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A METHOD OF DECOWOSITION

J. Abadie and M. Sakarovitch

Consider 8 Linear program with the following structure.‘

—_ b1A1 x1

x1,...,xq > 0

(P) Aq xq = bq

D1 x1 +...+1)q xq -— d
c1 x1 +...+cq xq —- z (mi'n)

where the A1 are m1 x n1.
1

matri’ces,

where the D1 are m x n matrl'ces,
. . . 1. i

and X1, b1, c1, b are respectively ni, m , n , m vectors.

The 1'dea of the method conSi‘sts in partiti‘onl‘ng the vector d into
d + d2 + ... dq '— d 1'n such a way that 1'f x_1 is an optimal solution of.“

AI x —— b

Dlx =di
c1 x = 21 (min),

(Pi)

then x--— (x_l,..., xfl) be an opt1‘ma1 solutl'on of (P).
Th1's 1's a very natural way of handli'ng the problem (thl'nk of the

allocati‘on of scarce resources 1'n a decentrali'zed economy).

For a gi'ven parti'ti'on of the vector d, one solves the Pi's, and
from the value of the optl'mal prl'ces one dec1'des.‘

-—either to stop 1'f an optimal so.lut1'on to (P) has been reached,'
—-or to alter the value of the dl's 1'n such a way that subsequent

solutl‘ons of the Pl's w1'll show a decreaSe 1'n the obJ'ecti’ve
function.

Two vari'ants .of the algori’thm are proposed according to the way the
alteratl'on of the dl's 1's computed.‘

l) A specl‘al set of optm’al prl'ces to the Pl's 1's found by solv1‘ng a
constral'ned mi‘nm'l’zati'on quadrati‘c problem whi'ch 1's equivalent to a
11'near system. The changes of d1 are Sl'mple functl’ons of these
pri’ces.

2) An auxili’ary linear program u51'ng any set of,optimal prices to the P1"s
1‘s solved, and 1’ts solutl'on gives the new dl's.

These algorithms are shown to be f1'nite. Thei’r effi’ciency 1's
dl'scussed.
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STOWASTIC GEOMETRIC PROGWING

M. Ani'el and D. J. Wi'lde

 

In thi‘s paper we formulate and analyze geometrl'c progrm1‘ng
problems in whi'ch some of the parameters of the obJ'ectl’ve functl'on and the
constrai'nts are random variables.

Optimal engi'neeri'ng de31'gn often 1'nvolves f1'nd1'ng values for design
and operatl'ng vari’ables whl'ch m1'n1'm1'ze combi’ned capital and operati‘ng
costs. Solv1'ng such problems 1'n a systematl'c way and obtai’ning quanti'tatl've
economl‘c 1'nfomat1‘on on the 1'nterrelat1‘on between the opti'mal var1’ables and
gi'ven process cond1't1'ons have been the stimulus for the development of
geometri‘c wrormin.

In th1’s paper we introduce models for the case of engi’neeri’ng de51'gn
by geometrl'c programmi'ng where some of the parmeters, representing unit
costs or process condi’tions, are random var1'ables. The designer 1's confronted
then w1’th selectl‘ng fi’rst fi'xed values for some of the vari'ables (de51'gn
varl'ables), then observe the random parameters and fi'nally choose values
for the operatl'ng vari’ables, such that the expected total cost is mini’mi’zed.
Th1's model 1's analogous to the well-know two-stage li‘near program under
uncertai’nty. It 1's Show that th1's geometri‘c program1‘ng model can be
formulated as a convex progrm1’ng problem and 1'n the case of random varl'ables
w1'th a di'screte probabl‘ll‘ty d1’str1'but1'on 1't reduces to an ordi‘nary geometrl‘c
program.

Si'milar to previ’ous works in 11'near and nonll'near progrm1’ng under
uncertal'nty, we defi'ne several addl'tl‘onal stochastic geometri‘c program1’ng
problems (e.g., the wai't—and-see problm) and establl'sh a set of inequall'ti'es
whl'ch prov1’de upper and lower bounds on the solutl'on of a two—stage geometrl'c
progrm.

Conventi'onal de51'gn methods usually take 1'nto account uncertal'nti'es
by overde51'gn, 1'.e., spec1'fy1'ng fi'xed de51‘gn and operating variables whl'ch
sat1'sfy the constral'nts for every pOSSI'ble outcome of the random parameters.
It 1's Show that solv1‘ng a certai’n geometric program one can obtal'n a fi'xed
set of optl'mal des1'gn and operatl‘ng vari’ables which 1's pemanently fea51'ble.

TUESDAY EVENING

 

ON .WIW MTCHING, MINIW COVERING, MD DU£ITY

M. L. Ball'nski

This paper establishes a dual relationship between a max1‘mum matchi‘ng
by wel'ghts on edges and a ml'nl'mm weighted covering by nodes on a graph G.
As such, it establishes a type of duality between a pal’r of linear 1‘nteger
progrming problms. m 1'nterest1'ng feature of this duality 1's that there
ex1’st optm’al 1'nteger solutions which sat1'sfy "one half" of the complementary
orthogonal condl'tl'ons whl'ch are necessary and suffi‘cl’ent for solutions to be
optm‘al 1'n the correspondi'ng ll'near programs. The "one sidedness" of thi's
statement tends to confim the coverl'ng problem as more fundamental than
the matchl'ng problem.



Necessary and Suffi‘c1'ent condl’tl'ons for a matchi’ng to be maxi'mm
and a coveri’ng to be m1’n1‘mm are gl'ven, respectl'vely, 1'n tems of paths
and connected bl'partl'te subgraphs of G.

WEDNESDAY AFTEMOON
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WIMIZING STATIONMY UTILITY IN A CONSTMT TECWOLOGY

R. Beals and T. C. Koopmans

 

Thl’s paper proves exi‘stence and studies properti’es of an 1'nf1'n1‘te

t
qua51'-concave ut1’11 ty function U satisfying a recur51've relation

sequence (x1, x2,...) of scalar consumpti'ons x whi‘ch max1’m1’zes a

U(x1, x2, x3,...) —- V(x1, U(x2, x3,...)),

subg’ect to the constral‘nts
__ _ '=1 '2...xt zt_l + f(zt_l) zt _> 0, t , , ,

where zt (__> 0) 1'5 a capi‘tal stock, 20 (> 0) is gl'ven, and f(zt) 1's

the output produced 1'n peri'od t, w1‘th f stri'ctly concave and 1'ncrea51'ng,
f(0) —- O. A complete descri’pti'on of the asmptoti'c behav1’or of optm'al
capl'tal and consmptl’on sequences 1's obtal’ned, 1'ncluding 1'dent1'ficat1'on
of the stable and unstable constant optl'mal Sequences.
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ON NEWTON'S METHOD IN NOMINW PROGWING

A. Ben-Israel

Newton's method for solv1'ng nonll'near equati’ons, was extended in [l]
_' 1“ and [2] to rectangular systems and sl'ngular Jacobl'ans by u31’ng generalized

‘ / 1'nverses. Exten31'ons to operator equatl’ons and appli'catl'ons to least
I ‘ squares problems were gi'ven 1'n [3]. Thl's versl'on of Newton's method was

appli’ed in [4] to the soluti‘on of nonli'near least squares problems over
convex sets, in parti'cular to nonll’near inequali’ti'es, and 1's appll'ed here
to problems of mathwati'cal programing 1'n parti'cular to constrained least
squares problems.

References
[l] A. Ben-Israel.' "A Modi'fi'ed Newton-Raphson Method for the Soluti'on of

Systems of Equat1‘ons," Israel J. Math. 3 (1965), 94-98.
[2] A. Ben-Israel.' "A Nemon—Raphson Method for the Solutl‘on of Systems

of Equati’ons," #J.Mth. Anal. Al. 15 (1966), 243-252.
[3] A. Ben-Israel.' "0n the Newton-Mphson Method," September 1966,

Systems Research Memorandum No. 162, Northwestern Uni'versity,
Evanston, Ill.

[4] A. Ben-Israel'. "On Iterati've Methods for Solv1'ng Nonlinear Least
Squares Problems Over Convex Sets," February 1967, Systems Research
Memorandum No. 167, Northwestern Unl'ver51'ty, Evanston, Ill.
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OPTW ROL‘TING IN CLI'WECI‘INuC NET\flth’t\‘ ()VF.R FINITE TIME IMERVALS

v. E. Belles"

A telephtwne connectinp~r network ist‘ gixven, and witl1 full infrarmation
at all times about its state.. routing policies‘ are s‘owht which “minimize
the number of attempted calls denied ‘stervice in St‘flle finitc‘ interval. In
thi’s paper the search is pursued as‘ a mathematical problem in the context
of a standard traffic model in tems twf t)ptimatl c‘ontrol tlmcory_ and dynamic
programing. Certain combinatorial prwtpertie.s of tlle network, =tarlier
found to be the ke\_' to minimizin‘e the. losts, also turn ‘kllt to bc) relevant
here.’ thev_ lead to policies. whicll differ frcwm Liptimal rsolicies only in
accepti'u all unblock'ed call attmpts, and provide a "practi‘cal" ‘s.olution of
the problem posed. In man\.' cases the policies fwtund vindicate Ileuristic
poli‘c1'es earlier conjectured to be optimal.
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RENWu PROCESSES MD SOME STOCMSTIC PROuCWING PROBLEM IN ECONOMICS

B. Bereanu

The followl'ng stochastic progrming problm is considered

(1)Min E(av + min dv.)
v v

subJ'ect to
.v
2 C(Ei)xi.>T :i'—l

(2)

maini =< b(ai)+v .
xi __> O ,

(3)

3', positive integer ,

(4)Ve‘V.

In (1), (2), (3), a 1‘5 an 1 x p matr1‘\.', d 1's a scalar and C(c’*i), A(cr"i),
b(£1) are respecti‘vel_v matri‘x functions of dimensions 1 x n, m .r n, and
m x l, li'near in the components of the variate Si, and \.'i is n .V 1,‘
\’ 1‘s‘a gi'ven convex set 1'n the p051't1've ortant of Rp such that for v:‘\7,
the set of soluti’ons of (3) 1'5 not empty for an_v p0551‘ble realization of
51. T is a gi’ven nmber .or a random variable with given distributi‘on. It
1's further assmed that 51 are 1'ndependent, i‘denticallv_ distributed random
vectors, hav1‘ng known probability density function, independent of v.
E de51'gnates expectation.

This problem appeared in relation with some economi'c processes which
may be vi'ewed as the repetition of an 'operation' 0 until the cmulated
'return' of tilis operation reaches a target .T. The vector of the levels
of act1'v1't1'es of the 1'-th perfomance of 0, x1, must sati‘sfv_ restrictions
(3) where the components of 51 are characteristics of certain res.orlrce.s
and v represent additional production capacities which must be acquired
v1'a 1’nvestments, Lri’or to the begi‘nni‘ng or“ tl1e eCLwnomic process. Wen v
must be dec1'ded upon, 51 are know onl\_' thrc‘ugh their distriblLtion, blur

_4_



thei'r realizations w1'll be know, when x1 must be chosen, each tme 0
takes place. The return of the 'operation' 1's C(El)Xl and (l) is the
cost of the process to be minmized. Such 1's the situation ir. certain
seasonal 1'ndustr1'es where a rati’onal plan of 1'nvestments depends on the cost
of the 1'nvestments and the resulting reduction of the length of the campal'gn.

The program1'ng problem (1),.(2), (3), (4) is investigated under
various assumpti'ons co.ncerning A(€1), b(£i), c.(£1), V and the probability
density functi’on of £1. m essential role in the treatment of thi's problem
1‘s played by a certain renewal process {¢1 } (i-—l,2,..., veV) and results
of [11, [2], [3], [41. V

References

l. B. Bereanu, "Re’gions de d e‘c151'on et répartiti'on de l'optmum dans la
progrmation li'ne’aire", C.r.Acad.Sc1'., 259 (1964), 1383-86.

, "0n stochasti‘c linear program1’ng. D1'str1'but1'on problemS'.
stochasti'c technology matrl'x"(to appear 1'n Z. Wahrscheinll’chkel’tstheorl'es
und Vem. Gebl’ete).

3. D. R. Cox, "Renewal Theory ', Methuen, London, 1962

4. W. L. Smi'th, "Renewal Theory and Its Rami‘fl'cations", J. Roy. Stati'st.

Soc. Ser. B, 20 (1958), 2, 243-84.
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SECOND OMER CHWCTERIZATION 0F GENEMLIZED

POLYNOMI& PROGWS

G. E. Blau and D. J. Wi'lde

me recent extension of Geometrl‘c Programml'ng by Passy and Wilde
to Generall‘zed Polynomi’al Programl'ng peml‘ts the soluti’on of problems w1'th
both positi’ve and negative coeff1’c1’ents, e.g. profi‘t max1’m1’zat1’on or cost
mi'ni'mi'zatl'on. However, 1'n thl's more general fomulat1’on, several 1'mportant
features of the pri’mal-dual relati'onshi'ps of Geometri'c Programmi'ng are
lost. Pr1'nc1'pal among these 1's the 1'nab1'11'ty to 1'dent1'fy the nature of the
assoc1’ated dual problem and hence use thi's dual for qui’ck esti'mates and
successive approxl’mation algori’thms.

It 1's the purpose of thi's paper to 1'nvest1’gate the nature of the dual
program correspondi’ng to a well fomulated generali'zed polynoml'al pri’mal
progrm. mese dual programs are characterl’zed by p051‘tivity for all dual
varl'ables and a stati’onary point at the optimm. By exminl'ng the second
order behavior of the dual functl'on 1‘n the fea81'ble nei'ghborhood of the
stationary p01'nt, an equl'valent constrained saddlep01'nt program 1's
developed for dual programs satl'sfying certain quali’ficatl'ons on both the
constrai’nts and variables. Finally, a modl'fl'ed Arrow—Hurwl’cz algori‘thm
1's suggested for findl'ng these constrained saddlepoints.

WEDNESDAY AFTEWOON

 



A "BWCH AND BOWD" NPE mGORITW FOR THE FIED CMRGE

LINMR PROGWING PROBLm

P. Bod

Several practi’cal problems i'n the field of the operation research
lead to fi'xed—charge linear progrming models. The standard form of such
models 1's the follow1'ng.' Problem.‘ f1'nd non—negative vectors x _>o

sati'sfying A_x -— b such that

f(x_) -— _c*x_ + 1.Zél-Ki + min'. (Ki >__ 0)

where 1 if x1 > o
0: ll

1 o 1'f xi —- o

A separable concave functi'on must be minimized on a polyhedral convex set,
gi'ven by' li‘near constraints. It follows from the basic structure of the
problem that the set of the optimm solutions (1'f not empty) contains
certal'nly one extreme pel'nt of the set.‘ L —- {_x| M_ —- _b,- _x _>_ _o}. In
addi‘ti'on all extreme p01'nts yield-—no degeneracy assumed--a local optm‘um
solution. To f1'nd one global optimum soluti‘on of the problem, 1't 1's suf-
fi'cient to examine the set of the extreme points of the set L,’ denoted by
C. Therefore the procedures which generate all elements of the set C
yi‘eld the global opti'mm for the fi‘xed-charge li‘near programl'ng problem,-
however, such procedures require generally exceedingly large computation
effort.

We are proposing an algori'thm for solving the f1'xed-charge problem.
The algorl'thm adapts the S.E.P. (Se’paration et Evaluati'on Progressives)
procedure, whi'ch is a "Branch and Bound" type faml'ly of procedures,' g1'ven
by B. Roy, P. Berti'er and P. T. Nghi'em.

REFERWCES.'

(l) w. M. Hi'rsch, G. B. Dantzig, "The Fixed Charge Problem," The MD
Corp., Paper P-648, 1954.

(2) P. Berti'er, B. Roy, "Une procédure de résoluti‘on pour une classe
de problemes pouvant av01’r un caractere combi'nat01're," Bulletin
du Centre International de Calcul, Rome, 1965.
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ORWOMNALIN IN MTROIDS m MTHWTICAL PROGWING

C. P. Bruter

In this paper, linear programing will be placed in its true context,
the theory of matroids.

Some equivalent axiomatizations of matroids are given as well as
examples. Linear programing is recalled.

In order to mphasize the fact that, for matroids and in particular
for linear programing, orthogonality is a better term than duality, some
results on an algebraic representation of matroids are given.



 

Next, the notion of an orthogonal of a matroid is introduced. That
1's, i‘n some cases, algebrai‘cally justified. Remark that any matroid (any
li‘near program) has an orthogonal. The theorem of orthogonality follows
directly from the defi‘nitions. Finally, a generali'zation of the notion of
convex1‘ty w1'll appear.
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A TEOMTICM ANflYSIS OF INPWS TWTION MER

LIMAR PROGWING ASSWMIONS

G. Casale

In our paper we state some economi’c effects of inputs taxati'on with
reference to a fi'm operati‘ng in typical li’near programing sitwtion.

Our paper can be di'vided 1‘nto two parts. In the first one, we
state the tax 1'nfluence on the volume of the output obtai'nable from the
original resources endoment. In the second one, we detemi'ne the tax
i'nfluence on the 1'mputed value of each li'mited factor 1'n order to i'nfer
some conclusions about the possr’ble tax i'nfluence on the future poli‘cy
of the fi'rm.

At fi'rst, we i’ntroduce a standard one-product—fi'm 11'near programmi'ng
mdel, and ri’gorously state the kind of tax we shall refer to. Then, briefly
we recall the general opti'mm conditions of our linear programing model
both in pre- and post—tax situation.

Aftemards we devote our attention to the tax 1'nfluence on the firm's
present output. At fi'rst, we consider a 2-processes 3-resources case,
usr'ng a rather new di'agramatic tool. Lat—er on, we en—large our analySL's
to the general n-processes m-resources case, using simplex cri'terion logi'c.
In thi's analy51'5_ we state ri‘g_orously the changes 1'n output due to the tax,‘
1'n particular we state that it may decrease as well as 1'ncrease. Moreover
we are able to show that the generally accepted theoretical statemnt that
a firm operati‘ng 1'n pure competiti'on mrket can never enhance i'ts output on
account of any tax, may not be generally true i’f internal conditions of the
fi'rm give rise to a linear programi'ng Si’tuation.

In the second part the assumpti'on is taken that the future policy of
the firm may be influenced by the present values imputed by the fi‘rm to its
scarce resources. For this reason we must preli‘minarily study the tax
i‘nfluence on those values. In this connecti‘on, we make use of the dual
properti‘es of linear programing problems. In particular, considerr’ng
the structure of the inequalities as they appear in dml fom of our
previously stated direct problem, we can compare the pre—taxati’on solutions
frontier with the post-taxation one, and detemine—-i'n rather new diagramatic
way—-the incluence of taxati'on on scarce resources imputed values.

At this stage of our analysis we demonstrate, among other things, that
the generally accepted theoretical statement that a tax on a single factor
affects in any case the mrginal productivity of all factors, may not be
generally ture when the fim operate in a linear programming milieu.
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Fi‘nally, we state how the tax alters the fi'm's convenience to remove
the causes which hinder the future expantion of each limited factor endoment.

We conclude our paper w1'th few observations about the theoretical
validity of our analysis.

THWSDAY AFTERNOON

W

0N CLASSES OF COWEX MD PREWPTIVE NUCLEI FOR N-PERSON GWS

A. Charnes and K. Kortanek

In earll'er papers we developed new connecti'ons between the duali'ty
theory of linear programmi'ng and soluti'on concepts for n-person games
such as the core, nucleolus, kernel of a gme, and set forth a whole new
class of convex and non—Archimedean soluti'on concepts temed nucle1’.
These nuclei' are in general independent of any topologi’cal con31'derat1'ons
and possess uni‘queness propertl'es as well as core membershi’p. In thi's
paper we present more general progrml‘ng fomulati'ons which 1'nvolve
p0531‘bly arbi’trary subsets of a fixed group of pemutati'ons of subsets of
coali’ti'ons in order to deteml‘ne a system of li'near constral'nts on the
fi'ni'te nmber of excess varl'ables.

By 1‘ntroduc1’ng non—Archi’medean elements to the base f1'eld (1'tself
requi'red to be ordered) we obtai’n preempti've orderl’ngs for coall'ti'on
strength where the strength of a coali‘ti'on may depend on partl'cular types
of collecti’ons of players. In a prev1‘ous paper we con51'dered only Si'ngle
pemutatl’ons or condi'tions on the collectl'on of excesses with respect to
payoff vectors. We here generali'ze th1's (over the extended f1'eld) to
1'nclude subsets of pemutati'ons and p0551'bly subcollecti‘ons of coali'tions
of players. Fi'nally we develop (over the real f1'eld) convex solutl'on
nuclei‘ along the li‘nes of sem1'—1’nf1'n1'te duali'ty theory for an arbl‘trary
umber of cond1't1’ons on the fi'nite set of excess vari‘ables w1’th respect to
payoff vectors. In th1's mann‘er we obtal'n Specl'fi‘c examples of strl'ctly
convex nuclei' whi’ch are not dl'fferentl'able.

WDMSDAY AFTEMOON

  

ON THE SOLMION 0F STRUCTURED LP PROBLmS USING GENEMLIZED INWRSE mTHODS

R. E. Cline and L. D. Pyle

A nmber of methods have been fomulated for solv1'ng LP problems
u31'ng the Moore—Penrose generalized inverse of the constrai‘nt matri’x.
Although applicable to general LP problems 1't seems reasonable that such
techni’ques may find their greatest utility 1'n the solution of problems
hav1'ng special structures. A class of structured problems, which includes
the transportation problem as a spec1‘al case, is exmined and it is show
that the Moore-Penrose inverse can be formed parmetrically,‘ a complete
orthonormal set of eigenvectors 1's obtained as a set of Kronecker products.
These results are then used to Sl'mplify the calculations requi'red by certain
generalized inverse methods for solv1’ng LP problems and illustrati'ons are
gi'ven using the transportation problem as a model.
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A DECOWOSITION MPROACH FOR SOLVING LIWD PROGW

R. H. Cobb and J. Cord

The purpose of this paper 1's to present a simple decomposition approach
for solv1‘ng a li'nked progrm without destroying any original structure.

A linked program is to minmize

n—l
c. x + Z d Yi__l 1 i i__l 1ME 1

subJ'ect to

Al X1 + Y1

—Yi_1 + Ai xi + Yi i

u U
H U (1 -— 2, ..., n—l)

_Yn-l + An xn

H U

(i l, ..., n)xi’ Y1 _> O

MOWAY MTEMOON
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A METHOD FOR COWEX PROGWING

M. Courtillot

Let H be a Hl'lbert space and K a convex set 1'n H. It 1's

p0551'ble to fom a fi'nite se uence x ,..., x such that.“q l n
a) xk+1 1's deduced from xk by

—— orthogonal projectl’on of x on a plane separating xkyk R
from K such that d(xk,K) _< e

b) if K 1's nonempty, xn belong to the neighborhood KB of

K (d (xn,K) _< e)
c) if K 1's empty, for any L > 0, there exist n such that‘.

2
an 2]! ||2>L1( ‘Dk) xk'yk '

It 1's possible to use thi's method to maximise a nmerical concave function

on the convex set

K '— {xlg(x,t)_>0 for all teV} where

V -— any vector space, and g(x,t) 1's a concave mapping of
H x V in Rm, some variants are given and applications to
some problems of "best approximati’on".
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MINIMIMTION OF A SEPAWLE MCTION SUBJECT TO LINER CONSTMINTS

V. De Mgelis

The paper discusses a method of using separable programming to
minimize non-linear functions of variables subject to linear inequality
constraints. It is assmed that the objective function can be represented
as the SW of non-linear functions of single arguments. Following the
nomal procedure in separable progrmming, we introduce "specia1 vari'ables"
representing the weights attached to points on the piece—wise linear approx-
imations to these functions. The special feature of the method is that
when a special variable drops from the basis, the reduced cost of the other
neighbor of the one that remains from this group is computed, and if it is
negative this variable is introduced. The reason for this strategy is that
the variable may well have a negative reduced cost, and its coeffi'cients
in the current tableau (assming we are using the product fom of inverse
matrix method) can be computed without reference to the inverse of the
basis, i.e. without either a Backward transfomation or a Fomard transfor-
mation. So these special iterations can be perfomed very quickly.

TWSDAY EWNING

LINm PROGWS WITH SEWM PWETERS IN THE OBJECTIW MCTION

W. Di'nkelbach

Con51'der1'ng any linear progrm it 1‘s assmed that the coeffic1’ents
of the obJ'ective function depends linearly on several parameters. It will
be proved that the optmal soluti'on function, that 1's, the maxm'm of the
li'near progrm as a function of the parmeters, is convex. Its minmm
can be detemined by a seri'es of li'near subprograms. This method will be
i'llustrated by a nweri‘cal example.

THWSDAY MTERNOON

 

COMIWOUS MTHWTICM PROGWING MER LINEM IMEGm CONSMINTS

W. P. Drews and R. G. Segers

A dozen years ago the development of the Pontri‘agi'n Mxmm
Pri'nciple as a necessary condition for optmality of some control problms
began a new era for optmization theory. The desirability of such I
principle has motivated far-reaching generalizations which today are based
on a confluence of the fields of programing, control, and functional
analysis. Employing prmarily the framework of mathmatical programing,
the present paper treats the mportant, but infrequently discussed, topic
of optimization subject to linear integral constraints of Volterra type.
The principal result is a duality-type theorem yielding a representation
for the objective function, a representation valid for any traJ'ectory
resulting from an admissible control including those trajectories which
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are not extremals of the control problem being considered. Initially,
the approach is to establi'sh, for an arbitrary (but fixed) suffi’ciently
smooth control, a representation of the objective function corresponding
to the resulting traJ'ectory. This then pemits asserting cri'teria of
opti’mality 1'n tems of the dual or adjoint varl'ables introduced in the
functional representation.

WDMSDAY AFTEMOON
W

RECENT DEVELOPMNTS IN GEOMETRIC PROGWING

R. J. Duffin and E. L. Peterson

The duali‘ty theory of geometri’c program1'ng, as fomulated, developed,
and applied by Duffi’n, Peterson and Zener [l], was based on abstract prOp—
erties shared by certai’n classical inequalities, such as Cauchy's ari’thmetl’c-
geometri‘c mean inequali'ty and Holder's 1'nequa11'ty. By not requi‘ri’ng all of
these properti'es, 1't is p0381'ble to generalize the duali'ty theory to arbitrary
convex programs. This generalized duality theory has smmetry not possessed
by the orl'gi'nal theory, and 1's closely related to (but 1's not identical to)
the duali’ty theory of Bern, Huard, and Wolfe.

[l] Duffl'n, R. J., E. L. Peterson, and C. Zener, Geometrl'c PMroram1'n
John W1’ley and Sons, Inc., 1967.

WDWSDAY MTEMOON

MTROIDS m EXTRM COMBINATORICS

J . Edmonds

L1'near-algebra rank 1's an extremely n1'ce extremm. We apply linear
programl‘ng to 1't and certal'n generall‘zations.

TumsnAY AFTERNOON-

 

THE DEGREE—CONSTMINED SUBGMPH PROBLm

J. Edmonds, E. L. Johnson, and S.’ C. Lockhart

Previous work on max1’mum matchi'ng 1'n a graph 1's extended to a more
general degree constrained problem. The problem considered is to f1'nd
non-negative integers xk which miniml'ze the weighted-sum Zn__lckxk
subJ’ect to

n
k-.1aikxk 1’

where A -' (aik) is an m x n matrix with all entries +1, —1, +2, -2,

II 5‘ H- II r—I .. .. a .

or 0 and at most two non-zero entrl’es in a column. Furthemore, if an
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entry aik 1"s +2 or -2, then the k_th colmn has no other non-zero

entry. An algori'thm 1's gl'ven for thl's 1'nteger program wh1'ch, by contrast
w1‘th other methods, has an upper bound, whi'ch 1's algebrai'c 1'n m and n,
on the amount of work and storage required. The algorithm proves that
a certain class of 1'nequa11'ties can be ad3'01'ned to the li'near program to gi've
a convex polyhedron whose vertices are 1'nteger vectors. Re problem and
the algori'thm are described 1'n terms of a corresponding b1‘—d1'rected graph.
The inequall'ti'es are equi'valent to some duali’ty results whl'ch are inter-
preted 1'n tems of the graph. A computer code has been wri'tten to 1'mplement
the algori’thm.

WDMSDAY MTEMOON

 

ASMTMIC COWS Am DU&IN 0F LIWAR MMTIONS

K. Fan

For a locally convex topological vector space E, its dual space
will be denoted by E', the weak topology of E' for the dual system
< E, E' > will be denoted by “(E', E). The polar of a set XCE is

X° —- {f e E'.' f(x) _< l for all x e X}. For a nfio-empty closed convex

set XCE, the asmptotic cone CX of x 1'5 x < p‘x(x - x), where x

1's an arbitrary por’nt in X. The present paper uses a recent result of
J. Di'eudonne (Mth. Annalen, 163 (1966), 1-3) to study the duality of
li'near relati‘ons. Two of the theorems are stated here.

Theorem _A. Let E, F be two locally convex topological vector spaces.
Let A.' ME be a continuous linear transfomation, and tA. F.4E, the

transpose of A. Let P, Q be closed, locally compact, convex sets 1'n
E, F respectively such that at least one of P, Q 1's a cone, and

(1) 0 6 MD + Q.

(2) -x 6 CP and M e CQ imply x -— 0.

Then for any yo 6 F, there exr'sts an x e E sati‘sfying x e P and

y0 - M 6 Q, i'f g 6 Q0 and tAg e P0 imply g(yo) _< 1.

Theorem _B. Let E, F be two locally convex topologi‘cal vector
spaces. Let A.‘ EaF be a continuous linear transformation, and

tA.‘ F'fiE' the transpose of A. Let P, Q be closed, locally compact,
convex cones in E, F respectively such that Po, Q0 are locally
compact in the weak topologies “(E', E) and 0'(F', F) respectively.
Let yo 5 F and fo 6 E' satisfy the following conditi'on'.

(3) x e P, -Ax e Q, g 6 0°, tAg (-2 9° and fo(x) _< g(yo)
imply x -— 0, g -— 0.

Suppose that there exists an x e E sati’sfying
(4) X e P, yo - M 6 Q,“



and that there ex1‘sts g e F' satisfying
t

(5) g e Q°, Ag - fo 6 9°.

Then the minimum of fo(x) when x varies under condition (4), and the

mXi‘mm of g(yo) when g varies under condi’ti’on (5), both ex1'st and

are equal.

Even i'n the fi'ni'te dimenSL‘onal case, simple examples show that
hypothesis (1), (2) 1'n Theorem A and (3) in Theorem B are essenti‘al.

FRIDAY MTERNOON

NONCONVEX AND CONVEX PROGRWING BY GENEMLIZED

SEQUENTIAL WCONSTMINED METHODS

A. V. Fi'acco and G. P. McComi’ck

Subject to very m1'ld condi'ti'ons, the existence of a sequence of
local unconstrai’ned mi‘ni'w..a of one-parameter aux1'11'ary or "penalty functions"
1's assured, such that all li'mi't p01'nts are local soluti‘ons of a general
nonconvex progrmi'ng problem. The penalty functi'ons defined are more
general and the cond1’t1'ons weaker than have hi'therto been con31'dered.
The functi’ons defi‘ne two di'sti'nct classes of sequencti‘al methods, those
generati'ng a fea51'ble-1'nter1'or nri'ni'mi'ZI'ng sequence, and those generati'ng
a fea51'ble-exter1'or mi'ni'mi'zi'ng sequence. Convergence theorems are stated
and the central arguments of the proofs are sumari’zed. It follows that
the correspondi'ng obJ'ecti’ve functi'on values converge monotoni’cally to we
espec1'f1'ed local mi'ni'mum value. A theoreti'cal basis 1's gi'ven for a pro-
cedure for accelerati’ng convergence by extrapolati'on. For the convex
problem, the penalty functi‘ons can be selected to be convex, local results
become global, and the m1'n1‘m1'21'ng sequence generates a sequence of dual
fea51'ble p01'nts, li'mi't p01nts of whi'ch solve the dual problem.

TWSDAY MTEMOON

MTHWTICAL PROGWING BY PWSICH MALOGIES

0. I. Franksen

The purpose of the paper 1's to set up and discuss some analogi‘es
between, on the one hand, electri‘cal network theory and classical mechani‘cs
and, on the other, the mathmatical programing models of economi‘cs.

More specifically, an equivalent electrical network 1‘s fomulated of
the classical Walrasian system, the constraints of which consist of a graph
combined with a set of ideal transfomers representing the technical coef—
f1'c1'ents. The resulting constraint equations are found by an application of
a princ1'ple of constraint—parti'ti'oning whi'ch 1'mp11'citly has been given by
Gabriel Kron. The elements, interconnected by these constrai'nts, of the
Walrasian system are the factor supply and demand functions. The electrical
equivalents of these elements are represented by combi’nations of ideal voltage‘
and current sourCes and, in the non—linear case, also by resistors.
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One of the most surprising characteristics of the equivalent electrical
network is the fact that, in general, it does not satisfy Ohm's law.
Instead, therefore, it is necessary to detemine the state of equilibrim
by applying the principle of virtual work, in tems of Fourier's inequality,
of classical mechanics to a suitably chosen state-function. The possible
set of state-functions represents 1'nput or output of electric power or
rate of change of energy to the network. In the non-linear case, by the
Lagrangian multiplier method, these state-functions are modified by adding
the electric power of the constraints.

Finally, in the discussion of the electrical network in tems of the
ideas of mathematical progrming, it 1's show how the Kuhn-Tucker conditions
are related to Kirchhoff's laws, and how the simplex method can be identi'fied
with the principle of virtual work.

WDMSDAY MEMOON

 

THE W—FLOW MIN—CUT EQUALIN m WE LENGm—WIDm

INEQUALIN NR Mfi MTRICES

D. R. Fulkerson

me max—flow mi'n-cut equality and the length—width inequall'ty for
two—temi'nal networks are extended to arbi'trary real matri'ces. Key use is
made of the frme of a Subspace of Eucli'dem n—space, a noti'on closely
related to that of a real matrl'c matr01'd, i’n the generali'zation.

WDWSDAY MTEMOON

 

MLICIT EWMTION USING AN IMBEDED LINMR PROGW

A. M. Geoffrion

Integer progrming by implicit enmeration has been the subject
of several recent investigations. Computational efficiency seems to
depend primari'ly on the ability of various tests, applied to the con-
straints in connection with "partial solutions," to exclude from further
consideration a sufficiently large proportion of the possible solutions.
Most of the simpler or more appealing of these tests can be applied at
reasonable computati‘onal cost essentially to only one constraint at a time.
Two main, approaches have been suggested for mitigating this limitation.
One is to periodically apply linear program1'ng to continuous approximations
of the subproblems generated by the partial solutions. The other approach,
promulgated by Fred Glover, 1's to periodically 1‘ntroduce composite redundant
constraints that itend to be useful when tests are applied to thm indi—
vidually. In this paper we motivate a measure of the "strength" of a com—
posite constrai'nt that is slightly different from the one used by Glover,
and show how composite constraints that are as strong as possible in this
sense can be computed by linear progrmming. It further develops that the
dual of the required linear program coincides with the appropriate continuous
approximation to the subproblems generated by the successive partial solutions.
This leads to a complete smthesis of the two approaches mentioned above
by means of an mbedded linear program. Computational experience is pre-
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sented whi'ch confi'ms that thl's synthe51's 1's 1’ndeed a useful one for t_he
classes of problems tr1'ed. For numerous problems w1'th up to 80 varl'ables
taken from the li‘terature, the 1‘mbedded ll'near program typi'cally reduced
the number of requl'red iterati‘ons by one or two orders of magnl'tude, and
executl'on tl'mes by aW.

TWSDAY EVENING

 

DU& CONVEX Am FMCTION&—COWEX PROGWING PROBLmS

E. G. Golshtei'n

Thl‘s report gi‘ves a general method of constructi'ng a dual problem
for a convex program1’ng problem 1'n a functi’onal space.

A generall‘zed theorem of duali'ty 1's proved for an arbl'trary convex
programl'ng problem. Classes of problems are spec1‘f1’ed for whl'ch the
general theorem of duali'ty 1's equl'valent to the ordi‘nary theorem of duali'ty
concerni'ng the equali'ty of extremal values of the 1‘n1't1'al and dual problems.
Theorems of duali’ty are proved 1‘n a weak or strong fom (1'n the latter case
the ex1‘stence of an opti'mal solutl'on of the dual problem 1's guaranteed).
Relati'onshl'ps between a pal'r of dual problems and the problem of fl'ndi'ng
a generall'zed saddle p01'nt as well as between theorms of duall ty and
crl'terl'a of opti'mall'ty (1'n a strong or weak fom). The general method of
constructi’ng a dual problem 1's made concrete tor some parti’cular classes
of convex program1‘ng problems,‘ the crl'terl'a of opt1'ma11'ty are Sl’ml'larly
made concrete. Certai’n propertl es of generall’zed support functi'onals,
establl’shed 1'n the report, are used.

A functi'onal analogue of fractl'onal-convex programl'ng problem 1's
defi’ned 1'n the report. A general method of constructi’ng a dual problem
for a fractl‘onal-convex programi'ng problem 1's gl'ven. The results, proved
for the convex case, are also proved for fracti‘onal-convex programml'ng
problems. The theory of duall’ty developed 1‘s more general as compared w1'th
the prev1'ous approaches and leads to a number of new reSults even 1'n the
f1'n1'te d1‘men51'on case.

THWSDAY AFTERNOON

R. L. Graves

 

This paper presents a Si'mplex alg ori’thm for f1'nd1'ng a nonnegati've
soluti'on (or demonstrati’ng the 1'ncon51'stency) of y —- a + Ax, xy —- o
where A is p051't1've seml'defl'nl'te. Li'near and quadrati‘c program1‘ng
problems are of thi's fom. The functi'on exhi’bl‘ted in the proof of
finiteness does not appear 1'n other algori'thms. If a pri'mal fe331'ble
solution is avai’lable 1'n the li'near program1‘ng case, the actual ch01'ce
of pl'vot rows 1's exactly that made 1'n the usual lex1‘cograph1’c Si‘mplex
method.

FRIDAY AFTERNOON
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ON ME KWN—TUCKER THEORY

M. Guignard

Optimality Conditions stated below generalize the Kuhn—Tucker
Conditions, while the constraint qualification is a substitute both for the
Kuhn—Tucker, the Arrow, Hurwicz and Uzawa, and the Abadie constraint
qualifications.

Let M be any subset imam, then M. and {M} will denote
respectively the closure of M and the smallest convex Subset containing
M.

Let (va be the dual space ofqm.

Let A be a nonempty set in q“, x_ e A_, y 8?“. y is a vector

tangent to A at x if:

there exists a sequence (xk) contained in A and converging to x,

and there exists a sequence (1k) of nonnegative numbers,

such that the sequence (1Lk(xk - x_)) converges to y.

Let TA(_)x be the set of all vectors tangent to A at x—, TAG)

will be called the "cone tangent to A at x‘".

Let PA(x_) be the closure of the convex hull of TA(—)x, i.e.,

PAC-)x = PAmx will be called the "pseudo-cone tangent to A

at x'".

If Q 1's a cone in an, let Q- be the cone in GUI)" of all
linear functionals u defined on an, and such that u'y __< O, for all
y 6 Q.

Let A be a subset in an, let w(x) be a real valued function in
x San. We assume that w(x) is differentiable at x e A .

THEOREM 1: If x maximizes 11:00 Subject to x e A, then

max 2 (PA<x->)-.dx
Conversely, if this condition (I) is satisfied, if u; is pseudo-

(I)

concave over A, and if for all x e A, x - x e PA(x_), then x maximizes w(x)

subject to x e A.

Let a], (x), j = l,2,...,m, be In real valued functions in x 69?,

and let a be (aj), j = l,2,...,m. Let E be the subset of all indices

effective at x_, and E— the subset of all indices ineffective at x“.
daEGZ')

y>0}K={y:
dx

Let C be a nonempty subset in Q“, and A = {x e C, a(x) _> O}.
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THEORm 2.‘ (the generall'zed Kuhn—Tucker Conditl'ons). If x—
max1'm1'zes ¢(x) subJ'ect to x e A, let G be a closed convex cone such
that

K n G —— PAmx

F + r 1's closed,

then there ex1’sts u a q(»m)* Such that

fldx + u . flda e G_,
dx dx

(11)u - amx '— 0 ,

u _> 0.

Conversely, 1'f these conditl’ons (II) are satl'sfl'ed, if A or
n{x a a(x) _>0} 1's convex 1'f for all x e A, x - x_ e G, and 1'f

e1'ther w 1's pseudo-concave over A or w 1's qua51'-concave and

dflx # 0 ,
dx

then x max1'm1'zes w(x) subJ'ect to x e A.

THWSDAY AFTERNOON

A WNCTIONAL MPROACH TO THE DESIGN Am DEVELOPMEM OF A

MTHWTICAL PROGWING SYSTm

D. W. Hallene

Hl'storl'cally, Mathematl’cal Program1’ng Systems have .been des1'gned
w1'th only one obJ'ectl've 1'n ml'nd. Recent de51'gn experl‘ence has resulted
1'n the development of a mult1‘-ob3’ect1‘ve mathmatical program1’ngr system.
Thl's paper descr1‘bes the results of a research and development prog’ect
whl'ch produced an MS to accompll’sh the follow1'ng ob;'ect1’ves.' (1) Pro—
ductl'on Tool, (2) Experl’mental Algorl’thml‘c Development, (3) Opt1'm1'zat1‘on
Portl'on of a Large Sl'mulatl'on System, and (4) Implementatl'on or multl'ple
computers. In addl’t1‘on, the paper d1'scusses the b351'c confll'ct between
functl’onal modularl'ty for ease of mod1‘f1‘cation, ma1'ntenance, and exten51‘on,
and the h1'stor1'ca1 obJ'ectl've of creatl'ng the "fastest MS to date".

Two v1'ewp01'nts of the funct1’onal approach taken 1‘n the development
of MS for WIVAC 1108, IBM 8/360, and RCA Spectra 70 computers are
d1'scussed. The fl'rst v1'ew01'nt 1's the 1'mpact of the various operat1‘ng
systems and hardware on data storage structure and functl'onal f1'le organ1'-
zatl'on. The second vl'ewpol'nt 1's the algporl'thml'c concepts whl'ch must be
considered when developl’ng Linear Progrm1’ng, Decomposition, and Generall'zed
Upper Bound as an integrated system.

mmAY EVENING
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A HWERCONE SMRCH 0PTMISATION MEMOD

L. Haller

Derivatives are not employed. The procedure uses relatively few
function values to mi'nimize a function of several variables with prescribed
"accuracy". Quadratic iterative optmization along a direction with step-
size adaptation. Convergence criteria. Direction averaging. Adaptive
hwercone of new admissible directions. Stopping rules. Computed examples
and comparisons. Noisy data minmization. Reduction of constrained problems
to unconstrained minmization,° difficulties and results attained. Discussion
of limitations on the type of problem.

TWSDAY EVENING

 

MaGEN II

C. A. Haverly

Mtrix and Report Generation has become a major part of modern mathe-
mati‘cal progrm1’ng systems. This paper di'scusses MaGen II, a high level
language developed specifi’cally for this purpose.

MaGen II 1's the result of many man years of development. It 1‘s
currently implemented and operati'onal on the IBM 360 serl'es of computers as
well as the Honewell 200 and IBM 1400 ser1'es. The detai’ls of the language,
the rationale beh1'nd the various features, and a report of user experi'ence
will be g1'ven.

The approach used in MGen is based on a recognition that mathematical
models consist of activities and constrai'nts on these actiVi'ties, and that
both the activ1‘t1'es and constraints can be grouped 1'nto classes. The
generati'on of the matrix is carried out by F0“ VECTOR statements under
control of a DICTIONMY which defines the classes and provides mnemoni'c
names for use 1'n the model, and a Data secti'on which prov1’des the numeri‘cal
1'nfomation.

The report d631'red from a mathematical program1’ng soluti‘on can be
structured in tems of classes of lines. These are generated be Fom LINE
statements under control of the DICTIONARY and Data.

Powerful data and fi‘le manipulation capabi'lities are included to handle
the large—complex modell’ng situations. MaGen II has been applied in a
w1'de variety of models including multi—product, multi-plant, multi—ti’me
period models.

MONDAY EWNING
M

A PMTICWAR CLASS OF FINITE-TmE “HOV-RENEW& PROGWING SITUATIONS

J. R. Hmsley

A class of situations are described in which dec1'sions have to be
made sequentially over a finite time period. Times betweelx events (trans—
1'tion times) are distributed according to probability di'stri'butions whi'ch
depend only upon the states between which the transi’tl'ons .1re. made. The
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characterl'stl'c property of the processes studl'ed 1'n th1's paper 1's that
of contl'nuous depletl'on (or accretl'on) throughout the tm'e perl’od, 1‘.e.
all tran51't1'on probabl'll'ty matrl’ces are tr1'angular as found 1’n certal’n
problems 1‘n Stock Control and Dam Theory. Th1's property enables the optl'mal
poll'cy to be deteml’ned by the use of partl‘cular embedded Markov Chal‘ns
W1‘thout the nece551'ty of solvl'ng 1'ntegral equatl'ons at each stage of the
poll'cy determl’natl‘on process as is found 1'n the usual Markov Renewal
Program1'ng Problem over a f1'n1‘te t1'me perl'od.

TWSDAY EWNINGmp.

WEN IS A TE“ "MTHMTICALLY" ELIMINATED.9

A. J. Hoffman and T. J. R1‘vlin

 

Our purpose 1's to g1've a d1'fferent proof of a result of B. L. Schwartz
("P0551'ble Wl'nners 1'n Partl'ally Completed Tournaments", SIM Review, vol. 8,
1966, pp. 302-308.) and generall'ze 1't somewhat.

 

The sett1‘ng for our problem 1's a league of n teams. In the course
of a season each tem plays m games w1'th every other team. Each game
results 1'n one of the contestl'ng teams w1'nn1'ng and the other losing. At
the end of the season the teams are arranged, 1'n 1‘nverse order, accordl’ng
to the nmber of games they have won, 1'n places l,...,n, and the team
(or tems) whl’ch has won the most games w1'ns (or t1'es for) the pennant.

We w1'sh to deteml‘ne the hl'ghest place to whl'ch a team (or set of teams)
may aspl're at a gl'ven tl‘me 1'n the course of the season, know1'ng how many
gmes each tem has won up to that t1'me, and how many games remal’n to be
Play.9d 1'n the season between each pal'r of teams.

At present, 1'n the case of e1’ther of the baseball maJ'or leagues 1'n
the Un1’ted States, n —— 10 and m -— 18. (Games whl'ch end'1’n a tl'e are

‘ generally replayed at later dates and a rule makl’ng th1‘s mandatory w1'll
probably be adopted soon. We shall assme that thl's rule obtal'ns).
There are two Sl‘mple cr1'ter1'a 1'n popular use to deteml‘ne when a team 1‘s
"mathemat1'cally e1m’1'nated" 1'n the pennant race.‘ 1') If our tem were to
w1’n all of 1'ts remal'nl'ng gmes and 1'ts total of games won for the season
would then be less than the number of games presently won by another tem
(usually the tem currently leadl'ng the league), then our team 1's ell’ml’nated.
1’1') If our team has lost 82 games (one more than half the total number of
games each team plays 1'n a season) 1't 1's e11‘m1’nated s1'nce a moment's
reflection reveals that some team 1'n the league must end the season w1'th

Vat most 81 gwes lost. We shall obtal'n Schwartz's necessary and suffl'cl'ent
condl'tll'ons that a team be ell'ml'nated from pennant contentl’on and thereby
show that the tradl’tl'onal J'ournall'stl'c crl'terl'a may sometl'mes be 1‘mproved
upon. Addl‘tl'onally, we fl'nd necessary and suffl‘c1'ent cond1't1'ons for a
tem to be elm‘l’nated from f1'n1'sh1'ng 1'n tth place, t > 1, and for a
g1'ven set of k teams to aspl're to f1'll the first k p051't1'ons at the
end of the season.

 

MWSDAY AFTERNOON
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NOMINM PROGWING m SECOND-VMIATION SCHMES IN CONSTMINED

0PTM CONTROL PROBLMS

G. Horne and G. S. Tracz

Fomal interest in the application of mathmatical programing
techniques to optimal control problms culminated in the organization of
the First Intemational Conference on Programing and Control, April 15—16,
1965. For exmple, in one of the papers, Dantzig studied the application
of the decomposition principle in the fom of the generalized linear program
to a class of linear control processes.

A large class of nonlinear optimal control problems can be fomulated
in the following manner.-

"Minimize the scalar objective function J,

(1)t1J —— I L[x(t),u(t),t]dt

to

where x(t), an (ml) vector of ti'me functions called state variables,
is defined by

 

(2)M) —- f[x(c),u(c>,t1, m0) = a
and u(t), a(ml) vector of functions called control variables, is
constrained as follows,

|u(t)l _<M." (3)

Proposed gradient (that is, fi'rst—order) schmes for choosing the
optimal control vector u(t) are nmerous, but the resulting rate of
convergence in the vicinity of the optmum solution has been found to be
generally slow. Second-order schemes, more comonly know as second-
variation schemes, are more efficient in the neighbourhood of the optimum
but they have been developed so far only for the unconstrained control
problem——that is, with condition (3) removed.

The purpose of this paper is to present a second—variation scheme
that 1'ncludes (3). The procedure 1's 1'terative 1'n nature. At each iterati'on,
a quadratic approximation 63(6‘u) to the change i'n an aumented objective
function J~ is obtained where

t t t
53m) _—I 1 LR 6u(t)dt+ 1 { 1 éuT(t)W(t,s)5u(s)ds dt

to an to to
(4)

subJ'ect to

(5)I<5u(t) I _< 5

me functions 6u(t) are allowable pertubations in the control vector u(t).
The matrix W(t,s) is called a second-order weighting matrix. H 1's the
Hami‘ltonian function
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H(x,p,u,t) = L(x,u,t) + pT(t) f(x,u,t), (6)

where p(t) is a vector of unknom Lagrange multiplier functions, related
to H by,

p'm - ~3x3—H. pal) —— o
and ( )T denotes the transpose of ( ).

(7)

Thus the original control problem has been transfomed into that
of maximizing the improvement 6J-(6u), expressed in the fom of a
buadratic functional, subject to constraints (5). This recast problem can
be considered as an infinite-dimensional nonlinear programing problem.
The generalized Kuhn-Tucker theorem in nonlinear programing is then used
to derive a system of equations which define the resulting fom for the
control law 5u(t).

Other aspects of thi's scheme are also discussed--for exmple, the
duality problem. In addition, it should be noted that the problem of
maximizing the expression gl'ven in (4) subject to constraint (5) also falls
directly into the domai'n of quadratic programing problems.

Nmerical examples for both nonli‘near and linear problems with a
Si'ngle control variable are included. The resulting convergence rate with
the proposed scheme in this paper has been found to- be satisfactory.

WDMSDAY MTERNOON

 

A DECOWOSITION fiGORITm FOR SHORTEST PATHS IN A NETWOM

T. C. Hu

 

Given a network with distances defl'ned on the arcs, the problem is to
find shortest paths between every pair of nodes in thenetwork. If the
network can be disconnected by remov1'ng a subset of the nodes, then it is
possible to treat parts of the network at a time to save the mount of
computation as well as shortage requirements.

WEDNESDAY AHEMOON

 

PROGWES MTHW’TIQUES NON LINE‘AIRES A‘ VARIflLES BIV&ENTES

P. Huard

Nous nous proposons de décrire un algorithme heuri'stique, qu1' s'est
réve’le’ efficace, pemettant de résoudre des Programmes Mathemati'ques,
li’ne’aires ou non, a‘ vari’ables bivalentes, sci't'.

bximi‘ser w(x) sous les condi‘tions

(l) al(x) _> 0, l a L ‘- {l,2,...,m}
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(2) xj —- 0 cu 1V,j 5 J -— {l,2,...,n}

ou w et les a2 sont des fonctions nme’riques.

Dans le cas ou‘ les fonctions sont linéaires, les calculs sont plus
rapides, car on est ramené a‘ une séquence finie de Progrmes line’aires en
variables continues, de taille équivalente au Programe donné. Mais dans
son principe, la méthode est la me"me pour les cas linéaires ou non linéaires.
Elle a pu d'autre part eAtre étendue directement avec succés a‘ des Progrmes
non linéaires mixtes (c'est—a—dire dont certaines variables sont bivalentes et
les autres continues).

PRINCIPE DE m HTHODE

Chaque fois que l'on detemine un somet xk de l'hypercube ur-.ité
ve’rifiant les contrai'ntes (l) (somet réalisable), on tronque 1e domal'ne
des solutions réalisables par la contrainte Supplementaire W(x) _>w(xk).
Soit Tk ce troncon, qui contient les soluti'ons réalisables contl'nues
"meilleures" que xk.

Oln détemine un nouveau somet re’alisable de l'hypercube unite’,
k+

soit x , appartenant a T , par le procédé suivant.’ aprés avoir détemine’
un centre e de Tk, au senE défini dans [l], on dresse la liste des somets

x de l'hypercube dans l'ordre des distances (euclidiennes) d(x,c) croissantes.

Au cours du déroulement de cette liste, a‘ chaque nouveau somet appele’,
on ve’rifie s'i'l satisfait aux contrai'ntes (1) — Si non, on appelle 1e

k+ .
suivant, si oui, ce somet est le point x1 cherche.

k+l
On tronque alors Tk par w(x) _>w( x ) et on recomence.

La méthode converge en un nombre fini de troncatures (pratiquement
4 a‘ 6). Les somets re’alisables ont toujours e’te’ bien groupe’s au de’but de
la liste, et leur recherche est rapide (additi‘ons et tests). La de’temination
du centre d'un troncon se rme‘ne a‘ la maximisation approximative d'une
fonction sans contraintes dans le cas non line’aire, et a un Programe line’aire
5 variables continues dans le cas lineaire.

REFERENCE.‘
[11 P. Huard, "Re’solution des P.M. a‘ contraintes non linéaires par la Méthode

des Centres". Note E.D.F. N° HR 5690 du 6.5.64 — Version anglaise dans
"Nonlinear Programing", Ed. J.Abadie, North Holland Publishl‘ng Co.,
Msterdam, 1967.

FRIDAY AFTEMOON

 

ME CWRENT STATE OF CWCE-CONSTMINED PROGWING

M. J. L. Kirby

This paper presents a survey of recent developments in chance—
constrained programing. The motivation for a chance—constrained fomulation
of a "real world" problem is discussed through reference to recent appli-
cations of the technique to problems 1'n transportation, finance and media
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selection. The methodology whi'ch has been used to develop properties of
optimal dec1’s1'on rules 1's analysed and the mai'n results sumari'zed. In
addi'ti‘on, the notion of a chance—constrained gme and properties of such
gmes are discussed. ' '

» TUESDAY AFTEMOON
M7

RECENT RESWTS ON ME COMBINATORI& STRUCTURE OF COW POLYTOPES

V. Klee

In recent years the study of the combinatori'al (facial) structure
of convex polytopes has been greatly stmulated by i’ts connections with
li’near progrming. This lecture will survey recent developments which
are related to linear program1'ng and to 1'nteger programing.

 

MTHWTICAL PROGWING m PROJECT INTERRELATIONSHIPS IN CAPITAL BUDGETING

A. K. Klevori'ck

The usefulness of mathematical progrmmi'ng methods in analy21'ng
capi‘tal—budgeting prwlems 1's, by th1's ti'me, w1'dely recogni'zed. The
research of whi‘ch the present paper foms a part appli'es programming
methods to the study of capi'tal budget_ing 1'n the presence of r1'sk and
capi'tal—market imperfecti'ons. In thl's paper, one partl'cular aspect of the
program1’ng model developed 1‘n the larger study 1's mphasized.‘ the presence
of direct cash—flow interrelationshl’ps among the investment prog’ects.

Budget constrai'nts 1'n several perl'ods and 11‘m1‘tations on the mounts
that can be borrowed duri’ng peri'ods w1'th1'n the fi'm's hori’zon force the
fate of one proposal to depend on the fi'm's dec1'51'ons concerning other
p0331'ble prOJ'ects. Internal and external restrl'ctions on funds thus induce
1'nd1'rect 1'nterdependences among prOJ'ects. In add1't1'on, phy51'cal condi‘tions
of mutual exclu51'on or conti'ngency constitute a set of d1'rect 1'nterrela-
ti’onships among prog’ects. The interacti'ons on which the present paper
focuses are, in contrast, the di'rect cash—flow 1'nteractions, both in outlays
and returns, that ex1'st among prOJ'ects apart from the presence of f1‘nancial
constral'nts.

 

 

The sources of these 1'nteractions are d1'scussed. It 1's 1'nd1'cated
how both technologl'cal elements and demand patterns give rise to such
1'nterrelationsh1'ps. The mportance of considerl'ng deteministi'c cash—flow
1‘nteractions if the fim is to reach an optimum 1's readily made clear. %en
one turns to the risk env1'ronment, the case for con31'der1'ng stochastic cash—
flow 1'nteract1'ons 1's seen to be equally compelli'ng. In the latter case,
attitudes toward risk 1'mpose certai’n requirements on the fom of the objecti_ve
function, 1'n addl'tion to the restri'ctions that were present 1'n the certai'nty
model. These requirements defi'nitely nece351'tate con51'derat1'on of stochastl'c
cash interrelati'onshl'ps among projects.
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The resulting programing model of capital budgeting under risk when
specific capital—market imperfections exist is shown to be a mixed-1'nteger
programing problem with nonlinearities in the integer parts of the objective
function and constraints. The nonlinearities are due to the cash—flow inter—
actions among projects. By introducing additional constraints and artificial
variables, there exist several ways to convert the problem into a mixed—
integer progrming problem with linear constraints and linear objective
function. Considerations of usefulness for economic analysis and computational
considerations that enter into making a choice mong these altemative methods
are discussed.

One method is selected on the basis of these considerations, although
the choice is made, unfortunately, without the aid of computational experience.
Benders' partitioning procedure is used to solve the problem which now has
a linearized objective function and constraint set. m interesting economic
1'nterpretation can be lent to the algorithm's progress toward a solution.
The paper closes with a discussion of the decision mechanism represented by
the solution procedure.

NURSDAY AHEMOON

oerm DESIGN OF LONG PIPE LINE NEWOMS FOR GASES USING LINN PROGWING

J. P. Kohli and F. W. Leavitt

A FORTW progrm has been written for the IBM system/360 to design
gas distribution piping networks using linear progrming. Such networks
are directed trees. Gas is supplied at a specified supply pressure at the
root of the tree and is dram off at the branches at specifi‘ed delivery
rates and at specified minimm delivew preSSures. The program sizes
pipe in all parts of the net to minimize installed cost subject to flow
rate and delivery pressure constraints. Standard pipe sizes are used
everwhere. Each link in the net may contain more than one pipe Si'ze.
The Wemouth fomula is used to calculate pressure drops with the accel-
eration tem neglected. Pressure gradient is a function of pressure but
a change in variable has been used to allow use of linear progrming.

mWSDAY AFTEMOON

 

CEMMIMTION Am DECEMMIMTION OF DECISION MKING

ME DOUBLE DECOWOSITION MTHOD

GEMMIMTION Am PROOF OF COMRGENCE

T. 0. M. Kronsjo

A proof is given for that the double decomposition method proposed
by D. Pigot my be generalized to deal with any type of linear programing
problem and that, if certain conditions are observed, the method will
converge in a finite umber of iterations to the optimal solution. As
for certain purposes an economic system my be approximted in the fom of
a linear programing problem, this decompOSL'ti‘on procedure is of profomd
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theoretical and practical importance in indicating a possible system for
optimal planning based upon a combination of central price and quantity
parameters (cp. the decomposition methods of Dantzig—Wolfe and Benders).

The approach is based upon the following results.

1. A linear programme

Mxin{cx| Ax>__b, x20},

no matter whether it has some type of solution or not, may be evaluated by
the solution of two or three related linear programmes with finite optimal
primal and dual solutions, viz.,

{Ox+ly ‘ Ax+y>_b, x_>0, y_>0} ,

’uMavx {uO-leuA-V_<c, u>0, v>0}, and
if the above problems both equal zero then

Mxin{cxl Ax__>b, x20} .

2. A linear programme with optimal finite primal and dual solutions, say
the immediately preceding problem, may be extended into an equivalent
enlarged problem, say,

Min {u_y+cxl y+Ax>_b, -x>_-x-, y_>0, x20},
Xd’

to which initial feasible primal and dual solutions may easily be found.

3. A linear programme with finite optimal primal and dual solutions to which
initial feasible primal and dual solutions are known

aMchx z{ s'a+u‘b+v'c+Ax+By+cZ
””y’ a +Hx+Ky+Lz

+Dy+Mz
+Nz

'y

NI‘<INIW
O

"U—
IVIVlVlVlV

IVl N

'l

0 2203’~<: Iva>0 b>0 c_>0 x_>0

may be solved in a finite number of iterations by decomposing it into primal
and dual directions and obtaining a primal master, a dual master and a
conmon subproblem as indicated in the following figure.
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s Q

The conditi'ons for transfer from priml to dual iterati'ons (respectively
vice versa) my be sumarized as

i) no one of the a,x(v,r) and slack variables my be a candidate for
introduction into the basis of the primal (dual) mster,‘ and

ii) the value of the priml (dual) mster plus the corresponding mi'nimal
(mxmal) value of the priml (dual) subproblem using the Si‘mplex
multipliers of the dual (primal) mster must be greater (less) than
the value of the dual (priml) master in order that the solution of
the latter may be improved by the imediate introduction of some
sufficiently optimal dual (priml) subproblem solution based upon
the last simplex multipliers of the priml (dual) master.

The favourable computational experiences of Beale, Smll and Hughes
w1'th thei‘r large priml decompOSL'tion programe my probably be taken as an
i'ndicati'on that the above generalization of the double decomposition method
may offer not only an important theoretical but also a forceful practical
tool for ach1’ev1’ng a near optiml solution of very large economic planning
systems, especially for optimal international/interregional/interenterprise
economi'c planning.

A great advantage of the method is that the soluti'on of a comon
subproblem of blockdi'agonal structure may take place 1'n parallel, each
block independently of the other. A very large economic planning problem
containing a reasonable nmber of J oini'ng resource balances and J'Oi‘ning
act1'v1‘t1’es and a great nmber N of diagonal blocks each of reasonable
Si'ze, my therefore, 1'n pri'nciple, be solved on N computers each
solv1’ng one block of the comon subproblem plus 2 computers solv1‘ng the
pri'ml and dual master problems.

MOWAY MTERNOON

NONLINMR PROGWING MD ENGINEERING DESIGN

L. S. Lasdon and A. D. Waren

The perfomance spec1'fications for many engi‘neering des 1'gn problems
can be fomulated as a system of 1'nequalities. Usually the de31'gner selects
a structure for the system and thus reduces the design problem to the
detemination of a parameter vector. Often there are additl'onal 1‘nequa11'ty
constrai‘nts on these parmeters, imposed by realizability and economl’c con—
51'derat1'ons. An acceptable design is then a parameter vector whi‘ch sati'sfl'es
both these Sets of 1'nequa11't1'es.

By introducing an additional independent variable, 5, the problem
of finding an optmal design can be fomulated as a mathmatical program.
Its solution 1's optl'mal in the following sense.‘ if m1'n g < 0, the de51'gn
maximl'zes the minimm mount by which the perfomance specifications are
met while if min 5 _> 0, the design minimi’zes the maximm mount by which
these specifl'cati'ons are not met. Solution of the mathematical program 1's
accomplished by the SM technique of Fiacco and McComick, w1'th the
unconstrained sub-problems solved using the Fletcher-Powell descent method.

This approach has been applied to the design of electrical fi'lter
networks with bounded lossy elements in both the frequency and tme domain
and to the design of linear md planar sonar transducer arrays. Let the
response function for the system be F (_e, o) where _e is the parameter
vector and a may be either frequency, tme, or a position co-ordl‘nate.
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For frequency domal'n fi’lter de51'gn F could be the 1'nsertion loss and
a the frequency, for tm'e domal'n networks F represents the step or
1'mpulse response and a the ti'me, whl'le for transducer arrays F is the
array d1'rect1'v1'ty as a functl'on of the angle a.

As an example con31'der the fi'lter de51'gn problem. Here the perfom-
ance spec1‘f1’cat1’ons requi’re the insertion loss to exceed or equal given
values w1'th1'n stop band regi’ons and to be less than or equal to gl'ven
levels 1'n a passband regi'on. Thl's leads to the following system of
1'nequalit1‘es

i —- l, ..., aFi

F- (e_)1
IV U)

IA ID i - a+l, ..., b

i —— b+1, ..., cIV InF. (e)1 _
and

i l, ..., n

where

F1. (_e) _-— F (_e a1->,
the o1. are appropri’ately chosen frequen01'es, and £1 and ul. are the lower
and upper bounds on the 1‘th network element.

me soluti‘on of the follow1’ng nonli'near program represents an opti'mal
de31'gn'.

o

mi‘ni'mi'ze E

subJ'ect to

F. (2) +51 IV U)

F1 (2) - 5 IA CD

'11
H A m v V m IV m
P‘

and

1' ll H o u n .-

Despi’te the non-convexity of this nonlinear program, computatl anal
experl'ence has been very satisfactory. A number of filters have been
de31'gned whi‘ch are superl'or to those previously avai‘lable. Similar res.ults
have been obtai’ned for the other problems considered. In one planar array
design, the problem involved speci'fi'catl'ons on five separate, shlultaneously
generated d1'rect1’v1'ty patterns at ten angles 1'n each of three planes leadi‘ng
to a nonll'near progrm with 71 varl'ables and 150 nonll'near 1'nequall‘t1‘es.

MURSDAY AFTEMOON
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NOMINW PROGWING VIA ROTATION& DISCRIMINATION

V. J. Law and R. H. Fariss

A method is developed for solving the general nonli'near programing
problem. The method is based upon the principles of the rotati'onal
discrimination method of Fariss and Law [1] for solving nonlinear
regression problems. Some of the more important features of the proposed
algoritm are as follows.‘

1)

2)

3)

4)

5)

Parallel convergence is achieved. That is, moves are made from
a base p01'nt whi'ch seek to satisfy the constraints while smul—
taneously worki'ng toward an optimum. Thus, intemediate
feasibility is not required.

The search direction is chosen by first dealing with the
constraints and then with the objective function. This has the
signifi’cant effect of tweducinthe dimensionalit of the opti—
mization portion of the problem.

The search trajectory has "truncation convergence." flat 1's,
progress toward a solutl'on is guaranteed.

The defi‘nitl'on of a "benef1'cial obj'ective functi'on" allows proper
monitori'ng of progress along the search traj'ectory.

Quadratic convergence is available if the user 1's w1'lling to
allow the requi'red second derivati’ve calculations. However,
the method 1's flex1‘ble 1’n that this portion may be retained
or deleted at wi'll.

TUESDAY EVENINCY

 

COMPLmENTARY SOLUTIONS FOR SYSTms 0F LINEAR EQUATIONS

C. E. Lemke and R. W. Cottle

 

Given the square matri‘x M and colmn q, a n_on-negat1’ve soluti‘on
to the system of n li’near equati'ons in 2n variables

w - q + Mz

whl'ch sati‘sfi'es

ziwi -— 0 for i -— l,...,n

1’s a #comlementar soluti'on for the system.

Varl'ous classes of matrices M are studied for which statements
of exl'stence of complementary soluti‘ons can be made, and characteri‘sti‘c
propertl'es of these classes are identi‘fl‘ed. The question of computi’ng
complementary solutions 1's di'scussed.

_ RIDAY AFTEMOON
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0PTMIN m DUALITY IN NOMINW PROGWING IN THE PRESENCE OF EQUflIN

CONSTMINTS Am AN MPLICATION IN NOMINW DISCRETE OPTW COMROL

O. L. Mangasarian

Almost all suffic1’ent optimality criteria and duality relations of
nonli'near programi'ng treat only linear equalities. By observing that a
functi'on can be both quasi-convex and quasi—concave without being linear,
suffl‘cient opti'mali'ty conditi’ons and duality results are obtained for
problems w1'th special types of nonll'near equall'ty constraints. Si'milarly,
by observ1’ng that a functi’on may be both pseudo-convex and pseudo—concave
wi'thout bel‘ng linear, necessary optimality conditions are obtained for
problems w1’th certain nonli‘near equality constraints. As an application of
these results we obtai'n suffi'cient optimality criteri'a, necessary optimality
cri'teri‘a, and duality relati'ons for a class of nonlinear discrete optimal
control problems .

TUESDAY EVENING

 

ON THE EXISTENCE 0F OPTML PROGWS OF ECONOMIC GROWTH IN

INFINITE-HORIZON LINEM MODELS

D. McFadden

 

Three problems 1'n the programi'ng of economi'c growm in abstract
li'near economi'es are solved 1'n thi's paper.

(1) A class of part1‘a1 orderl'ngs of outcomes are shown to yield
well-defi'ned opti'ma 1'n cases where conventional obJ'ective functi‘onals do
not ex1’st.

(2) An algebrai’c exten31'on of the Kuhn—Tucker theorem is establl’shed
for a class of problems 1’n whl'ch a monotone parti'al ordering 1's maximized
over the non—negati’ve orthant of a denmerably 1'nf1'nite—dimensl'onal vector
space. Condi‘tions are found under whi'ch thi‘s result impll'es dual prices at
whi'ch an optimal program can be sustai’ned 1'n a decentralized economy.

(3) A uni’form boundedness conditi‘on on 1'nstantaneous obJ'ecti‘ve
functi'ons 1's show to be a necessary and sufficient condi‘tion for the
exi’stence of an opti‘mal program 1'n a class of stati’onary economl’es.

Thi’s paper extends the results contai'ned 1'n my arti'cle "The
Evaluati’on of Development Progrms" Rev1’ew _of Economi'c Studi‘es, Jan. 1967,
and covers materi'al from two unpubli‘shed manuscr1’pts, "On Mali‘nvaud Pri'ces",
W.P. No. 123, Center for Research 1'n Management Science, Berkeley, 1965,
and "The Evaluati'on of Development Programs.‘ Addenda," (mi'meographed),
Uni’vers1‘ty of Chi‘cago, Apri’l 1967.

THURSDAY AFTERNOON
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ON THE CMACITY OF A DISCRETE, CONSTMT CWEL

B. Mel’ster and w. Oettll'

The determl'natl'on of the capacl'ty of a d1’screte nol’sy channel 1'n the
case of unequal durati’on of Sl'gnals amounts to a progrm1’ng problem'.

