimization where scientists as well as industrial users
of mathematical optimization meet in order to present the most re-
cent developments and results and to discuss new challenges from
theory and practice.

Conference Topics
The conference topics address all theoretical, computational and
practical aspects of mathematical optimization including
◦ integer, linear, nonlinear, semidefinite, conic and constrained pro-

gramming;
◦ discrete and combinatorial optimization;
◦ matroids, graphs, game theory, network optimization;
◦ nonsmooth, convex, robust, stochastic, PDE-constrained and

global optimization;
◦ variational analysis, complementarity and variational inequalities;
◦ sparse, derivative-free and simulation-based optimization;
◦ implementations and software;
◦ operations research;
◦ logistics, traffic and transportation, telecommunications, energy

systems, finance and economics.

Conference Venue
The Symposium will take place at the Wyndham Grand Pittsburgh
Downtown Hotel located at the confluence of Pittsburgh’s famed
Three Rivers. The opening ceremony will take place on Sunday,
July 11, 2015.

The opening session will feature the presentation of awards by
the Mathematical Optimization Society accompanied by riveting en-
tertainment, and followed by the welcome reception.

Plenary speakers
◦ Laurent El Ghaoui, University of California, Berkeley
◦ Jim Geelen, University of Waterloo, Canada
◦ Daniel Kuhn, EPFL, Switzerland
◦ Daniel A. Spielman, Yale University
◦ Stephen J. Wright, University of Wisconsin

Semi-plenary speakers
◦ Samuel A. Burer, University of Iowa
◦ Roberto Cominetti, University of Chile, Chile
◦ Michelangelo Conforti, University of Padova, Italy
◦ Tamara G. Kolda, Sandia Labs
◦ Andrea Lodi, University of Bologna, Italy
◦ Asu Ozdaglar, Massachusetts Institute of Technology
◦ Werner Roemisch, Humboldt University Berlin, Germany
◦ Frank Vallentin, University of Koeln, Germany
◦ Pascal van Hentenryck, NICTA, Australia
◦ Yaxian Yuan, Chinese Academy of Sciences, China

Registration and Important Dates
September 1st, 2014 Abstract submission opens.
December 15th, 2014 Registration opens.
March 2nd, 2015 Abstract submission deadline
March 27th, 2015 Notification of acceptance
April 15th, 2015 Early registration deadline

Early registration rate for 2015 MOS members
Student or retiree: US$ 190
Lifetime member: US$ 290
Regular member: US$ 375

Early registration rate for non-2015 MOS members
Student: US$ 210
Retiree: US$ 220
All others: US$ 435
The registration rates for late registration will be higher.

Web site
More details (includ-
ing clusters, cluster
chairs, all registra-
tion rates, discounted
MOS membership
for 2016–2018, ho-
tel, sponsorship opportunities, exhibits etc.) will soon be available
on the conference web site at www.ismp2015.org.

Pittsburgh skyline, taken from Mount Washington (Photo: Filipe Fortes, CC BY-SA 2.0)

http://www.ismp2015.org
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Call for pre-proposals to organize and host ISMP 2018

The Symposium Advisory Committee of the Mathematical Optimiza-
tion Society issues a call for pre-proposals to organize and host
ISMP 2018, the triennial International Symposium on Mathematical
Programming.

ISMP is the flagship event of our society, regularly gathering over
a thousand scientists from around the world. The conference is usu-
ally held in or around the month of August. Hosting ISMP provides
a vital service to the mathematical optimization community and of-
ten has a lasting effect on the visibility of the hosting institution.
It also presents a significant challenge. This call for pre-proposals is
addressed at local groups willing to take up that challenge. The tradi-
tion would be that only sites outside of USA and Canada are eligible
to host ISMP 2018.

Preliminary bids will be examined by the Symposium Advisory
Committee (SAC), which will then issue invitations for detailed bids.
The final decision will be made and announced during ISMP 2015 in
Pittsburgh. Members of the SAC are

◦ Michael Juenger, Germany, mjuenger@informatik.uni-koeln.de
◦ Jan Karel Lenstra, The Netherlands (chair), jkl@cwi.nl
◦ Jeff Linderoth, USA, linderot@cae.wisc.edu
◦ Andy Philpott, New Zealand, a.philpott@auckland.ac.nz
◦ Kim-Chuan Toh, Singapore, mattohkc@nus.edu.sg
◦ Luis Nunes Vicente, Portugal lnv@mat.uc.pt

Preliminary bids should be brief and contain information pertaining
to the
1. location,
2. facilities,
3. logistics: accommodation and transportation, and
4. likely local organizers.

Further information can be obtained from any member of the ad-
visory committee. Please address your preliminary bids until Octo-
ber 15, 2014 to Jan Karel Lenstra jkl@cwi.nl.

Application for Membership
I wish to enroll as a member of the Society. My subscription is for my personal use
and not for the benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.
I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:
Mathematical Optimization Society
3600 Market St, 6th Floor
Philadelphia, PA 19104-2688
USA

Cheques or money orders should be made
payable to The Mathematical Optimization
Society, Inc. Dues for 2014, including sub-
scription to the journal Mathematical Pro-
gramming, are US $ 90. Retired are $ 45.
Student applications: Dues are $ 22.50.
Have a faculty member verify your student
status and send application with dues to
above address.

Faculty verifying status

Institution
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Combinatorial Optimization

Samuel Fiorini

Kamal Jain

Call for participation: 

http://www.him.uni-bonn.de/combinatorial-optimization-2015/. 

Organizers: 

Those planning to participate include:


