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Note from the Editors

Dear MOS members,

this year, we are celebrating the 50th anniversary of Jack Edmonds’
seminal papers Paths, trees, and flowers [3] and Maximum matching
and a polyhedron with 0-1-vertices [|], both published in 1965. These
papers not only solved the matching problem both from an algo-
rithmic as well as from a polyhedral point of view and laid out the
plan for the field of Polyhedral Combinatorics. They also put on the
mathematicians’ agenda the question for the existence of efficient
algorithms (“It is by no means obvious whether or not there ex-
ists an algorithm whose difficulty increases only algebraically with
the size of the graph” [3]) and pointed out that “(...) in applying
linear programming to a combinatorial problem, the number of rel-
evant inequalities is not important but their combinatorial structure
is” [1].

Just in time for the 50th anniversary, Thomas Rothvoss [5] re-
cently constructed a brilliant proof demonstrating that the perfect
matching polytopes of complete graphs do not admit polynomial size
extended formulations. This settles a major open question raised
by Mihalis Yannakakis more than two decades ago and extends Ed-
monds’ conclusion cited above by showing that the existence of a
polynomial (algebraic)) time algorithm for a problem does not imply
the possibility of a polynomial size linear representation of the as-
sociated polytope. In this issue of our newsletter, Thomas explains
his result and its proof in a way that is accessible for the general
readership, informative for experts, and very enjoyable for all.

Furthermore, we are very glad to have an interview with Jack Ed-
monds, in which he talks about revolting against exponential time
algorithms, reveals what a glimpse of heaven may be, and reminisces
about the birth of the complexity classes P, NP, and coNP as well as
the notorious conjectures on their relations that have been formal-
ized following his fundamental contributions as expressed in state-
ments like:
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The good characterization will describe certain information
about the matrix which the supervisor can require his assis-
tant to search out along with a minimum partition and which
the supervisor can then use ‘with ease’ to verify with mathe-
matical certainty that the partition is indeed minimum. Having
a good characterization does not mean necessarily that there is
a good algorithm. [2]

| conjecture that there is no good algorithm for the traveling
salesman problem. My reasons are the same as for any mathe-
matical conjecture: (1) It is a legitimate mathematical possibility,
and (2) | do not know. [4]

We are sure that reading what Jack has to say 50 years after he
started it all will not only be a great pleasure for our readership, but
also a very good source of inspiration.

Along with these two scientific highlights, the issue contains a
note from Dan Bienstock, the new editor-in-chief of Mathematical
Programming Computation (MPC), that explains innovations he and his
editorial team are planning to implement for the journal. Finally, the
issue has calls for nominations for the upcoming elections within
our own society and for the INFORMS John von Neumann The-
ory Prize, announcements of a summer school (with Jack Edmonds
among the lecturers) on Polyhedral Combinatorics preceding the
upcoming ISMP congress in Pittsburgh, and calls for papers for sev-
eral special issues of Mathematical Programing, Ser. B.

Sam Burer, Co-Editor
Volker Kaibel, Editor
Jeff Linderoth, Co-Editor
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Thomas Rothvoss
The matching polytope has exponential
extension complexity

| Introduction

Linear programs are at the heart of combinatorial optimization as
they allow to model a large class of polynomial time solvable prob-
lems such as flows, matchings and matroids. The concept of LP dual-
ity in many cases leads to structural insights that in turn leads to spe-
cialized polynomial time algorithms. In practice, general LP solvers
turn out to be very competitive for many problems, even in cases



in which specialized algorithms have the better theoretical running
time. Hence it is particularly interesting to model problems with
as few linear constraints as possible. For example if we consider
the convex hull Psy of the characteristic vectors of all spanning
trees in a complete n-node graph, then this polytope has 2(") many
facets [7]. However, one can write Pst = {x | 3y : (x,y) € Q}
with a higher dimensional polytope @ with only O(n®) many in-
equalities [|6]. Hence, instead of optimizing a linear function over
Pst, one can optimize over Q. In fact, Q is called a linear extension
of Pst and the minimum number of facets of any linear extension is
called the extension complexity and it is denoted by xc(Pgs7); in this
case xc(Ps7) < O(n®). If xc(P) is bounded by a polynomial in n,
then we say that P C R" has a compact formulation.

Let us verify that this makes sense: in the example below, we have
a 2-dimensional polygon P with 8 facets which is represented as a
projection of a 3-dimensional polytope Q that has only 6 facets.

linear
projection

S,
>

Other examples of non-trivial compact formulations contain the
permutahedron [|2], the parity polytope, the matching polytope in
planar graphs [3] and more generally the matching polytope in graphs
with bounded genus [I 1].

A natural question that emerges is which polytopes do not ad-
mit a compact formulation. The first progress was made by Yan-
nakakis [23] who showed that any symmetric extended formulation
for the matching polytope and the TSP polytope must have exponen-
tial size. Conveniently, this allowed to reject a sequence of flawed
P = NP proofs, which claimed to have (complicated) polynomial
size LPs for TSP. It was not clear a priori whether the symmetry
condition would be essential, but Kaibel, Pashkovich and Theis [14]
showed that for the convex hull of all log n-size matchings, there is
a compact asymmetric formulation, but no symmetric one.

Then the major breakthrough by Fiorini, Massar, Pokutta, Tiwary
and de Wolf [10] showed unconditionally that several well studied
polytopes, including the correlation polytope and the TSP polytope,
have exponential extension complexity. More precisely, they show
that the rectangle covering lower bound [23] for the correlation poly-
tope is exponential, for which they use known tools from communi-
cation complexity such as Razborov's rectangle corruption lemma [19].

One insight that appeared already in [23, 10] is that if a “hard”
polytope P is the linear projection of a face of another polytope P/,
then xc(P’) > xc(P). This way, the “hardness” of the correlation
polytope can be translated to many other polytopes using a reduc-
tion (in fact, in many cases, the usual NP-hardness reduction can be
used); see [18, 1] for some examples.

A completely independent line of research was given by Chan,
Lee, Raghavendra and Steurer [5] who use techniques from Fourier
analysis to show that for constraint satisfaction problems, known in-
tegrality gaps for the Sherali-Adams LP translate to lower bounds for
any LPs of a certain size. For example they show that no LP of size
nOlogn/loglogn) can approximate MaxCut better than 2 — . This is
particularly interesting as in contrast the gap of the SDP relaxation
is around 1.13 [13].
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.l The matching polytope

However, all those polytopes model NP-hard problems and nat-
urally, no complete description of their facets is known (and no
efficiently separable description is possible if NP # P). So what
about nicely structured combinatorial polytopes that admit polyno-
mial time algorithms to optimize linear functions? The most promi-
nent example here is the perfect matching polytope Ppy;, which is
the convex hull of all characteristic vectors of perfect matchings in
a complete n-node graph G = (V/, E). This year we can celebrate
the 50th anniversary of the paper of Edmonds [6] which shows that
apart from requiring non-negativity, the degree-constraints plus the
odd-set inequalities are enough for an inequality description. In other
words, we can write

Ppp = conv{xp € RE | M C E is a perfect matching}

x(0(v)) = 1 VveV
={xeRE| x(5(U)) > 1 YUCV: |U|odd
xe > 0 VeceE

Here, xy is the characteristic vector of M. Note that there are only
n degree constraints and O(n?) non-negativity constraints, but 29(n)
odd set inequalities. Any linear function can be optimized over Ppy,
in strongly polynomial time using Edmonds algorithm [6]. Moreover,
given any point x ¢ Ppyy, a violating inequality can be found in poly-
nomial time via the equivalence of optimization and separation or
using Gomory-Hu trees, see Padberg and Rao [|7]. There are com-
pact formulations for Ppy, for special graph classes [| |] and every
active cone of Ppy; admits a compact formulation [22]. Moreover,
the best known upper bound on the extension complexity in gen-
eral graphs is poly(n) - 2n/2 [8], which follows from the fact that
poly(n) - 2n/2 many randomly taken complete bipartite graphs cover
all matchings and that the convex hull of the union of polytopes can
be described with a few extra inequalities [2]. For a detailed discus-
sion of the matching polytope we refer to the book of Schrijver [21].

1.2 Our contribution
In this article, we want to discuss the following somewhat surprising
theorem and its proof:

Theorem 1. For all even n, the extension complexity of the perfect
matching polytope in the complete n-node graph is 29(n),

Recall that the perfect matching polytope is a face of the matching
polytope itself, hence the bound also holds for the convex hull of all
(not necessarily perfect) matchings.

2 Our approach

Formally, the extension complexity xc(P) is the smallest number of
facets of a (higher-dimensional) polyhedron @ such that there is a
linear projection 7 with 7(Q) = P. This definition seems to ignore
the dimension, but one can always eliminate a non-trivial lineality
space from Q@ and make Q full-dimensional, and then the dimen-
sion of Q is bounded by the number of inequalities anyway. Before
we continue our discussion of the matching polytope, consider a
general polytope P and let xp, ..., xv be a list of its vertices. More-
over, let P = conv{xy,...,xv} = {x € R" | Ax < b} be any
inequality description, say with f inequalities. A crucial concept in
extended formulations is the slack matrix S € ]R';f)‘/ which is defined
by Sjj = b;j — A;x;j, where A; is the ith row of A. A small example is
as follows:
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(1.1)

x1—x >0 2x < 2

P

(0,0) x2 >0 (1,0)

slack matrix

polytope

Moreover, the non-negative rank of a matrix is
rky(S) = min{r |3U € RLY", V e RZY : S = UV}

Recall that if the non-negativity condition is dropped, we recover
the usual rank from linear algebra.

2.1 Yannakakis’ Factorization Theorem
The connection between extension complexity and non-negative
rank is expressed by the following Theorem:

Theorem 2 (Yannakakis [23]). Let P be a polytope' with vertices
{x1, ..., xv}, inequality description P = {x € R" | Ax < b} and
corresponding slack matrix S. Then xc(P) = rk4(S).

Proof. Let A be the matrix consisting of rows Ay, ..., Ar. We begin
with showing that r := rk4(S) = xc(P) < r.

So, suppose that we have a non-negative factorization S = UV
with U € RLY" and V € RZY. We claim that Q = {(x.y) €
R™7" | Ax + Uy = b; y > 0} is a linear extension and the projec-
tion 7 with 7(x, y) = x satisfies that 7(Q) = P; in other words, we
claim that P = {x € R" | 3y € R%, : Ax + Uy = b}. To see this,
take a vertex x; of P, then we can choose the witness y := V/ and
have (xj,y) € Q as Aix; + U;V/ = Ajx; + S;j = b;. On the other
hand, if x ¢ P, then there is some constraint / with A;x > b; and no
matter what y > 0 is chosen, we always have A;x+ U;y > Ajx > b;.

For the second part, we have to prove that r := xc(P) =
rki(S) < r. Hence, suppose that we have a linear extension
Q = {(x,y) | Bx + Cy < d} with r inequalities and a linear pro-
jection 7 so that 7(Q) = P, see also Figure |. After a linear trans-
formation, we may assume that 7(x, y) = x, that means 7 is just
the projection on the x-variables. We need to come up with vectors
uj, vj € R%, so that for each constraint i and each vertex x; one
has <u,~, vj> = §j;. For each point x;, fix a lift (x;, y;) € Q and choose
vj :=d — Bxj — Cy; € RY as the vector of slacks that the lift has
w.rt. Q. -

By LP duality we know that each constraint A;x + 0y < b; can be
derived as a conic combination of the system Bx + Cy < d. In other
words, there is a vector u; € RY so that

B A;
ulCl=10
d b;

Now multiplying gives that

(ui,vj) = (uind = Bx; = Cy;)

= uid — uiB x; — uiCy; = bj — Aix; = Sj;.
~— =~ ~—~
=b  =A =0

Figure 1. Visualization of Yannakakis’ Theorem

2.2 The rectangle covering lower bound

A potential way of lower bounding rk(S) was already pointed out
in the classical paper of Yannakakis and is known as rectangle covering
lower bound:

Lemma 3. For any matrix S, rky(S) is at least as large as the num-
ber of rectangles needed to cover exactly the support of S.

The reason is simple: suppose we do have a factorization of
S = UV with non-negative matrices U and V. Then if we take the
positive entries in the ith column of U and the positive entries in the
ith row of V/, then those induce a combinatorial rectangle where S will
have strictly positive entries. Moreover, if U has only r columns, then
this provides r rectangles and each entry in S has to be in at least
one of them.

In the made-up example below, we can see a non-negative factor-
ization S = UV and the rectangle that is induced by the Ist row and

column.
Vv

0 0 2 1 0
0o 2 2 0 3

3 2 0 4 10 3 5
1 1 0 2 4 1 3
ulo 2 0 4 4 0 61[S
0 O 0 0 0O 0 O
2 0 0 0 4 2 0

In fact, Fiorini et al. [10] show that the number of rectangles nec-
essary for such a covering of the slack-matrix of the correlation
polytope is exponential, which in turn lower bounds the extension
complexity.

So, let us discuss the situation for the perfect matching polytope.
Since the number of degree constraints and non-negativity inequal-
ities is polynomial anyway, we consider the part of the slack matrix
that is induced by the odd set inequalities. In other words, we con-
sider the matrix S with

Sum = IM N (V)| — 1YM C E perfect matching
YU C V : |U| odd.

The first natural approach would be to check whether the rectangle
covering lower bound is super-polynomial. Unfortunately, this is not



the case, as was already observed in [23]. To see this, take any pair
e1, & € E of non-adjacent edges and choose

Meeo :={M|e1,ep € M} and Ue e = {U |e1, e € 5(U)},

then we obtain O(n*) many rectangles of the form Ue, e, X Me, e,.
First of all, we have Syps > |{e1, e2}|—1 > 1for each U € Ue, e, and
M € Me,,e,, hence the rectangles contain only entries (U, M) that
have positive slack. But every entry (U, M) with Syp > 1 is also
contained in at least one such rectangle. To be precise, if Syp = k
and §(U) N M = {ey, ..., €41}, then the entry (U, M) lies in (“37)
rectangles. So the approach with the rectangle covering bound does
not work.

On the other hand, considering the rectangle covering as a sum
of O(n*) many 0/1 rank-1 matrices also does not provide a valid
non-negative factorization of S. The reason is that an entry with
Sym = k is contained in ©(k?) many rectangles instead of just k
many, thus entries with large slack are over-covered. Moreover, we see
no way of rescaling the rectangles in order to fix the problem. This
raises the naive question: Maybe every covering of S with polynomially
many rectangles must over-cover entries with large slack? Surprisingly, it
turns out that the answer is “yes”!

2.3 The hyperplane separation bound

To make this more formal, we will use the hyperplane separation lower
bound suggested by F|or|n| [9]. For matrices S, W € RFXY, we will
write (S, W) Z 1 J 1 Wi - §jj as their Frobenius inner product.
Intuitively, the hyperplane separation bound says that if we can find a
linear function W that gives a large value for the slack-matrix S, but
only small values on any rectangle, then the extension complexity is
large.

Lemma 4 (Hyperplane separation lower bound [9]). Let S € ]R;XO"

be the slack-matrix of any polytope P and let W € R ¥V be any ma-

trix. Then
(W, s)

[[Slfoc - e
with a := max{(W, R) | R € {0, 1}"*" rank-1 matrix}.

xc(P) >

Proof. First, note that the assumption provides that even for any
fractional rank-1 matrix R € [0, 1]7*" one has (W, R) < a. To see
this, take an arbitrary rank-1 matrix R € [0, 1]"*" and write it as
R = uv' with vectors u and v. After scaling one can assume that
u e [0,1]" and v € [0, 1]". If we now take independent random 0/1
vectors x,y so that Pr[x; = 1] = u; and Pr[y; = 1] = v;, then
E[xiy;] = ujv; and hence E[xy"] = R. Hence R lies in the convex
hull of all 0/1 matrices of rank-1.

Now abbreviate r = xc(P) = rk4(S), then there are r rank-I
matrices Ry, ..., R- with S = >"'_| R;. We obtain

W, s) = Z||R|\oo< > Z|\R||oo<o<r||snoo

1
%,_/ i=
<ISlles
<a

Rearranging gives the claim. a

Now, let us go back to the matching polytope and see how we can
make use of this bound. Let kK > 3 be an odd integer constant that
we choose later. We consider only complete graphs G = (V, E)
that have |V| = n = 3m(k — 3) + 2k many vertices, for some odd
integer m. In particular, m = ©(n).

We fix the set My := {M C E | M is a perfect matching} of all
perfect matchings in G. In contrast, we will only consider cuts that
have all the same size t, where t = ©(n) will be odd. Formally, we
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define t := mT‘Ll(kf3)+3, and abbreviate Uy := {U C V | |[U| =t}
as all t-node cuts in G. Let

Qe := {(U, M) € Uy x Mai | |6(U) N M| = ¢}

be the set of pairs of cuts and matchings intersecting in ¢ edges
and let py be the uniform measure on Q. In other words, each
(U /\/I) with [6(U) N M| = £ carries the same probability measure

|Q - In the following, a rectangle is of the form R = U x M with
/\/l C My and U C U,y Note that for parity reasons pi(R) = 0
for all i € Z>p. One could try a schematic picture of the situation
which is as follows:

S R=UxM
§
o —>m
matchings My
Uy x M

Now we want to choose a matrix W € R ' for which the
hyperplane separation bound provides an exponential lower bound.
We choose

—00 [s(U)yn M| =1,
1 _
Wy ay = o7 [6(U)yn M| =3,
’ g W) NMI =k,
0 otherwise.

The intuition is that we reward a rectangle for covering an entry in
Q3, punish it for covering entries in Q, and completely forbid to
cover any entry in Q. First, it is not difficult to see that

1
1IQI

Our hope is that any large rectangle R must over-cover entries with
|6(U) N M| = k and hence (W, R) is small. In fact, we can prove

(W, s) =o+(3—1)~|oz|-@ (k=1)-1Qul- —1 ()

Lemma 5. For any large enough odd constant k (k := 501 suffices)
and any rectangle R with R = U x M withU C Uy and M C My
one has (W, R) < 27" where § := §(k) > 0 is a constant.

The proof of this lemma takes the most part of the work. From
the technical point of view, our proof is a substantial modification of
Razborov’s original rectangle corruption lemma [|9].

Assuming the bound from Lemma 5 we can then apply Lemma 4,
and infer that the perfect matching polytope satisfies

w.,s)
“ ||S]|loo - max{(W, R) | R rectangle}

xc(Ppp) >

L0

ST

Here we use that (W, S) = 1, ||S]lcc < nand that (W, R) < 2797
for all rectangles R.

3 The pseudo-random behavior of large sets

Before we go on with the discussion of the matching polytope, we
want to discuss a crucial tool for analyzing the behauvior of com-
binatorial rectangles. We want to keep things general, so we will
not talk about cuts and matchings in this section. Instead we will
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show that the following claim is true: Suppose you have a set family
y C 2™ with |Y| > 2(1=9)™ for a small enough constant & > 0.
Then 99 % of indices i € {1, ..., m} will be in 50% + | % of sets in
the family Y.

We can prove such claims using an entropy counting argument. Re-
call that for a random variable y over {1, ..., k}, the entropy is de-
fined by H(y) := Zj-;l Prly = j] - log, m. Moreover, the en-
tropy is maximized if y is the uniform distribution; in that case we
have H(y) = logy(k). A useful property is that entropy is sub-
additive. For example if y = (y1,...,ym) is a random vector, then
H(y) < 3, H(yi)- In the following, if we write y ~ Y, then y is
a uniformly drawn random element from Y. If Y is a set family over
ground-set 1, ..., m, then we say that index i € [m] is e-unbiased if

~(175)§SF:ry[i€S]§%~(1+s).

N =

Lemma 6. Let Y C 2™l be a set family with |Y| > 2(1-6(=)m,
Then at least a 1 — ¢ fraction of indices i € {1, ..., m} is e-unbiased.

Proof. Let us choose a uniform random set S € Y from our family.
First, fix an index i and consider the binary random variable “i € 5”.
If i is perfectly unbiased, then H(i € S) = 1. On the other hand, if i
is e-biased, then it is not hard to see that the entropy will be a little
less than %, simply because the function plog,(p)+ (1 — p) logy ﬁ

has a unique maximum at p = %:

entropy for i € S

Pr[i € S]

0 % T
0 0.5 1.0

In fact, one can see that in this case H(i € S) < 3 — o(e?).

Now, we assume for the sake of contradiction that there are more
than em indices that are e-biased. Then we can bound the entropy
of the random set S by

m
logy(|Y]) = H(S) <) H(i € S) < m—em- ©(c°)
i=1
using the subadditivity of H. Rearranging vyields |Y| <
2(1-6(e%))m. O
The reason why unbiased indices are useful is the following ob-

servation that follows from Bayes’ Theorem:

Corollary 7. Let Y be a family and i be an e-unbiased index. Then

p Y| 1+e). P Y
Sgr;n][SG lieSle(1+e) Sgr;n][SG ]

where S is a uniform random set that contains each element j inde-
pendently with probability %

For example, in our application, if we want to test the “density” of
the set of cuts U/, then for most nodes / € V, the tests Pry[U € U]
and Pry[U € U | i € U] will yield roughly the same probability (one
can imagine that U here is a uniform random cut).

4 The quadratic measure increase
In this section, we provide the proof of the main technical ingredient,
Lemma 5. Formally, we will prove the following statement:

Lemma 8. For each odd k > 3 and for any rectangle R with
u1(R) = 0, one has u3(R) < % cpe(R) + 270 where § =
o(k) > 0.

We verify that this indeed implies Lemma 5. Consider a rectan-
gle R and assume that p1(R) = 0 since otherwise (W, R) = —oc.
Then

1
(W, R) = n3(R) — —=1(R)
lem8 /400 1 _ _
< (e ) mm@r s
—_—
<0

where we choose k as a large enough constant (e.g., k = 501).

4.1  The concept of partitions
For the remainder of this work, we fix a rectangle R = U/ x M with
u1(R) = 0. If we want to compare the fractions p3(R) and ux(R),
then we should start with answering the following question: how
does one actually sample from Q3 or Q,? We cannot just indepen-
dently sample a cut and a matching because most likely those would
intersect in ©(n) edges. The trick is to sample pairs (U, M) ~ Q3
and (U, M) ~ Q in two stages. In the first stage, we partition the
graph into a certain block structure that is depicted in Figure 2. In
the second phase we then sample U and M w.r.t. those blocks; in
particular there will only be few edges where U and M might inter-
sect.
Formally, a partition is a tuple T = (A = AjU...UAm, C,D,B =
B1U...UBm) with V = AUCUDUB and the following properties:
e A C Visasetof |A| = m(k — 3) nodes that is partitioned into
blocks A = AjU... UAm with |A;| = k — 3 nodes each.
e C C Visasetof k nodes.
e D C Vs aset of k nodes.
e B = BiU...UBm with B C V is a partition of the remaining
nodes so that |B;| = 2(k — 3).
For a node-set U, let E(U) := {(u, v) € E | u,v € U} be the edges
lying inside of U. We abbreviate E(T) := |JI"; E(A;) UE(CUD)U
U"; E(B)) as the edges associated with the partition T, see again
Figure 2.
We say that the matchings

M(T):={MeM|MCE(T)}

respect the partition 7. In other words, the matchings in M(T)
have only edges running inside A; or B; or inside C U D. Similarly,
we say that the cuts

UT)={UeclU]|UCAUCwith [UNA;| €{0,|A;|} Vi € [m]}

respect the partition (see Figure 3). In other words, those cuts con-
tain either all or none of the nodes in each A;. Let My (T) := {M €
Ma | M CE(T)}andUy(T) :={U €Uy | UC AUC; |UNA;| €
{0, |A;|} Vi € [m]} be the supersets of M(T) and U(T) containing
all possible matchings and cuts that would respect the partition. The
advantage of such a partition is that if we take a random matching
M ~ My(T) and a random cut U ~ Uy (T), then the intersection
6(U) N M can only contain edges in E(C U D) (in fact, it contains an
odd number between 1 and k edges).
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Figure 2. Visualization of a partition T with all edges E(T)
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m blocks, each k — 3 nodes
|A| = m(k — 3) nodes

N

m blocks, each 2(k — 3) nodes
|B] = m- 2(k — 3) nodes

Figure 3. Visudlization of a partition T together with one matching M € M(T) and one cut U € U(T)

4.2  Generating the distributions i3 and pu
The key trick is that the measures p3(R) and iy (R) can be nicely
compared for the rectangles that are induced by partitions. To fix
some notation, we say that H is an ¢-matching if H is a matching
with exactly ¢ edges. The nodes incident to edges H are denoted by
V(H).

For a matching H C E(C U D), we define

Pr

H) =
pum,7(H) Me (T

)[M eEM|HCM
as the chance that a random matching from this block structure lies
in our rectangle. For ¢ C C, let

Pr [UeU|UNC=C]

pu,T(c) = Vet

be the chance that a random extension of ¢ to a cut U lies in the
rectangle. By a slight abuse of notation, we denote py r(H) =
pu.T(V(H) N C) for a matching H C C x D. We should remark
that we only consider cuts U of size |U| =t = mT“(k —3)+3, that
means |U| — 3 is a multiple of kK — 3, and hence py 7(c) > 0 only if
lc| € {3, k}.

Now we can use the block structure to generate entries from Q3
and Qy:
e Generating a uniform random entry (U, M) € Qj: Pick a random
partition T. Pick a random k-matching F in the bipartite graph
C x D and randomly extend F. Hence

n(R) = E |

E [pw,7(F)-pur(F]
E

|Fl=k

e Generating a uniform random entry (U, M) € Q3: Pick a random
partition T. Pick a random k-matching F C C x D. Pick 3 edges
H out of F and extend H:

iR =E| E |

E_[pm.7(H) - pur(H)]]]
T L|F|=k

He(3)

4.3 The notion of good partitions

Now is the time to remember our insights from Section 3. We can
expect that for most partitions T with k edges F certain local con-
ditioning will not change the outcome of a “density test”. Extending
those insights that we discussed only for set families to cuts and
matchings, here is the property that we would expect fora 1 —¢
fraction of partitions:
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Definition 1. A pair (T, F) with a partition T and a k-matching

F is called good if for all H € ('3:) at least one of the conditions is

satisfied:

o smallness: One has py 7(H) < 279m or puT(H) < 279m (or
both).

o unbiasedness: One has

pu,T(H) = (1=£¢)-py,7(F)>0.

Moreover, for every matching H' : H C H' C E(C U D) one has

pm,T(H) = (1 £¢) - pu,7(H') > 0.

Let GOOD( T, F) be the indicator variable telling whether the pair
(T, F) is good. In Section 4.5, we will give an argument, how one
can apply Theorem 6 to derive that a 1 — ¢ fraction of pairs will be
good.

But for now, we want to get to the proof that the contribution of
those “good” pairs cannot be large. This contains the key arguments,
why the matching polytope has no compact LP representation. It is
also the part where we make use of the combinatorial properties of
matchings and cuts.

4.4 Contribution of good partitions

Recall that the definition of a good pair (T, F) means that for each
triple H € ('3:) we have either smallness or unbiasedness satisfied. Let
us use SMALL(T, F, H) and UNBIASED(T, F, H) as indicator variables
and we omit T, F if they are clear from the context. Now, the key
argument is that only a @(%)-fraction of triples H can be unbiased.

Lemma 9. Fix any good pair (T, F). Then one has

100
Pr_ [UNBIASED(H) =1] < oz
H~(3)

3

Proof. Consider triples H, H* € (%) that are both unbiased. We

claim that then |[H N H*| > 2. For the sake of contradiction sup-
pose that |H N H*| < 1. Then there are distinct nodes u,v €
V(H\H*)N C.

By assumption, H* is unbiased, hence py +(H* U {(u, v)}) > 0.
In other words, there exists a matching M € M(T) with H* U
{(u,v)} € M. Butalso (T, H) is unbiased and hence py 7(H) > 0,
which implies that there is a cut U € U(T) so that UN C =
V(H) N C. Then (u, v) runs inside of U and hence [6(U) N M| =1,
which is a contradiction to p1(R) = 0. Thus unbiased pairs must
indeed overlap in at least 2 edges.

Now fix a triple H* that is unbiased (if there is none, there is
nothing to show). Then

3k

Pr [UNBIASED(H)=1] < Pr [[HNH"|>2] < ——

H~(9) H~(9) ()
< 100

This settles the claim. O

Now we can easily relate the contribution of the good pairs to
u3(R). In particular, we use that if a triple H C F is unbiased, then
pm,T(H) < (14 ¢€)pm 1(F) (same for cuts). Formally, we have

IE[ E [GOOD(T,F)- E [pM,T(H)~Pu,T(H)m

T LiF1Zk He()

<E| B | E_[SWLL(T.F.H)-pur(H) pu.r(H)]]]

T L=k Lpe(r)
§276m
+E | E_[ows1ased(T.F.H)- pur(H) - pur(H) ||
TF he(f) — —
<(1+e)pmT(F) <(1+€)pu,7(F)

<7100(1+€)2IE[ E [pmr(F)-pur(F)]]+27°

< 2 B A, omT uT

_ 200

-6
?Mk(n) +27°"
In the last inequality, we assume that ¢ < %.

4.5  Contribution of bad partitions

Unfortunately, not all pairs (T, F) will be good, so we need to bound
the contribution of those that are bad. It can be proven that the fol-
lowing is true:

E [BAD(T, F)-E [PI\/I,T(H)PU,T(H)H
T.F H
<cE [E [PM,T(H)PU.T(H)H
TFLH

This then implies that the contribution of good pairs already deter-
mines the claim of Lemma 8.

To prove this remaining inequality, we want to give the argument
why one would expect that a random partition is “good”. Let us only
show half of the claim by focusing on the cut part (the arguments
for the matching part are analogous). In fact, it suffices to show that
for a random partition T and a 3-matching H, either the smallness
part or the unbiasedness part is satisfied with high probability. Then
we can take the union bound over (’;) choices of H € (’3:)

Let us make this more formal. For a partition T and a corre-
sponding 3-matching H C C x D, let us say that (T, H) is U-good if
at least one of the conditions is true:

e the pair is U-small: py 7(H) < 279™
e the pair is U-unbiased: py 7(H) € (1£¢) - py,7(C)
Now we want to prove:

Lemma 10. For any ¢ > 0 there is a constant § > 0 so that

Pr [U-GOOD(T,H)] > 1—=«.
Pr[U=G0OD(T, H)] = 1~ ¢

We will choose the random pair (T, H) in a “reverse” manner.
First, take another random partition T and 3-matching H C Cx D as
in Figure 3. Now, imagine that we “forget” which nodes are C/V/(H);
instead we have disjoint blocks Al .., Am+1, all of size kK — 3, see
Figure 4. Now, we choose an index i* € [m + 1] at random and de-
clare the block A;. as the missing nodes C/V/(H); the other blocks
then constitute Ay, ..., Am. This finally gives us a partition T, still
with a corresponding 3-matching H. We claim that with probability
1—¢, the pair (T, H) will be U-good. In fact, a stronger claim holds,
namely we could even adversarily fix the choice of T —we need only
the tiny bit of randomness that lies in the choice of the index i* for
that claim.
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Figure 4. Situation after we decided for 741, veinAm+1, H, By, ..., Bm

Now, consider the function

F(1) = (CnV(H) Ul A

iel

which gives a cut for each index set / C [m+ 1]. Moreover, consider
the family of such cuts

Y:={f()eu|IC[m+1]}

that lie in our rectangle. One condition that we need before we can
apply Lemma 6 is that Y is large enough, say |Y| > 2(=9™ Byt
if that is not the case, then all indices /™ will lead to U-small pairs
and we are done. So suppose that | Y| > 2(1=9)m is indeed satisfied.
Then Lemma 6 provides that if we chose § > 0 small enough, then
for a (1 — ¢)-fraction of indices i* € [m + 1] the fraction of cuts in
Y that contain the block A;- is % (1 £¢). As we learned in Cor. 7,
this implies that py 7 (H) = (1 £ ¢)py, 7(C) for all unbiased indices.

Remark 1. Here, we showed that a random pair (T, H) will be good
with probability 1 — . For a formal proof one needs a slightly more
complicated statement: fix an entry (U*, M*) € Q3 and then take
a random pair (T, H) containing that entry (U*, M*); then that pair
(T, H) will be good with high probability. The details can be found
in [20] — but they do not contain any more crucial ideas.

5 Conclusion

The result can be modified to show that any (1 + ¢)-approximate
linear program for the matching polytope (which contains also non-
perfect matching) must have size 2(1/2) | see Pokutta and Braun [4]
and the remarks in [20].

After a sequence of papers showed lower bounds on the size
of linear programs (including [10, 5] and this result), the natural
next challenge was whether one could also prove lower bounds
on the size of semidefinite programs. A recent breakthrough of Lee,
Raghavendra and Steurer [|5] answers this affirmatively for the cor-
relation polytope, the cut polytope and approximate versions of con-
straint satisfaction problems. However, it is still unknown whether
there is a polynomial size SDP for the perfect matching polytope.

Thomas Rothvoss, Department of Mathematics & Department of Computer
Science, University of Washington, Seattle, WA, USA.
Email: rothvoss@uw.edu

Note
I. For technical reasons we will always assume that the dimension of P is
at least 1.
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A glimpse of heaven is
feeling you understand
something beautiful

An interview with Jack Edmonds

This year we are celebrating the 50th anniversary of your groundbreaking
papers about matching, which opened the gates to the field of Polyhedral
Combinatorics and developed the most fundamental concept of a good
characterization, which then led to the definition of the complexity classes
NP and coNP and to the question of whether their intersection equals P. It
seems that you did your work in an almost empty environment compared
to the situation discrete optimizers find themselves in today.

It wasn’t in a vacuum. As part of my job at NIST (U.S. National Insti-
tute of Standards and Technology, formerly the National Bureau of
Standards) | saw papers by IBM’ers about how they solved combi-
natorial problems like simplifying switching circuits or cutting planes
to solve ILP’s. That’s not a vacuum. | happened to be in the perfect
time and place. Almost anyone there would have reacted similarly.

Also, you might have heard that my personality tends to have a
chip on its shoulder, and that was kind of like how the sixties were.
Either you were a hippie or a protester or both, and | was both
— in mathematics, and publishing, and academia. A few years later
students in Paris made riots.

Jobs were easy to get then. | dropped out of graduate school
and got a wonderful job at NIST that was way better than gradu-
ate school. It became my graduate school. Kids in their teens and
twenties could get whatever they went for. Demonstrations for civil
rights, peace, disarmament, women’s rights, free love, gay rights,
were popular. My reaction to combinatorial optimization was in that
spirit. | was, of course, kind of a geek, and so looking for nice poly-
topes was my way of correcting the establishment.

So your reaction was to search for something better than general purpose
cutting planes?

| figured that we would find a polynomial time algorithm for traveling
salesmen and for integer programming. | never read the details of the
paper by Dantzig, Fulkerson, Johnson, but | got the message that they
used an exponentially large set of inequalities, the subtour elimina-
tion inequalities which are easily recognizable. It just happened that
they weren’t enough. This made me think, ok, they just don’t have
all the inequalities, but presumably there is a set of, what we now
call NP, polytime recognizable inequalities, whose solution-set is the
hull of the tours. (It is not important that the set be irredundant. In
fact a description of just the irredundant inequalities might be more
complicated than for some larger valid set.)

| felt sure that the only reason the travelling salesman problem
was not well-solved was that nobody had tried to find a determining
set of polytime-recognizable inequalities. George, Ray, and Selmer,
used obvious inequalites, an exponentially large set, and they weren’t
enough, but | thought | would find an NP description of a set which
is enough. Man, if you have an easy description of a set of points like

the incidence vectors of the matchings in a graph, or the incidence
vectors of the traveling salesman tours in a graph, why shouldn’t you
have an easy description of inequalities defining the hull of those
points. | was sure | was going to figure it out for tours. Matching
was a technicality on the way. My only worry was that someone else
would do it before me as soon as they saw it done for matchings.
After a few years of frustrating unsuccess | conjectured that there is
no good way to recognize when a tour is optimum — hence, NP is
not coNP, and hence NP is not P

People at that time did not show any interest in the idea of poly-
nomial time. A thrill of my life was in the mid 1960s when Dantzig in-
vited me to lecture to his linear programming class, and | presented
a sequence of non-degenerate shortest path problems where the
number of pivots of the simplex method grows exponentially. My
only pivot rule was that it improve the objective. Later, exponential-
lity was proved for various specific pivot rules by Klee, Minty, and
others. All of this depended on caring.

When working on the matching problem, were you more interested in in-
vestigating just some problem for which it was both conceivable that there
could be an efficient algorithm or not, or were you specifically interested
in matchings?

The second thing.

Did you fail on other problems before you turned to matching or somehow
you smelled that matching was the right problem to attack?

| looked at the cuts separating node s from node t in the network
flow problem. That’s too easy. | looked at tours. | thought that maybe
sufficient inequalites for “0/1 valued 2-matching” polytopes together
with subtour elimination inequalities would be enough for the trav-
eling saleman problem. |-matching provides a simple extended for-
mulation of a 0/1 valued 2-matching in a graph G (a subset of edges
in G such that at most 2 of them hit any node).

Tutte had a theorem which characterizes when a graph has a
perfect |-matching (a subset of edges which hits each node ex-
actly once) with a proof which was not helpful to me algorithmi-
cally for optimum matching, or even for finding a perfect matching.
| could see that Berge’s augmenting path theorem did not achieve
polytime. | have an enormous debt to both of them, and they both
became closest friends. However the biggest jump for me was a
min-max formula, which is the LP duality theorem applied to a cer-
tain TDI system of inequalities. In the case of the max cardinality |-
matching problem, that min-max formula is: max size of a |-matching
equals min capacity-sum of an odd-node-set covering where, for
k =1,2,..., a node-set Q of size 2k + 1 has capacity k and cov-
ers the edges with both ends in Q, and a node-set {v} has capacity
| and covers the edges which hit node v.

Obviously, the size of any |-matching is at most the capacity-sum
of any “odd-node-set covering” of all the edges. That was the Ist
breakthrough for me, and so all | then needed was a polynomial
time algorithm to find a |-matching and a covering which achieved
equality. From that it was easy to do the same for a general objec-
tive function. From that a corollary is an NP inequality-set whose
solution-set is the hull of the |-matchings.

Curiously, no one had ever used a min-max equality to trivially
conclude the convex-hull sufficiency of an LP relaxation. It was pop-
ular to go in the other direction. It seems to be still not noticed that
Birkhoff’s 1946 theorem on the hull of doubly stochastic matrices is
a corollary of Egervary’s 1931 optimum bipartite matching min-max.

Berge’s min-max formula for largest |-matching didn’t make sense
to me. It still doesn’t. But this simple idea does: when you’re opti-
mizing over ‘feasible’ subsets of objects, if you can get an easy upper
bound on the size of the intersection of any feasible set with a cer-



tain kind of subset, say Q, of the objects, then take that upper bound
as the capacity of Q. If you are lucky, the largest size of a feasible set
equals the minimum capacity-sum of a cover by sets Q. If you are
really lucky these sets Q give you adequate inequalities for the hull
of the feasible sets. This same idea works for some matroidal opti-
mization problems and for stable sets in perfect graphs.

What else did you come across when starting to think about combinatorial
optimization problems?

Computing theory consisted of minimizing switching circuits, min-
imizing conjunctive normal formulas, and Gomory’s cutting planes.
Nice polytopes meant polytopes with few enough inequalities that
you can explicitly record them. | took some pride in revolting against
exponential time approaches in the same way my buddies were
against the American draft and the abuse of black people. We were
all protesting something.

There was Land and Doig, branch-and-bound. Did you actually burn Land
and Doig’s paper?

Hahaha. Actually | didn’t look at their work and lots of other work.
But | liked Gomory’s cutting plane methods. | felt we might get some
more polytime methods with it if we got it away from exponential
simplex methods. | felt we could, and tried, to get LP away from ex-
ponentiallity since the LP duality theorem is a good (i.e., NPNcoNP)
characterization of LP optima. The inequalities for matchings are ob-
tained by Gomory cuts. Later work by Chvatal and others showed
some intrinsic limitations of Gomory cuts. However it is certainly
a beautiful way to derive inequalities. Gomory implicitly proved that
the hull of integer solutions is obtained by iterated cutting, but if | re-
member correctly the only theorem in the ILP book by Hu was that
the algorithm is finite, which for most problems is not so interest-
ing. Classes of sets of integer points, besides matchings, for which
polynomially iterated cuts yield hulls remain to be found. Anyway,
the technicalities of matchings anyone could have done in the envi-
ronment. I'm not agile, and that might have been an advantage.

What's important at the time was protesting against the estab-
lishment, academia, black lists, mistreatment of black brothers, mis-
treatment of South-East Asians, foolish exclusion of Jews and others
by the Allied empire, ...

And the mistreatment of computing?
Exactly.

Let’s come to another technicality, but which is important at the beginning
of what you did. What you wanted to do was to investigate whether there
is an efficient algorithm for a problem or not. Was it clear to you right
away that polynomiality would be the right quantification of efficiency?

Good question. No. To me what was important was having some
way to regard ‘good’ as mathematics — in particular ‘good’ certifi-
cation — because | hoped that having a mathematically ‘good’ way
to certify outputs, e.g., ‘good’ theorems, would lead to ‘good’ al-
gorithms. Looking at theorems it occurred to me that what math-
ematicians regard as beautiful structural theorems are existentially
polytime — that is, for any input there exists something, any instance
of which is easy to recognize. This seems a simple formalization
of mathematically beautiful, regardless of a good algorithm to find
whatever exists. Thinking first about ‘NP’ required a meaning for
‘P’. However, | was finding some algorithmic results which could not
even be in a math publication without a mathematical definition of
‘good’. Polynomial time seemed easy to work with.

In fact the ‘always-polytime’ definition of ‘good’ is actually not so
good, but since few known methods qualify it’s a good place to start.
A main reason ‘always-polytime’ is not such a wonderful meaning
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for ‘good’ is that bad running time might be so rare that only theory
cares — like for the simplex method. In fact, though | do not know
an example, in theory an algorithm might be not polytime, and yet
never be bad for inputs smaller than the number of elementary par-
ticles. Good algorithms in practice have been developed for the trav-
eling salesman and other ‘hard’ problems. Polytime is a theoretically
handy practical heuristic, and a toy for nerds. Topologists found that
topological spheres and balls are not necessarily nice. ‘Good charac-
terization’ means it is easy to prove if the answer is yes and it is easy
to prove if the answer is no. Which is called NP N coNP . The main
point is that if a question is in NP1 coNP, i.e., proving the answer is
yes is easy and proving the answer is no is easy, it ought to be easy
to decide which — what is now called the conjecture NPNcoNP =P,
What the hell does ‘easy’ mean? Well, it’s easy what one might mean
by easy.

But still you were aware that you need a formal definition of what easy
means. If you look at it in hindsight, polynomiality seems to be the only
concept that works. You need something that is preserved under reduc-
tions. You didn’t talk about reductions at that point in time, but you came
up with this notion of efficiency. Does this mean that you had in mind
already somethig like reductions?

Of course. | reduced shortest paths with negative costs to optimum
assignment, reduced coloring to packing, this to that. How could
one look for methods, and discard possibilities, without reductions?
Scott Lockhart, the Yale student who programmed for Ellis Johnson
and me, suggested we write up the reductions of one unsolved prob-
lem to another. It seemed like fun when there was time after solving
problems. Would it have made us famous? No. What never occurred
to us, darn it, is that we were hoping to solve some problems which
are as hard as any NP problem. What a strange development. Is
there an NP N coNP problem which is as hard as any?

In A Glimpse of Heaven [1], some 25 years ago, you indicated that you
still hadn’t accepted that NP intersected coNP was not P. You phrased it
in terms of integer programming, | think. But some 25 years ago, you ap-
parently still hoped for NP intersected coNP equal to P. How do you think
about this today?

In fact, | was naive. My feelings have changed only recently, and | tell
you why. | was not aware of number theoretic stuff. | never stud-
ied very much the does-there-exist-an-integer-factor question, the
is-this-a-prime question. I've learned a little about it lately. To be
specific, there is now a famous polytime algorithm for, given an in-
teger, is it prime or not!? But given a number, if there is a factor,
find one. There is no good algorithm known for this. | was unaware
of this difference between decision problem and search problem. To
me the only way to solve a decision problem was to solve the search
problem. | was an idiot about that for most of my life. This is really
exciting for cryptography — that there is a good algorithm for decid-
ing if a number has a factor, but there’s no good algorithm known
for finding one. And | do not know who discovered it, but friends
finally made me aware that finding a factor can be reduced to an
NP N coNP question. Being taught this kind of thing has made me a
little less naive in my fantasy that P = NP N coNP.

And are you now disappointed? Did you really hope in your heart for NP
intersected coNP being equal to P?

Yes. In fact, | still do. It has turned out to be true for a lot of prob-
lems. It may turn out that finding a factor is polytime (a crypto-
graphic tragedy). All right, | will now hedge my bet, since | am so
naive except for a tiny bit of combinatorial optimization. It is tech-
nically interesting, how | hedge the bet. The NP N coNP things |
have studied have been mostly polyhedral. So, | weaken my conjec-
ture to the subclass of problems, possibly proper subclass, that are



April 2015

given by good descriptions of polyhedra. That is, if you have an NP-
description of a set of points and you have an NP-description of a
set of inequalities which gives the hull of those points, then applying
LP-duality shows that recognizing an optimum over the set of points
is in NP N coNP. That was the idea which | was using 50 years ago.
I didn’t know anything about NP N coNP except the idea of apply-
ing linear programming duality to those descriptions. | still carry the
same fantasy that NP N coNP = P. However | realize what | was
thinking about was polyhedral.

So here’s a complexity class, call it JC: NP N coNP predicates that
are corollaries of having an NP description of a set of points and an
NP description of a set of inequalities which gives you the hull of the
points. The weakened conjecture is that JC is contained in P. The
ellipsoid method has made it almost half true. Of course it might be
that NP N coNP reduces to JC.

If all that is true, is that heaven? Is that your current definition of heaven?
Hahaha! You are pulling my leg.

No, ’'m serious. You talked about a glimpse of heaven. What was heaven
at that time and what is it now? | assume at that time NP N coNP was
heaven. So what is this the new heaven?

No, a glimpse of heaven is feeling you understand something beau-
tiful. Heaven is understanding it all. There is an old country gospel
song called “Farther Along”. | have about 50 recordings of it.[From
extensive experience during editing the text, Optima recommends
to listen to the recording by Monte Ingersoll while reading the rest
of the interview.] The refrain:

Farther along we’ll know more about it,

Farther along we’ll understand why;

Cheer up, my brother, live in the sunshine,

We'll understand it, all by and by.
Corinthians |3 says:

For now we see through a glass darkly;

| know in part;

but then shall | know even as also | am known.
| have a son, Jeff, who is a professor of computing theory. And | have
a son, Alex, who just got his Bachelor’s degree in Zermelo-Fraenkel’s
set theory with the axiom of choice and the Gédel incompleteness
Theorems.

So he’s a mathematician?

Yes, but now he thinks he'd rather be a plumber or something. Jeff
and | have been trying to turn Alex on to Goodstein’s Theorem and
Hydra battles. Have you ever heard of the Goodstein sequence? This
is nice.

You know the East-Indians taught us how to express a number
as a sum of powers of a base-n. Instead, we not only express our
number in base-n, but we recursively do the same thing for the ex-
ponents. This is called hereditary base-n representation. So in case
of base-2 you have all these towers like two to the two to the two to
the two with some additions along the way. A Goodstein sequence
is a sequence of numbers, starting with any positive integer. To ob-
tain the (k+/)th number of the Goodstein sequence, we write the
(k)th number with hereditary base-k representation. Then replace
every appearance of exponent k with k+/ and subtract | from the
resulting number.

What do you think happens? Goodstein says that no matter what
number you start with that sequence eventually terminates with
zero even though the numbers grow horrendously quickly for hor-
rendously many terms. Now, what’s interesting is that this cannot be
proved, like most truths we know about numbers can be proved, by
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using normal Peano arithmetic axioms. Expositors say it is proved
using set theory, which to me is a fairy tale.

You don’t like set theory.

| don't like the power set axiom. | like Cantor proving that from any
infinite list of real numbers you can describe a real number not in
the list. This is kind of like for any integer you can describe a bigger
one. People tend to say ‘you can’t prove such and such using Peano
arithmetic axioms, but you can prove it using set theory’, which in-
cludes using an axiom of choice saying that for any set of subsets of
the set of all real numbers there exists a meaningful selection of one
element from each of the subsets. Some rather ridiculous things can
be proved using this set theory, ZFC, but you surely do not need
much of it to prove termination of Goodstein’s sequence. There are
believable things in between. So that’s what Jeff, Alex, and | have
been studying. Maybe heaven is understanding it all by and by.

So this would be more important for you than settling NP N coNP?

Oh no. But | have followed the attempts to prove NP not equal to P
enough to know that | am not capable of proving coNP is not NP. It
might well be that there is no proof from more believable assump-
tions. In the meantime it is a good axiom. It amazes me that proofs
are eventually found to exist for so many mathematical truths.

Is it true that you are mainly interested in mathematical questions which
are also rather philosophical?

Or beautiful or easy. I'm slow. I've never understood anything that
takes more than a few enjoyable pages.

Let’s come back to matching once more. Thomas Rothvoss has this bril-
liant proof that shows that there is no polynomial size extended formu-
lation for the perfect matching polytope. He will explain it in the same
issue of Optima in which this interview is going to appear. If it would have
turned out to be the other way, so if somebody suddenly would have come




up with an extended formulation for the matching polytope of size, say,
n°. Would you have been surprised, would you have liked it, or would it
have had disturbed your view on the matching problem?

| would have not liked it, | would have been disturbed and greatly
disappointed. | can recognize Rothvoss’ achievement as really great.
However, the reason it’s a great achievement is because my depart-
ment mate Ted Swart insisted on a flawed proof of a good char-
acterization of the traveling saleman polytope, and that prompted
Yannakakis to brilliantly refute Swart’s proof. And because of limita-
tions Yannakakis described in his own related result about matching
polytopes, there was a great challenge which was met by Rothvoss.
This is the reason that | admire it as important work.

Would you say that among the systems over which you can separate in
polynomial time those that are of polynomial size do not play a particularly
important role?

Yes.

If every problem that has a good description would have had a compact
extended LP description it would mean that Karmarkar’s algorithm could
have solved these problems and not only the ellipsoid algorithm.

That’s a good point. But first let’s clarify that the ellipsoid algorithm
only provides a polytime algorithm for optimizing when there is a
polytime algorithm for separation, and vice versa. A main example:
For a so called polymatroid, P, given by an oracally NP set of inequal-
ities, specified by an oracally given submodular set function, there is
an especially simple polytime algorithm, called the greedy algorithm,
which maximizes any linear objective over P, and hence provides an
oracally NP description of the vertices of P, and hence an oracally
NP description of any point x in P as a convex combination of points
given by the greedy algorithm. The ellipsoid method does more. It
immediately provides a polytime algorithm for separation — that is
for, given any point x, determining that x is in P by describing x as a
convex combination of points given by the greedy algorithm, or else
determining that x is not in P by specifying one of the oracally given
inequalities which x violates. It took some 30 years and many pa-
pers to finally develop direct algorithms for separation of the point
x which are polytime without using the ellipsoid method.

Given several polymatroids in the same space by submodular-
function systems of inequalities, the ellipsoid method gives us im-
mediately a polytime algorithm for optimizing a linear function over
the intersection of these polymatroids by using the polytime algo-
rithm for possible separation of any point x by this intersection.

And so we here have main examples of where certain JC prob-
lems have polytime algorithms. It is only my fantasy conjecture that
JC in general implies good algorithms for separation and optimizing.
It happens that if the set of inequalities is ‘compact’ then there is a
trivial good algorithm for separation, and if the set of points is ‘com-
pact’ there is a trivial good algorithm for optimizing over them. Yes,
the value of having a system of inequalities which is small enough
to explicitly list is that you can apply algorithms that work well for
explicitly listed LPs.

It may seem that it is more complicated to optimize over matching poly-
topes than over spanning tree polytopes, and the latter have polynomial
extension complexity, but the first don’t have. Is this only a mere coinci-
dence?

Yes. A mere coincidence. Optimizing over the polytope whose ver-
tices are the incidence vectors of the linearly independent subsets of
columns of a matrix is as simple as optimizing over a spanning tree
polytope, namely by the greedy algorithm, but | doubt if the former
has a compact extended formulation. This might have an interesting
but easier proof than Rothvoss’ proof for matching polytopes.
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I agree. Also, if you intersect two graphic matroids you still have small
extension complexity, while optimization is not so simple anymore. So you
would say that it is not conceivable that small extended formulations have
an important theoretical meaning.

| would say that. On the other hand impossibility proofs seem to
be what mathematicians have always most admired. And theories
are mainly for fun. Like the impossibility of proving Goodstein’s The-
orem about integers from the usual axioms about integers. What
mathematician studies how to solve a quartic polynomial, or even a
cubic polynomial, using radicals? But every pure math student stud-
ies a proof that it is not possible to solve a fifth degree polynomial by
radicals. I'm a possibility person without much experience of proofs
that something is impossible. But complexity theorists are obsessed
with proving things are not possible, and | know of great complex-
ity theorists who are interested in work on extended formulation
complexity.

Are extended formulations relevant in any sense?

Oh yes. Extended formulations are extremely natural and extremely
useful. Indeed, one excuse for somewhat neglecting b-matching poly-
topes is that they have extended formulations to |-matching poly-
topes. And a very easy extended formulation of the Chinese Post-
man polytope is a b-matching problem where you have a loop at
each of the nodes, so all that is important is parity of the number of
edges hitting each of the nodes.

As another example, some 35 years ago | suggested to K.
Cameron that we take a dual network flow problem and play around
with eliminating variables to come up with something nice. We did
so and called it coflow polyhedra.

So you appreciate the usefulness and beauty of extended formulations.

What | question is the value of small extended formulations of large
NP systems to explain their efficiency. What polyhedra do we know
with integer vertices and with a system of inequalities which is small
enough to be efficiently listed explicitly? | think we only know totally
unimodular systems. Paul Seymour showed that totally unimodular
constraint matrices are essentially network flow matrices, dual flow
matrices, one-, two-, three-sums of these and one small exception.
So, from what is known to us, small combinatorial inequality system
means, effectively, flow or dual flow. Wouldn't it be closer to heaven
to prove that every class of small integer LPs is totally unimodular,
or whatever! Didn’t Hoffman and Kruskal almost do that? And then
see what we get by projecting away variables? Of course ‘class’ needs
to be defined somehow.

Let us jump to one more general question. It’s decades ago that your pa-
pers on matching polytopes, and submodularity related polytopes, have
been written. Are you happy with the development that has happened
after your papers?

No. But it seems that God is to blame and not researchers. | ex-
pected that these, and perfect graph polytopes studied by Ray Fulk-
erson, were just the beginning of what we are calling JC. To some
extent that has been true. However | expected many more. Instead
everyone started finding that thousands of problems are NP hard.
And 50 years later, JC classes we know of are still surprisingly rare.

Is this due to the fact that there simply are not so many relevant exam-
ples? Or do you think we are just too stupid or too lazy to find other
significant ones?

Submodularity related classes of polyhedra are extensive and rich.
So are perfect-graph related classes. Continuing research about var-
ious classes and new classes has been far from stupid, in fact very
deep, while much of continuing combinatorial research has been in
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different directions like LP approximation methods and semi-definite
programming.

For thousands of years the beautiful symmetries of a few poly-
hedra and tilings were at the center of refined math, and still are if
you consider Klein’s Erlangen Program, and the frightfully obscure
Field-medal-winning Langlands Program, both based on group the-
ory. Turing computers and operations research have displaced them
— so far at least without group theory. Are JC classes the newer
dodecahedra? | never expected that. Perhaps in our NP-hardness
mode, we are missing some JC. Hopefully, there are undiscovered
classes of well-describable polyhedra, i.e., JC classes, out there.

Do you have any hint into which directions there could be important ones
to detect?

No, but perhaps if | did have | wouldn’t say.

Thank you very much, Jack, for this interview, and even more for your
beautiful mathematics!
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Daniel Bienstock

Mathematical Programming Computation

The journal Mathematical Programming Computation was launched in
2009, with the goal of addressing computational issues in mathe-
matical optimization. As the reader may already know, the jour-
nal has a two-track reviewing process, whereby a standard paper
is refereed in the normal way, while simultaneously the software
component of the submission is reviewed by special referees with
the goal of running the experiments in the paper and verifying, as
much as possible, that the software does what it purports to. The
goal is to have high-quality publications in mathematical optimization
which additionally adhere to standard scientific criteria for repro-
ducibility of experiments. The initial editor was Bill Cook; please see

www.mathopt.org/Optima-Issues/optima78.pdf and mpc.zib.de for a

history of the journal.

| became editor-in-chief in January 2015. As Area Editors we have
a strong group: Alper Atamturk (Linear and Integer Programming),
Robert Fourer (Modeling Languages and Systems), Andrew Gold-
berg ( Graph Algorithms and Data Structures), Nicolas .M. Gould
(Nonlinear Optimization), Jeffrey T. Linderoth (Stochastic Optimiza-
tion, Robust Optimization, and Global Optimization), F. Bruce Shep-
herd (Combinatorial Optimization) and Kim-Chuan Toh (Convex
Optimization). Additionally, the journal relies on an extremely strong
group of Associate Editors and Technical Editors (responsible for re-
viewing software). Please refer to the above websites for a complete
listing of the editorial board.

In this column | will address some issues of interest to the MPC
community and more broadly to the mathematical optimization
community.

I. We are now rolling out an online publication tracking system. If
you submit a paper to MPC you may (and in the future, will) inter-
act with this system. As we are all aware, such systems are never
perfect; however we hope that overall this is a good change.

2. We have started an online discussion forum. Any topic of interest
(see below) can be raised in this forum. If you are interested in
joining in, please send me an email at dano@columbia.edu.

3. We plan to occasionally have focused issues of MPC, used to
highlight specific topics of interest. It is important to note that
these will not be traditional “special issues” that rely on guest
editors. Instead the normal editorial and reviewing process will
be followed. The only difference will be that | will attempt to
schedule the papers to appear in a common volume. The goal
of these measures is to maintain a common quality level across
all publications in the journal. If you think of a topic that could
deserve a focused issue in MPC please let me know.

4. We are encouraging authors whose papers are accepted to
archive the version of the software that was submitted, with
MPC, and thus make it available to the public. This point has
not proved universally popular and it is worth discussing here.
There are a number of reasonable points that could be raised
against making software in accepted papers publicly available. For
instance, we are all familiar (perhaps painfully familiar) with the
potential for misuse of software that we post. In the case of
MPC-archived software, it should be understood that there is
no presumption of support. If you download software, you are
on your own, unless the authors kindly agree to help you. More-
over the archived software will remain unchanged, whereas it is
possible that the authors will continue to develop new versions,
which will not be posted at MPC. Another reason is that some of
our authors have commercial associations, and their employers
might object to posting software — even software that has been
reviewed by the journal (I know that this can happen even if it
may sound irrational). This would certainly be a valid excuse; as |
noted above, we are “suggesting” rather than requiring archival.
Now let me state two major reasons for software archival. One
is that we want the community to be able to validate experi-
ments. You learn by re-running experiments that other people
have performed. A researcher studying a problem might benefit,
years later, from running an old experiment verbatim; that is to
say using the original software rather than a new version (which
could be better, but who knows?). Another reason is that just like
we learn by reading other people’s proofs, we also learn by read-
ing their software — and why is that any different? And just like
published articles sometimes include errors, it could be the case
that archived software is found to be buggy — why should we try
to hide such errors? It would be to the benefit of the author that
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such errors are found and corrected (else the manuscript that
was published could become problematic). In any case, | would
like to stress that the practice of archiving software, for public
distribution, has a positive effect and it enhances our commu-
nity’s scientific standing.

5. There is another potential initiative for MPC that we have con-
sidered; and here | would like to stress that the MPC Board is
not in complete agreement and thus this initiative may not be
implemented. The board is considering the possibility of allowing
“short communications” in MPC. Before presenting my rationale
for such an initiative, let me first discuss what it would not be.
First of all, there would not be an expectation of a special re-
view process. To be sure, once a reviewer gets started the pro-
cessing time might be faster with a shorter manuscript (and less
software). Likewise, the time and effort needed for an author to
write a short communication would also be decreased. However
we would not promise a special review track for short commu-
nications. Also, we would not want authors to split up a normal
paper into several “short” papers. Should an author engage in this
practice, it will be quickly identified, and stopped.

Rather, the goal here is to facilitate the publication of compelling
and fresh research that does not lend itself to a long manuscript.
| am sure that readers have experienced instances, in other jour-
nals, where reviewers ask for “more material” in order to judge
a manuscript acceptable. An extreme form of this might be that
of a very theoretical article where reviewers demand computa-
tional experiments so as to validate the work. Such a request may
or may not be valid; however there is no question that it delays
publication of what otherwise might be a very compelling note.
Another perspective concerns the significant experimental com-
ponent of articles submitted to MPC. When we are engaged in
computational research we often find ourselves performing very
low-level studies (say, in a small set of problem instances) geared
to understanding why a promising idea is instead misbehaving.
Often, such studies are not deemed worthy of publication — in-
stead, computational articles usually will focus on “macro” statis-
tics such as running time, percentage of problem instances solved
within a certain error margin in a certain amount of time, and
so on. These are very valuable data; yet the detailed experiments
| described above would also prove invaluable, in my opinion.
Thus, for example, somebody working in integer programming
would be interested in knowing why a promising branching rule
fails to work well on some instances. Publishing a detailed ac-
count of this failure (or successes) could prove very useful. Such
a manuscript might only amount to a short note, but if the ex-
periment is suitably compelling, and the writing is informative and
appropriate, the manuscript might prove a very valuable contribu-
tion. In my mind, this type of practice would place experimental
work in optimization firmly within standard scientific norms used
for decades or more in other disciplines, such as physics.

In any case, | realize that the above paragraph may not naturally
appeal to math optimization people. We have a discussion forum
on this topic at MPC. If you are interested in joining, let me know.
Ultimately the board will decide on the topic of short contribu-
tions, but of course it is in our interest to listen to what the
community has to say.

| look forward to your input on this and any other topic of interest

to the MPC community.

Daniel Bienstock, Department of Industrial Engineering and Operations
Research and Department of Applied Physics and Applied Mathematics,
Columbia University, 500 West 120th St., New York, NY 10027 USA
dano@columbia.edu
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Nominations for 2015 MOS Elections

Nominations are solicited for all offices (Chair, Treasurer, and four
At-Large Members of Council) of the Mathematical Optimization
Society (MOS). The new Members-at-Large of the Council will take
office at the time of the symposium, while the Chair-Elect and the
Treasurer-Elect will take office one year later.

Candidates must be members of the Society (search at
www.ams.org/cml/) and may be proposed either by Council or by
any six members of the Society. No proper nomination may be re-
fused, provided the candidate agrees to stand.

The following procedure will be observed.

I. Nomination to any office is to be submitted to Willam Cook
(Chair of the MOS). Such nomination is to be supported by the
nominator and at least five other members of the Society.

2. Nominations must be received by email (bico@uwaterloo.ca), on
or before April 30, 2015.

3. In keeping with tradition, the next Chair should preferably not be
a resident of North America. The membership is asked to con-
sider only residents from other continents as candidates for the
Chair.

4. Members of MOS on the rolls as of May 1, 2015 are eligible to
vote. When the ballots are counted, the four At-Large candidates
for Council having the highest number of votes will be elected;
however, no more than two members having permanent resi-
dence in the same country may be elected.

5. The election will close on May 31, 2015.

Further information on the form of balloting will be forthcoming.

William Cook, MOS Chair

Call for Nominations
INFORMS John von Neumann Theory Prize

The John von Neumann Theory Prize is awarded annually to a
scholar (or scholars in the case of joint work) who has made fun-
damental, sustained contributions to theory in operations research
and the management sciences. The award is given each year at the
INFORMS Annual Meeting if there is a suitable recipient. Although
the Prize is normally given to a single individual, in the case of accu-
mulated joint work, the recipients can be multiple individuals.

The Prize is awarded for a body of work, typically published over
a period of several years. Although recent work should not be ex-
cluded, the Prize typically reflects contributions that have stood the
test of time. The criteria for the Prize are broad, and include sig-
nificance, innovation, depth, and scientific excellence. The award is
$ 5000, a medallion and a citation.

Application Process. The Prize Committee is currently seeking
nominations, which should be in the form of a letter (preferably
email) addressed to the prize committee chair (below), highlight-
ing the nominee’s accomplishments. Although the letter need not
contain a detailed account of the nominee’s research, it should doc-
ument the overall nature of his or her contributions and their im-
pact on the profession, with particular emphasis on the prize’s crite-
ria. The nominee’s curriculum vitae, while not mandatory, would be
helpful. Please compress electronic files if 10 MB.

Nominations should be submitted to the committee chair (see
below) as soon as possible, but no later than June I, 2015. Please
see this page online for complete details: http://tinyurl.com/5vdb5lg

2015 Committee Chair: George Nembhauser, Professor, Georgia
Institute of Technology, Atlanta, Georgia, 30332-0205, US.A.
george.nemhauser@isye.gatech.edu
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Call for papers
Mathematical Programming Series B:
DC Programming: Theory, Algorithms and

Applications
(Guest editors: Le Thi Hoai An and Pham Dinh Tao)

Aims and Scope: DC (Difference of Convex) programming with local
and global approaches, which constitute the backbone of noncon-
vex programming and global optimization, were extensively devel-
oped during the last two decades. These theoretical and algorithmic
tools have been successfully applied for modeling and solving real-
world nonconvex programs from different fields of Applied Sciences.
This special issue, celebrating 30 years of developments of DC pro-
gramming and DCA, aims at publishing contributions of high-quality
which will be concerned with works on DC programming: Local and
Global Approaches, from both a theoretical and an algorithmic point
of view, and applications:
I. Refinement of local optimality conditions related to special
classes of DC programs
2. Regularization techniques in DC programming
3. Improvement of solution algorithms with rate of convergence.
New efficient approaches
4. Nonsmooth nonconvex equations systems
5. DC programming on Riemannian manifolds
6. Modeling and solving DC programs in combinatorial optimiza-
tion, multiobjective/multilevel programming, VIP/MPEC, noncon-
vex programming with SOC/SDP constraints, sparse optimiza-
tion, robust optimization, optimization under uncertainty, dis-
tributed/parallel nonconvex programming, for real-world appli-
cations to Transport-Logistic, Communication Systems, Net-
work Optimization, Energy Optimization, Finance, Bioinformat-
ics, Information Security, Cryptology, Mechanics, Image Process-
ing, Robotics & Computer Vision, Automatic Control, Machine
Learning.
Every paper must fit within the ‘Aims and Scope’ of this special issue.
All papers will be subjected to a standard refereeing procedure of
Mathematical Programming before it can be accepted for publication.
Accepted papers must meet the standards of the journal. Due to
page limitations, we expect that each paper will have not more than
25 pages. All papers should be submitted through MP’s web page:
www.editorialmanager.com/mapr/ When the paper is submitted, the
author is required to choose Jong-Shi Pang in Request Editor. The
BTEX style files for MPA are mandatory and can be downloaded from
http://www.mathopt.org/!nav=journal#latex.
Deadline for submission of full paper to the special issues is 30 Au-
gust, 2015. We plan to publish this special issue in Fall 2016. We look
forward to receiving your contribution to this special MPB issue.

Call for papers
Mathematical Programming Series B:
Variational Analysis and Optimization

(Guest editors: Samir Adly and Asen Dontcheyv)

Aims and Scope: Although there is already a rich literature in varia-
tional analysis and optimization, in the recent years there have been
new developments not only in the theory but also various impor-
tant applications in science, engineering and economics. This spe-
cial issue aims to publish outstanding papers centered around the
broad area of variational analysis and optimization and beyond, in-
cluding in particular nonsmooth analysis, topics in functional anal-

ysis related to optimization, nonlinear programming, mathematical
economics, risk theory, optimal control, numerical methods for op-
timization and optimal control, as well as applications related to all
these areas. Some of the papers will be based but not limited to
presentations at the forthcoming conference “Variational Analysis
and Optimization”, May 18-22, 2015 in Limoges, France, dedicated
to R. Tyrrell Rockafellar on the occasion of his 80th birthday. Ev-
ery paper must fit within the ‘Aims and Scope’ of this special is-
sue.

All papers will be subjected to a standard refereeing procedure of
Mathematical Programming before it can be accepted for publication.
Accepted papers must meet the standards of the journal. Due to
page limitations, we expect that each paper will have not more than
25 pages. All papers should be submitted through MP’s web page:
www.editorialmanager.com/mapr/ When the paper is submitted, the
author is required to choose Jong-Shi Pang in Request Editor. The
KTEX style files for MPA are mandatory and can be downloaded from
http://www.mathopt.org/!nav=journal#latex.

Deadline for submission of full paper to the special issues is | De-
cember, 2015. We plan to publish this special issue in 2016. We look
forward to receiving your contribution to this special MPB issue.

ISMP 2015 in Pittsburgh

The 22nd International Symposium on Mathematical Programming
(ISMP 2015) will take place in Pittsburgh, PA, USA, July 12—-17, 2015.
ISMP is a scientific meeting held every three years on behalf of the
Mathematical Optimization Society (MOS). At ISMP 2015 there will
be more than 1500 talks on all aspects of mathematical optimization
and we expect more than 1700 participants!

Registration and Important Dates

April 15,2015:  Early registration deadline

June 8, 2015: Hotel reservation deadline

July 12, 2015: Opening ceremony at Wyndham Grand Pittsburgh
Downtown Hotel

July 17, 2015: Scientific program ends at 6 pm

Conference registration is now open at www.ismp2015.org. Regis-
tration is available for participants even if you are not presenting.

Conference Venue. The symposium and opening ceremony will take
place at the Wyndham Grand Pittsburgh Downtown Hotel located
at the confluence of Pittsburgh’s famed Three Rivers.

The opening ceremony will feature the presentation of awards by
the Mathematical Optimization Society and will be followed by the
welcome reception.

Pittsburgh is defined by its rivers, set on a “Golden Triangle” of
land where the Allegheny and Monongahela Rivers meet to form
the Ohio. The conference dinner will be on Wednesday July |5th
featuring a river cruise on the Monongahela, Allegheny and Ohio
Rivers, with panoramic views of beautiful landscapes and towering
skyscrapers of Pittsburgh. The scientific talks will be scheduled on
Monday—Friday 9 am—6 pm.

Plenary and Semi-plenary Speakers. o Laurent El Ghaoui (University
of California Berkeley), Optimization in the Age of Big Data: Spar-
sity and Robustness at Scale o Jim Geelen (University of Water-
loo, Canada), Matroid Minors Project o Daniel Kuhn (Ecole Polytech-
nique Federale de Lausanne, Switzerland), A Distributionally Robust
Perspective on Uncertainty Quantification and Chance Constrained Pro-
gramming o Daniel A. Spielman (Yale University), Laplacian Matrices
of Graphs: Algorithms and Applications o Stephen ]. Wright (Univer-
sity of Wisconsin-Madison), Coordinate Descent Algorithms o Samuel
A. Burer (University of lowa), A Gentle, Geometric Introduction to
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Copositive Optimization o Roberto Cominetti (Universidad de Chile,
Chile), Equilibrium routing under uncertainty o Michele Conforti (Uni-
versita’ di Padova, Italy), A geometric approach to cut-generating func-
tions o Tamara G. Kolda (Sandia National Laboratories), Optimiza-
tion Challenges in Tensor Factorization o Andrea Lodi (University
of Bologna, Italy), On Mathematical Programming with Indicator Con-
straints o Asu Ozdaglar (Massachusetts Institute of Technology), Fast
Distributed Algorithms for Multi-agent Optimization o Werner Romisch
(Humboldt Universitat zu Berlin, Germany), Quasi-Monte Carlo meth-
ods for linear two-stage stochastic programming problems o Frank Val-
lentin (University of K&ln, Germany), Mathematical Optimization for

Downtown Pittsburgh taken from the Mt. Washington Overlook at Grandview Ave & Bertha St. (Photo: Andrew “Dobie” Koch [CC BY 2.5])

Packing Problems o Pascal van Hentenryck (NICTA, Australia), Com-
plexity, Approximation, and Relaxation of the Power Flow Equations o Ya-
xiang Yuan (Chinese Academy of Sciences, China), Recent Advances
in Trust-Region Algorithms

For further details including the abstracts of these talks please visit
www.ismp2015.org/?page_id=13.

Website. More details (including clusters, cluster chairs, all regis-
tration rates, discounted MOS membership for 20162018, hotel,
sponsorship opportunities, exhibits etc.) will soon be available on
the conference web site at www.ismp2015.org.

Summer School on Polyhedral Combinatorics (PoCo 2015)

The Summer School on Polyhedral Combinatorics (PoCo 2015) will
be held on the campus of Carnegie Mellon University, Pittsburgh,
from July 8-12, 2015.

The speakers will be Egon Balas, Amitabh Basu, Jesus De Loera,
Xiaotie Deng, Jack Edmonds, Nick Harvey, Volker Kaibel, Gleb Ko-
shevoy, Gianpaolo Oriolo, Thomas Rothvoss, Laura Sanita, Francisco
Santos and Rico Zenklusen.

Polyhedral Combinatorics is at the heart of combinatorial op-
timization, a thriving area of mathematics with numerous applica-

Application for Membership

| wish to enroll as a member of the Society. My subscription is for my personal use

and not for the benefit of any library or institution.
[J 1 will pay my membership dues on receipt of your invoice.
LI I wish to pay by credit card (Master/Euro or Visa).

tions. The Summer School on Polyhedral Combinatorics is aimed
at students who want to learn more about this beautiful field. Top-
ics covered will include: o Matroids, o submodularity, o matchings
and stable sets in graphs, o construction of extended formulations
and complexity, o diameter of polytopes, o disjunctive programming,
o multi-row cuts, o PPAD completeness of bimatrix games, o alge-
braic techniques in discrete optimization, and o linear programming-
based methods for approximation algorithms.

Please register at http://poco2015.org.
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