(1) max T(z)

where

Z '— {zlx_>0, E x.
J' J

l, y -— PX},

t, > 0, P a stochastl'c tran51't1'on matrl'x.
J

More generally we con51'der the follow1’ng problem.‘
f(z)

(2) max
262 8(2)

where f(z) concave and >0 over Z,

 

g(z) convex over 2, and

g(zo) + (z-zo)T V (20) >0 for all z0 62, z E Z.R

Th1‘s 1's an example of a qua51'concave programl'ng problem (even pseudoconcave
1'n the teml’nology of Mangasarl'an) wh1'ch can be completely solved both
theoretl‘cally and computatl'onally. We gl've necessary and suff1'c1'ent cond1’t1‘ons
for optl'mall'ty and a procedure for fl'ndl'ng an opt1'mal solutl'on, 1'nvolv1’ng
the fractl'onal ll’nearl’zatl’on

f(zO) + (z-zo)T Vf(zO)

g<z°> + (z-z°>T Vg(z°>
T 0(2)—-

2

of T(z) at var1'ous prl'nts z0 82. The procedure has the convenl'ent feature
of furnl’shi'ng convergent lower and upper bounds for the optl'mal value. For
the or1'g1'nal problem (1) we also der1've from our optl’mall’ty condl'tl'ons a
dual problem, wh1’ch has been stated earll’er by E. Ei'senberg for the case
t, -— 1, all 3'. ml's 1's done 1’n an elementary way, w1'thout u81'ng Lagrang_e—

J
multipll'ers.

THURSDAY AFTERNOON

 

EXTENDING NEWON'S METHOD TO SYSTmS OF INEQUALITIES

H. D. Ml'lls

Newton's method for solv1'ng systems of equations is extended to
systems of 1'nequa11'ties wh1‘ch are characteri’stl'c of constral'ned opti-
ml'zation and gme equilibrim problems defl'ned by d1'fferent1'ab1e payoff
functions. Local convergence at solutl‘ons is quadratic, though global
ambl’gui’ties of Newton's method are still inherl’ted. Numerl‘cal experience
will be described.

MONDAY AFTERNOON
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A MTRIX GENEMTOR MD MPORT WRITER SYSTm FOR USE WITH 360 MS

M. Mi'nns

This paper descri'bes a matrix generator and report wr1'ter system whl'ch
has been Wi'tten in FORTW for use w1'th 360 MP8. It 1'ncorporates all the
usual features to be found 1'n such systems, for example, comprehen51've data
checks including a clear language pr1'nt-out of the 1'nput data, fac1‘lit1'es
for the selecti‘on of sub—models, complete control over the Sl'ze, style and
content of the soluti'on report, etc.

The system was 1'n1't1'ally desi‘gned as a tool for long tem plannl'ng, 1'n
partl'cular prOJ'ect evaluation, 1'n 1'nterrelated chemical complexes 1'n Imperi'al
Chemical Industrl'es (Mond Div1'51'on). However, 1'ts potenti'al use for other
mathemati'cal program1‘ng applications w1'thin the Div1’sl‘on was qui'ckly
reali'sed and the system now foms part of a system for short—tem plannl’ng
1'n a parti'cular chemi'cal complex. The mathemat1’ca1 progrmi‘ng problem
associ‘ated w1'th thi's complex 1's non-ll'near because many of the product flows
are mult1'-component ones and have alternati’ve routes. Since, at present,
there is no non—linear algori‘thm 1'n 360 MP5 the problem has been fomulated
w1'th li’near approxi’mati’ons to the non-li'near constral'nts. The problem
can then be solved usi'ng 360 ms and in the li’ght of the soluti'on the
approximatl'ons can be rev1'sed and the problem resolved. Thl's process 1's
repeated unti'l convergence to w1'th1'n a specl'fi’ed tolerance has been achi'eved.

The baSi’c system also foms part of a weekly schedull'ng system which 1's
used to produce the opti'mm product1'on and d1'str1‘but1'on schedule for a
mult1'-product complex taki‘ng into account both customer demands and sub—
J'ecti've stock requi‘rements.

Each of these three mai'n areas of appll‘cat1‘on 1's descr1'bed 1'n detai'l and
1‘nd1'cat1'ons are gl'ven as to the developments whi'ch can be expected 1‘n these
areas 1‘n the future.

MONDAY EVENING

ON THE COMPLEXITY 0F DISCRETE PROGWING PROBLmS

J. biora’vek

The paper o‘eals w1'th the estimati'ons of the number of orderl‘ng
relati‘ons ">, —~, <" needed for solx'l'ng of a d1‘scre.te- program1‘ng problem.
There is given a general defl'nitl'on of the algor1’thm for solv1'ng the
di'screte programi‘ng problem. A great number of well-know algorl'thms may
be described by means of th1's defi’ni'tion. The paper also 1'ncludes non—
progrmmi'ng appli’catl'ons of the 1'ntroduced concepts. At whole, the paper
may be con51'dered as a contrl'bution to the general theory of Di'screte
Programi’ng.

TUESDAY EVENING

 

ILL—COWITIONING OCCWRING IN PENALTY Am BARRIER FWCTIONS

W. Murray

The problem of

min (F(x))
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subject to

Gj(x) >_0 j -— l,...,m

is related to that of minmizing the sequence of functions
In

a) P(x,rk) = 1700 + rk'1 jil 5j ¢(Gj(x)) k = 0, 1, 2,....

where 6 -— O Gj(x) _>0

= l Gj(x) < 0

m Gb) B(x,rk) -— F(x) + rk j_‘21 6(j(x)) k ll 0 v H v N u

Functions of type (a) we refer to as Penalty functions and those of
type (b) as Barrier functions. The problem of minimizing the sequence (a)
or (b) is an ill—conditioned one. The nature and contrasts of this 111—
conditioning is discussed and also the effect this has on the algorithms
required to solve the problem.

THURSDAY AFTERNOON

 

THE SHIHING-OBJECTIW flGORITM'. M mTEMATIVE METHOD FOR SOLVING

GEMM le PROGWING PROBLMS

V. Nalbandi'an

me smplex method has long been a generally used technique for
solviw linear progrming problems. m alternative algori'tm, believed
to be more efficient, is the subject matter of this study. We major
contributions of the present study are a proposed new method for solving
general linear progrming problms and a statistical analysis for comparing
the new algoritm with the simplex method. In addi'tion, a nmber of related
issues such as finding an initial basic feasible solution, resolving de'gen—
eracy, obtal'ning the values of the dual variables, etc., are d1’scussed.

Computetional experience has been gained by solving a set of 61 test
problems with randomly generated coefficients by means of the proposed
algoritm as well as the standard simplex method. All of the problems
solved are initially primal feasible. The nwber of constraints ranges
from 50 to 100.

The proposed algoritm hats required a total of 3,420 pivots to solve
the set of 61 test problms as opposed to 4,301 pivots required by the
standard simplex method. This represents a 20.5 per cent savings in the
total nmber of pivots. It is argued, in the paper, that the mount of
computation per iteration required by the proposed algorithm is insignifi—
cantly greater than that required by the standard smplex method. The
statistical analysis, based upon the results obtained by solving the set
of 61 test problws, suggests that the perfomance of the proposed algoritm,
relative to the simplex method, is likely to improve as the size of the
matrix of constraint coefficients increases and as the percentage of negative
coefficients (after making all elments of the requirements vector nonnegativo)
increases. The peculiarities of the proposed algorithm, as compared to the
simplex method, are.“
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1. There is no pemanent objective row. After each pivot, a new
row is selected to serve as the current objective row. The selection
process involves a small amount of computation and, barring degeneracy,
the objective row is uniquely determined after each pivot. An obJ‘ective
row can never succeed itself, although the same row may sewe as an obJ'ective
row several times throughout the iterative process. This is the reason why
the proposed algorithm is referred to as the shifting—obj'ective algori‘tm.

2. A coeffi'cient in the current objective row may be selected as
the next pi‘vot element.

3. After a pivot column has been selected, the pivot row may be
chosen either without any further computation or by solv1'ng an auxill'ary
linear programing problem involving only two nonba51'c varl'ables. The fomer
procedure gives rise to the naive shi’fti'ng—objective algori'thm and the latter
to the modi’fied shifting-objective algoritm.

4. The objecti've variable 1's nonba31'c except initially. Unll‘ke
other nonba51’c vari'ables, 1'ts value 1's not a551'gned a zero value.

5. The requirements vector does not remain nonnegative. Feasibill'ty
is nevertheless mai'ntained by assigni'ng an appropri'ate value to the obJ'ective
variable. As a result, the value of each basi’c vari’able becomes a 11'near
functi'on of the obJ'ective variable.

MONDAY AFTERNOON

 

THE BLOCK PRODUCT DECOWOSITION ALGORITM

W. Orchard-Hays

The concepts of decompositi'on of an LP model, computi'ng wi'th
parti'tioned blocks, and mai'ntai'ni'ng a structured basis inverse, are all
qui'te old. The author worked wi’th Dant21'g on block tri'angular algorl'thms
as early as 1953-54. However, nei‘ther computer technology nor algori’thmi'c
maturi'ty were equal to the task at that ti'me. Decompositi‘on recel'ved w1'de
1'nterest only after publicati'on of the Dantzl’g—Wolfe (D—W) algori'thm 1‘n
1959.

The parti'cular fom of model used by D—W—-a segmented master problem
w1'th diagonal blocks below the sements-—has become a standard fom of
decompositi'on model. The D-w method 1's relati‘vely easy to prove and
explain and can be generall’zed 1'n several ways. However, 1't has compu-
tatl'onal ineffi‘c1’encies and J'udment is often required for solution strategy,
thus maki’ng automation di'ffi'cult. Other algorithms of greater complexi‘ty
and efficiency have been devised but they lack the elegance of smpli'c1’ty
of concept and generalization of subproblems which 1‘s inherent in D—W.

Nevertheless, for strl‘ctly 11‘near problems of the D—W structure,
a hi'ghly efficient and automated algori’thm 1's feasible. The algoritm
presented is a generali‘zati’on of the product fom of 1'nverse to blocks.
This mai’ntains a pseudo basis inverse whi'ch 1's corrected to the true 1'nve.r°se
with an additi'onal blocked transfomatl’on matrix T, simi’lar to the early
block triangular algorithms. However, it will be show that the extent of
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the non—trivial part of T can be held to no more colmns that the number
of rows 1‘n the master problm, and that none of these calms is longer
than the umber of rows in the largest subproblm.

The algoritm is based on the parametri’c right hand side techni'que.
An opti’mal soluti'on to a modi‘fi'ed set of master problem constants is first
obtai'ned in a straightforward manner by solving the single master block
and each master—subpartition in succession. We right hand side is then
parameteri‘zed to i'ts original value.

Pumetr»ic right hand side and objective function algoritMs are
merely extens1'ons to the method and, hence, are applicable to decomposition
models.

A Si'mplifi'ed procedure has been devised for taking advantage of a
prev1'ous solution when continuing a problm or solv1'ng a modified model.
Infea81'bi'11'ty of any subproblem is quickly detected as 1‘n D-w but infeasi—
bi‘li’ty of the entire problm is displayed by a premature maxi’mm of the
parameter. The resulti’ng solution is optl'mal and feasible for a modifl'ed
problem which 1's the "closest" in some sense to the original.

The problem of unbounded subproblems 1's handled with a unique type
of mi'xed convexity restral'nt which depends on logic 1'nstead of "large"
numbers.

The algorithm 1's currently 1'n checkout on the GE 635 (LP/600) and
1's bei‘ng programed for the CDC 6600 Optima MS.

MONDAY AHEMOON

ON PROBBILISTIC CONSTMINED PROGWING

A. Pre’kopa

We consider the nonlinear programing problem

(1) mi'ni'mi'ze f(x)
subJ'ect to the condi‘ti‘ons

<2) P(Ax>e) >a, x__>O.
Thi's problem, called also chance constrained program1'ng problem 1'n the
li'terature, 1's usually solved under the weaker condl'ti'ons requirl'ng

n

(3) P(k__Zl aikxk __> 81-) __> a1., 1' —- 1,...,m,

and the reason for that 1's the p0331'b1'lity to prove in a relatively simple
way the convexity of the set of feasible vectors. The use of (3) 1'nstead of
(2) 1's not justl'fied however, from the probabilisti'c point of View. If the
rows 1'n the system of 1'nequalities Ax _>_ B are 1'ndependent, then the
convexity of the set of vectors satisfyi'ng (2) can be lead back to the
convexity problem of fea51'ble vectors satisfying to the separate i’nequali‘ties
1'n (3). In many practical problems 1'ndependence between rows cannot be
supposed, however. Fi'rst the case of a random 8 is considered (A is
constant) and it is proved that if the components have multi’vari‘ate nomal
di'stribution, then the set of the feaSi'ble vectors is convex for any cor—
relation matrix, dimen51'ons m,n if a is large enough. m example for
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a practical probleln where such a Sl'tuatl'on occurs, 1’s the nutr1't1’on problem
where the nutrl'ent requ1.'rements are correlated multivarl’ate nomal for a
randomly chosen un1’t. Conditl'ons are gl'ven for the convexl’ty of the set of
feasible vectors under random A and 8 too.

The solutl'on procedure 1's 011t11'ned for the case of a convex obJ’ectl’ve
function.

TUESDAY AHEMOON

 

ITEMTIW SOLUTION OF LARGE, SPMSE LINEAR SYSTEMS m MLATED TOPICS

L. D. Pyle and D. K. Smith

Iteratl‘ve methods have been applil'ed w1'th consl'derable success 1'n
solVl'ng the large, 11'near systems Ax —- b wh1‘ch arl‘se from d1'screte ap-
proxl'mations to elll‘ptic partl'al dl'fferentl'al equatl'ons. Characterl's-
t1‘cally, such systems have coefficl'ent matrl'ces A which possess
propertl'es Such as sparsl'ty, band structure, d1'agonal dominance and non-
negatl‘v1‘ty. Convergence proofs for the 1'terative methods used depend, 1'n
an essentl'al way, on such propert1’es as dl'agonal doml'nance or non—negatl’Vl’ty.
The practical ut1'11'ty of such methods depends both on rate of convergence
and spar31'ty, the latter Sl'nce the methods make 1'mp11'c1't use of zero
elements and thus only the relatl'vely few non—zero elements require arl'th-
metl'c mod1’f1‘cat1’on durl'ng each 1'terat1‘on. For general sparse .matr1'ces
whl'ch do not possess propertl'es 1‘nsur1'ng convergence of standard 1'terat1've
methods (Such as Gauss—Sel’del or Succe551've Overrelaxatl'on), practical
1'terat1've methods are lackl'ng.

There is a well—known method, due to Mczmarz, whl'ch makes 1'mp11'c1't
use of spar31‘ty 1'n the 1'terat1've solutl’on of arbl'trary ll'near systems.
Unfortunately, -h1's method usually converges rather slowly. Altman and
Pyle have each dev1'sed var1’at1’ons of the Kaczmarz method. Altman's
varl'atl'on 1’s equl‘valent to solv1'ng ATAx -— ATb by the Gauss—Sel’del method,
although ATA and ATb need not be fomed expll‘c1‘tly. Pyle's var1’at1’on
possesses a property whl’ch appears to be useful in connection w1'th accel-
eratl’on of convergence.

Algorl'thms for solvl'ng large, structured ll'near programl’ng problems
are also 1’n short supply. The decompOSI'tl‘on algorl‘thm, due to Dant21"g
and Wolfe, appears to be the only algorl‘thm aval’lable and 1't assumes a
certal'n type of structure (block angularl'ty) 1'n the coeffl’cl‘ent matrl'x.
Little study has apparently been devoted to the 1'terat1've solutl’on of the
succe551'on of 11‘near systems whl'ch result when the sl’mplex method 1's app11'ed
d1’rectly.

Gradl‘ent prOJ'ectl'on algorl'thms, and other algorl’tMs whl'ch depend
upon general1‘zed 1'nverses, usually requl‘re the deteml‘natl‘on of vectors
wh1‘ch l1'e 1'n the 1'ntersect1‘on of certal'n ll'near manl'folds. Although
d1'rect methods have tradl'tionally been used to calculate such prOJ'ectl'ons,
1't 1's p0831'ble to obtal'n them as liml'ts of certal‘n Kaczmarz—ll‘ke 1'terat1've
processes.

Th1's paper is a progress report deall’an V:th research 1'n the areas
descrl‘bed above, with part1’cular attentl'on beth given to the acceleratl’on
of the underlyl'ng 1'terat1'ons. Explorations 1'nvolv1'ng sem1'-1'terat1've methods
and the Wynn Sn-Algorl'thm w1'll be d1'scussed.

MONDAY AFTERNOON'
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IMERIOR POINT METHODS FOR THE SOLUTION OF MTHWTICM

PROGWING PROBLmS

J. D. Roode

For the mathemati'cal programml'ng problem max[f(x)| xcR] where
f(x) 1's a function of the vector ern and R is Specifl'ed by a set of

1'nequalities, R —' [xl f1.(x) _<_ 0, ieI], I bel'ng some fi'nite 1'ndex set, a

class of methods, to be called 1'nter1’or p01'nt methods, w1'll be d1'seussed.
In an 1'nter1'or point method a sequence {xk} is constructed such that for

all k, xkelRo —— [xl fi(x) < O, 151], f(xk) < f(xk+l) and any pol'nt of

accmulatl'on of the sequence is a constrained stationary p01'nt of f(x).
Dependl'ng on the way in which the sequence of inter1'or p01'nts 1's constructed,
dl'fferent classes of interl’or p01'nt methods can be distinguished. It w1‘ll
be show that a number of know methods belong to a certain class of
1‘nter1'or p01'nt methods--pem1‘tt1’ng a un1'f1'ed treatment of these methods
and 1'nd1'cat1’ng along whl'ch li’nes new methods may be developed. In addl'tl'on,
other classes of interl‘or poi'nt methods w1'll be treated, presenting new
methods in the f1'eld of nonlinear programing. Fl'nally, the advantages
of us1'ng an 1'nter1'or point method will be d1'scussed.

MONDAY AFTEMOON

APPROXIMTE COMMATIONAL SOLUTION OF NONLINEAR PAWOLIC PARTIAL

DIFFERENTI& EQUATIONS BY LINMR PROGWING

J. B. Rosen

Thi's work 1's based on a well—known technl'que of appli'ed mathemati'cs.
The de51'red solutl'on 1's approxi‘mated by a ll'near combi‘natl’on of a f1‘n1‘te set
of chosen functl'ons. The approx1‘mat1’on 1‘s obtal'ned by deteml'nl‘ng the
coeffl‘c1’ents of the functi’ons so as to m1'n1'm1’ze the error l'n an approprl'ate
sense. The accuracy of the approxm‘ati’on for a partl'cular problem w1'll
depend on the chol’ce of approx1’mating functi’ons, the number of such functl'ons
used, and the error nom chosen. The un1'fom nom 1's chosen here, and the
coeffl'c1'ents are detemi’ned by an approprl'ate use of ll'near programl‘ng.
The nonli'near paraboll‘c partl'al d1'fferent1'al equation leads to an LP problem
whl'ch may be con51'dered as hav1'ng 1'ts cost row gl'ven parmetrl‘cally as a
functl'on of t1'me.

TUESDAY AHEMOON

 

ON NONLINEM OPTIMIZATION IN INTEGERS

T. L. Saaty

 

The purpose of the paper 1's to 1’nvestigate optiml'zatl’on 1'n 1'ntegers
of some elementary nonli’near expre551'ons subJ'ect to equality constralnts.
The hope 1's also to i'nclude some know facts from number theory wh1'ch may be
useful in th1‘s pursul’t. Two purposes are sought 1'n this approach.‘ 1) To
generate some p0551'ble methods for tackli‘ng Such Sl'mple problems and 2) to
show the infeasibl’ll‘ty of conti’nuous approxx'mati'ons to the de31'red answers.
No substantial generalizatl'ons of this approach are ll'kely. However, they
serve as use ful tools for 1’mprov1’ng 1’nsl’ght and understandl'ng 1'nto thi's vast
area.

TUESDAY EVENING
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WE SHRIMINF, MWDARY ALmRIm FOR DIOPMMINE PRWWIM

R. M. Saunders and R. Schinzinger

We algoritm described in this paper was constructed to solve pure
integer linear programing problms by an enumerative search techni'que
which is patterned on discrete parallel translations of selected boundary
planes.

C,omory's cutting plane methods of integer programing rely on
generating new sets of con.straints which trm the feasible regi’on unt1'1
a convex hull is produced which has an integral-feasible extrwe vertex.
Mnd and Doig translate the objective function until a feasible p01'nt is
found in the plane of the objective function.2 The shrinking boundary
method presents a new approach in that .some of the boundary planes on the
convex hull of the feasible region are subJ'ected to stepwise shi'fts.

me slack variables which transfom a set of 1‘nequali'ty constraints
in integer fom into a set of equality constraints must be 1'ntegral valued.
A parallel shift of a boundary plme, whi'ch i's equi'valent to a change 1'n
the corresponding slack variable, will therefore proceed 1'n di'screte 1'ncre—
ments without thereby overlooking any integral-fea51'ble p01'nts. Wl'le a
search based on a scan of the fea31'ble regl'on by the shifti'ng of boundarl‘es
constitutes a finite process it is not necessari'ly effi‘c1’ent unti’l cri'terl'a
are established as to which boundaries should be moved and when the search
should be teminated.

The algorithm 1'ncorporates tests which reduce search space and effort.
A hierarchy of variables based on the angular position of the boundary planes
with respect to the obJ‘ective function deteml‘nes which planes are to be
moved and in what order. Feasibility tests based on diophanti‘ne ana1y51's
rule out infeasiblcl boundary positions. Sen51t1'v1'ty tests detemi'ne when
no further improvement of the optimand 1's pOSSi'ble without 1'ntroduc1'ng an
additional constraint on the value of the optimand.

The shrinking boundary algoritm appears to be at ats best when the
angle inscribed at the extreme vertex (1'n the continuous vari'able sense)
is obtuse. It is exactly problems of thi’s type whi'ch can so ea51'ly lead to
false results with the search trapped at a local opti'mum.

Nmerical examples 1'llustrate the procedures described by the algori’tm.

1) See Ch. 8 in G. Hadley's "Non11'near and Dynaml'c Program1’ng," Addison-
Wesley, 1964.

2) A. H. Land and A. G. Doig.‘ "An Au tomati'c Method of Solv1'ng D1'screte
Programing Problems," Econometri‘ca, Vol. 28 (1960), pp. 497-520.

TUESDAY EVENING

 

SOME DUALIW NEOMMS‘ FOR THE NON-LINEAR VECTOR WIW PROBLEM

P. Schonfeld

In this paper duality for the non—linear vector max1‘mm problem
(as' introduced by Kuhn-Tucker) is considered. Let f(x) and g(x) be
vector—valued concave differentiable functions. Denote by fx, gx their

Jacobians and put F(x) - f(x)—fx'x, C(x) ‘- g(x)-gx'x. Then the pr1‘mal
problem is to find the vector maxima of the set
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D = {d '. f(x) __> d, for some x E X}

where

X = {x .' g(x) >__ 0, x >__ 0} .

me dual problem is to detemine the vector minima of the set

H - {h '. vF(y) + uG(y) __< vh, for some (u,v,y) e 2)

where

Z = {z -— (u,v,y) .' vfy + ugy _fi< O, u __> 0, v >> O}.

The main result is that under Kuhn-Tucker regularity of the primal constraints
complement D - interior H.

With this result it is easy to prove that under Kuhn-Tucker regularity
any proper vector maximum of D is a vector minimum of H, and any vector
minl'mum of H is a proper vector maximm of D.

The argment is based on a lemma which g1’ves a suffici’ent conditi'on
that

¢(v) —- sup n
xeX

where X is a closed convex set is attained for some x° e X, 1'.e.
¢(v) - vx°. This lema is a special result emerging from the Fenchel
theory of conjugate convex functi’ons. An independent proof is offered
here.

RIDAY AFTERNOOr\"

 

APPLICATION OF NONLINEAR PROGWING MD BAYESIM STATISTICS

TO THE THEORY OF THE FIM

L. E. Schwartz

This paper uses nonlinear mi'xed 1'nteger programing to detemine
the optimal production levels of a monopolistic mult1'-product fim.
Production takes place under conditions of i'ncrea51'ng returns to scale.
The fim faces nonll'near Bayesian demand functl'ons in its product markets,
but costs are assumed deteminate. The cost functi'ons con51'st of fi'xed
and variable components. In addition the dec1‘51’on-maker possesses a non-
linear utility functi'on whi'ch is dependent on profl'ts. Thi's fomulatl’on
of the fim's objecti’ve function av01'ds many of the problems inherent in
tryi‘ng to specify what the fim tries to maximi’ze. The ana1y51's 1's static,
but can be generall’zed easily to comparative statics, assming 1'ndependence
1'n utility from period to period.

TUESDAY EVENING

M ALWRITW FOR LINEAMY CONSTMINED NOMINEM ESTWTION

WITH EXTENSIONS T0 GENEML NONLINEAR PROGWING

D. F. Shanno

The general nonlinear estimation problem is to minimize a functional
m 2 '

(1.) F(el,...,en) —— i__zl fi (91,...,en),
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when the fi's are arbitrary nonlinear functions of 81,...,6n and

m _>n. Physical considerations often restrict the B 's to a region RJ
detemined by

(2.) A9 _> b ,

where A is a p x n matrix, 6 is the vector (91,...,6n) and b is

an arbitrary p - vector.

If we let g(1) denote VF(1') , the gradient of F evaluated at

6 -— 6(1), and denote by J1. the Jacobian matrix

J Mk]—
1 " ea. 6 __ e(i)J

9

an 1'terative algori'thm proposed by Marquardt to minimize (l) is

. . _ .
(3.) e(l+l) —— [J1 J1. + A]I 1g(1) ,

where X 1'3 an arbl'trary scalar w1'th l > o.

mi's paper extends the range of A to A > -£l, where 51 is the
l

Smallest ei'genvalue of the non-negati‘ve definite matrix 1. i . A method

for calculati’ng an optl'mal A at each step is then detemined. It 1's then

show how the method of prog‘ecti’on matri'ces developed by Rosen may be

coupled with the vector (3) w1'th opti‘mal A selection to produce a second

order method for minimizing (l) SubJ'ect to (2).

Fi'nally, it is Show how the method may be applied to the problem of

m1'nm'1'21'ng an arbi’trary convex nonll‘near obJ’ect function subJ’ect to linear

constrai‘nts.
TUESDAY AFTERNOON

fiGORITms NR M.I‘hIML TREES AW smI-STEINER TREES BASE ON

WE SIMLEX METHOD

J. W. Suurballe

A 1-1 relationship between steps of the dual smplex method and
a well-known cor.binator1'al algori’tm for mini’mal spanni'ng trees can be
established when a certain linear program and progrming strategy are
used. (By a programing strategy we mean. a well-defined scheme for
usi’ng constraints and changl‘ng bases, which is consi.¢tent with but added
to the usual simplex method). The lirlear program and strate.gy used for
the miniml spanning tree can be extended to include more general. tree
problms, in particular the so—called Swi-Steiner tree proum.‘ G'nvm
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the primary pointer Pl, 1 - 1, ... , n<tu, an<l tlle secondary points
5‘1, 1 - 1, ... , r\‘\~, find 41 “llillmul cost trt\e spanning til-c primary points
and an arbitrary nmlbeir of s‘t’condq.ry points, wllen tree cost is the sum of
all are lengtlls in tlIe tree, plus a flx‘ld cost c‘i for each secondary
point b‘i used. (Tlris is. thc- usual minimal spanning tree when no secon-
daer points are included.)

The dutql q.implex m~ct11cwd and a c-Lrtain programming strategy applied
to the Semi-Steiner probltlm provides the insight for generating a com-
binatoria-l procedurL‘. wlmiclm corrL-‘.sponds. 1-1 with steps of the simplex
method, and conta-insi tlne previous].y know mirrirnal s.panning trcze algoritm
a_s a special case.

WFIDNF.‘SDAY AFTF.‘RNOON

 

APPLICATION OF LINEAR AND NONLINEAR PRMYMMNG IN OPTIW CONTROL

OF NUCLEM MACTORS

D. Tabak

 

No basic )rroblem.s‘ connt>cted with optimal control and management of
Nuclear Reactors rare consrido,re‘d.‘

(1) Tht> opti'xnal management of Ninclear Reactor fuels 1’n a long range
operati'twn.

(2) Optimal SliquOWXl control of Nu.clear Reactors, for Xenon poisoning.

In problem (1), the reactor is smbolically represented as a feedback
control s‘ystem, where the state vari‘ables are the nucli'de concentrations of
materi’als consi’dered. Tile control variable.s embolize the discrete changes
1'n the nucll'dt) concentrati'oxi‘s_ 'Aat refueling times. The problem 1's to find an
opti‘mal refueli'ng poli'cy ove r a peri'od contai’ning a fi‘nite number of refueli‘ngs.
As an objecti've function one may ,\~ e tlme goal of minimizx‘ng the quantity
of U—235 used, or maxi'ml’zi'ng tlie P1.‘ output. The 0b.]‘ective function was
expressed both 1’n li'nerar and quadratic form_s. The problem variables were the
values of the control vari’ables at refueling times. A set of linearized
constrai’nts, assuri'ng proper operati‘on of the reactor have been posed. One
of the diffi‘culti es was the fact that the refueling ti'mes were unknom
a pri'ori’. An 1'terat1'onal algorl'thm of sequential solutions of Linear and
Quadrati‘c Programing problems, 1's proposed and implemented in this paper.
Convergence of the algorithm has been established computati'onally. Sensitivity
analysis around the optimal values obtained, has also been perfomed.

In problem (2), a Nonli'near Programing (NLP) solution to fi'nd the
opti'mal control law for tile shutdom of a Nuclear Reactor, under Xenon
pOi'soni'ng, 1's attempted. The concentrations of Xenon and Iodi’ne serve as
state varl'ables, and the neutron flux is the control variable. The goal 1's
to mi'nimize tlle Xenon peak after shutdown, so that one could b‘e able to
restart the reactor after a shorter time lapse. At first, an optimal
teminal condi’tion for the state varl'ables, to minimize the Xenon peak 1's
obtai'ned by di'rect di'fferentiati'on. Then, the state equations are written
in discrete fom and a mi'ni'mal time problem is solved using the SWT NLP
program, originated by Fiacco and McCormick. The minimal time obtal'ned
using this method, turns out to be much shorter than the time obtained u81'ng
the maximm pri’nciple, for the same data.

WEDNESDAY AWERNOON
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A WW ALMRITW FOR TMNSPORTATION m ASSIGMM PROBLEm

G. L. Thompson

The first step in the algorl'tm 1’s to employ a regret heur1'st1'c
to construct an in1't1a1 solutl'on wh1'ch, empirl'cally, 1's better than the
VM start. Then the algorl’tm proceeds L'n the reverse d1'rect1'on
gradmlly constructl'ng the dml solutl‘on. From t1’me to time it 1's
necessary to use the regret heurl'str‘c to resolve subproblems. Advantages
over the MODI method are.- (a) the regret heurl'stl'c 1’s fast and very good,
(b) the solution of sub-problems gl'ves 1'nfomation on the overall solution
at a decrease 1'n overall effort. Computatt‘onal experl’ence will be
d1'scussed.

MONDAY MOWINGH

 

THE SOLUTION OF PROGWING PROBLmS BY GENEMTING FUNCTIONS

J. K. Thurber

 

A method has been developed for solv1'ng 1'nteger programml’ng
problems by u51'ng generatl'ng functl'ons. By means of the generatl'ng functl'ons
the fea51'ble solutl’ons for a system w1'th ll'near constral‘nts can be represented
1'n tems of new sets of 1'nteger varl’ables wh1'ch satl'sfy only the tr1'v1’al
constral‘nts that they be non—negatl've. The m1'n1'm1’zat1'on problem then becomes
a tr1'v1'ality 1'n prl’ncl’ple although 1'n practl‘ce 1't may lead to a ted1‘ous
computatl'on. Examples are 1'ncluded where both Sl'tuat1'ons occur (1'.e. where
the method gl'ves qul'ck solutl'ons and where 1't 1's 1'mpract1'cal).

The procedure 1's based on an exten51'on and Sl'mpll'fl'catl'on of some
1'deas of P. A. MacMahon on the theory of part1‘t1’ons. In add1’t1’on the method
leads to some results 1’n multl'pll'catl’ve number theory, greatly genera11'21'ng
some well know 1'dent1't1'es 1'nvolv1’ng the R1‘emann zeta functl'on.

The algorl’thm also has a contl'nuous analog wh1'ch amounts to solvl'ng
Sl'multaneous ll'near l'nequall'tl'es by means of Laplace transfoms. The
representat1‘on of the feasl'ble solutl'ons by means of Laplace transfoms
also e11‘m1'nates all the non-trl’vx’al constral’nts and peml’ts the m1'n1’m1‘zat1'on
problem to be dealt w1'th v1’a c13551'cal methods of the calculus for non—
ll'near obJ'ectl've functl'ons and reduces the case of ll’near obJ'ectl've functions
to a trl'v1‘al although p0581'bly tedl‘ous computatl‘on.

TUESDAY EVENINGK

ON SOLVING SOME CLASSES OF INTEGER LINEAR PROGWING PROBLMS

C. A. Trauth, Jr. and R. E. D. Woolsey

 

Some classes of 1'nteger ll'near programl’ng problems exhl’bl‘t a certal‘n
1'neff1'cient solutl'on pattern when an attempt 1's made to solve them uSI'ng
the Gomory cuttl’ng-plane methods.

A technl'que has been developed which allev1’ates the 1'neff1'ciency 1'n
calculatl’ons. It has, so far, led to more rapl’d solutl'ons of problems
posseSSI'ng this 1'neff1'c1‘ency characterl'stl‘c.
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Although some mathematical insight into the nature of this technique

has been gained, the study to date has been primarily empirical, and the

results of using this technique will be discussed.

FRIDAY AFTERNOON

AN EXTENDED DU&ITY THEORm FOR CONTIWOUS LINEAR PROGWING PROBLWS

W. F. Tyndall

 

Problems (J. Soc. Indust. Appl. Math. 13 (1965) 644-666) we proved the
THEORm'. bflotheses‘. (I) {erN‘. Bx 7_77<0 and x _>0} - {0}, (II) B, C,
and C(t) have nonnegati've components for tc[0,T_]. Conclusion.' There exist
optimal solutions 2‘ and w— to the programS'. maximize

[OT z(t)'a(t) dt sub1.ect to z(t) _>~ 0 and Bz(t) <__ C(t) + Iot Cz(s) ds,

and mi'nimi'ze OT w(t)'c(t) dt subject to w(t) _>_ 0 and w(t)B >‘_ a(t) +

IT w(s)C ds. Furthemore, two fea51'ble functi'ons z and w are opti’mal
t

1'f and onlv' 1’f T z(t)'a(t) dt —- 0T w(t)'c(t) dt. In that theorem the

vector-valued functi'ons a and c were assmed to be conti'nuous.

EXTEWED THEOEM‘. _The brevi’ous theorem _1's vali‘d even _if_the functions
a_ a_nd c_ a_re assmed t_o b_e Jonl bounded _and measureable. The key result
needed for thi’s extensx’on 1‘s the LW'. Under Hypotheses (I) and (II)
gi'ven a bounded, measureable function w satl'sfyi'ng the constraints for
t.n e minimm program only almost everwhere, there exists a bounded,
meaSureable function w“ whi'ch sati’sfi'es the constrai’nts for all ts[0,T]

wi'tn' [OT w’(t)'c(t) dt __<IOT w(t)'c(t) dt. (The corresponding result for

the max1’mum program 1's tri’vi’al.)

 

WEDNESDAY AFTEMOON

THE GUIDING PEWTATION METHOD FOR COMBINATORI& PROBLmS

E. Valen51'

Thi's paper deals w1'th combi'natorial problems 1'n whl‘ch a set of choi'ces
have to be made, subJ'ect to a gi'ven set of constral'nts. For 1'nstance, 1'n
the travelll’ng salesman problem w1'th n c1't1'es, the choi’ces con51'st 1'n
retal’ning or rej'ectl'ng each of the n(n—l)/2 edges of the graph so as to
construct a hmi‘ltoni'an cycle.

For real problems, the number of fe351'b1e solutions may be of the
order of 200 .' or 21000. A standard branch and bound method is then, not
fea51'ble, Si'nce, whatever the rules of branching and the boundi’ng functi’on
are, the tree to be explored 1’s far too large. To reduce the Si‘ze of,the
tree, 1't 1's p0551’ble ei'ther to truncate 1't, whi'ch leads to a heuri’sti‘c
procedure (condl’ti’ons will be given which allow 1'terat1'on of truncated branch
and bound methods), or to cut down the number of solutions by 1'ntroduc1'ng
necessary optimall’ty condi'tions.
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It is ronvoniont . lm‘ tiw Hlmiv oi ll'um'lll ion In in! rmim-t' n "guiding
p.9rmt1tati)(x\" (.‘. (.‘ in lixc' llx:<(l rl‘¢(|llt‘li('t'. ilil‘lliit'lli i)(r c-n«'ii )irlln(‘i| ()1
Cli‘t trt‘c', ill Wiii‘til |‘i|()i(“(M nert~ llltltit'. W‘: l'llii "lliiliil ill'llriiiit' 1|()illlvi)(llll"
corresponding to .‘l guiding ln'rmulnl inn (2. llw vmlut inn ((5) oblninmi
by loc‘ally (aptimlri'lxlp- lill‘ (‘(‘)(ll(llili(‘ i'lll1t'litnl) i(.8‘) [1| (ilt- (irtic-r im)[0H('(i
by G.

For a maxln1i7.1|ti()11 lwrwt)l|(‘m, lllldl'r q1li‘i(‘ g-(norrli ‘(()ndvitionn, and
suitably choson trillil‘nii)(n rui(-.H. w(\ Hi))(w lillli.'

a) Tile s.‘0111tl)c11 J((.‘) ())lt:llnc'd )iy n lr11n(-I|L'-(d i)ran‘ei1 and bound
method (r‘iwrr(\4.)1u<11div'nt' tit 11 gxiiding [wt-rmlntntion C, verifies.‘

f(,K(c)) _\ ((#0))
b) To e.a‘<.ix .H‘Ollitioll _§ -l((y‘) ‘Lan i)e. associated a guiding per-

mutation (‘9) .s‘ucli t1iut.‘

(#me = s
Wen

wows») _> stm = as)
Th1's 1'nequality show.e tliat interating the composed operation

leads to a sequence of non-decreasing solutions.

To defl'ner necessary optimall’ty conditions is equivalent to define a
subset T of the set of soluti'ons X in which the optimum is sure to be.

Wen searchi'ng for a permutation, 1'.e. an ordering, a partial ordering
w1‘th whl'ch the optl'mm order has to be consistent gi'ves such a necessary
cond1't1'on.

Let us suppose that a di'stance d(S 52) between solutions has been1,

defl'ned, that a heuristi’c solutl'on S' has been found and that we are able
to fl‘nd an upper-bound E(S') of its d1'stance to the optmm 5*, that 1'5'.

d(s'. s*) < E<s') ,-

X bel'ng a set of solutl‘ons, we suppose also we can fi'nd a lower
bound e(S', X) of the d1'stance d(S', S) for S e X .'

v s a x, e(X', x) _<d(S', 5)
men the relati'on

e(S', x) _< E(S')
definl‘es an opti’mall’ty condl'ti'on.

No exam.ples w1‘ll be gi'ven. TUESDAY EVENING
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STOCMSTIC PROGWS WITH MCQWSE'. SPECIM FOMS

D. W. Walkup and R.J.‘ B. Wets

In a previous paper the authors have defi’ned stochastic programs
with recourse and developed some of their theoretical properties. (Briefly
a stochastic program with recourse arl'ses when essenti’ally all parmeters
are allowed to be random in the two-stage programing under uncertainty
model introduced by G. Dantzig.) The objective of the present paper is
twofold. First, to identify, and set out some of the properties of, certain
speci‘al cases of stochastic programs with recourse such as.‘ (i) fi'xed
recourse, the matrix w of second-stage activity coefficients is nonrandom,‘
(i‘i) #simle recourse, the matrl'x W is [I,-I], a generalizati'on of a model

studied by Wi'lliams and Wets,’ and (1‘11’) stable recourse, w is square, a speci'al
case related to the so—called distributi'on problem. Second, to show how some
stochastic programs, such as the active approach due to G. Tintner, whl'ch at
fi'rst glance do not seem to fall into the framework of stochasti'c programs w1’th
recourse, can be put 1'n that fom.

TUESDAY AFTEMOON‘

 

MINMIZING A COWEX FUNCTION OVER A COWH BEL

R. J.-B. Wets and C. Wi'tzgall

Let S —- {Al,...,An} be a fi'nite collection of p01‘nts 1'n Rm,
and let f(x) be a real valued d1'fferentiable convex function defi'ned on
Rm. We consider the two problems‘.

Problem l.‘ Minimize f(x) over the convex hull con(S) of S.

Problem 2.‘ Minimize f(x) over the positive hull pos(S) of S.

There are two obv1'ous routes of attack.‘ cuttl'ng plane techni'ques
or fea51'ble di'recti'ons. We choose the latter, makl’ng use of the spec1'al
structure of the problem. The resulti’ng algori’thm will combi‘ne pi'votl'ng
1'n a matri’x, whose colmns correspond to the poi'nts in S, w1’th a method
of unconstrained mi‘nl'mization. The latter can be selected arbl’trarily
from a class, whi'ch we call "grad1’ent restricti’on methods", and which
compri'ses Steepest Descent, Fletcher—Powell, Newton-Raphson, Univari'ant
Mi'ni'mi'zation, and related methods.

At each stage of an algorithm, the current location x w1’ll be
represented as a combi'nati'on of generators A1., spanni'ng a sm‘plex (resp.
simpll'c1'al cone) A. Before leav1'ng A the representation 1’s changed,
which corresponds to the pivot steps mentioned above. The pivoting rules
follow from the authors' results on the algebraic characterl'zation of the
face structure of convex polyhedral cones.

The optmality criterion is as follows.‘ point x is optimal if the
contour tangent at x supports con(S) (resp. pos(S)),--a fact whi'ch
can be verified simply by exmining the f1'nitely many pOi'nts in S. The
gradient is then used in a double role.’ for describing the contour tangent
needed for the optmality criterion, and for obtai'ning a new directi'on,
both feasible and profitable, along which to proceed.
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Problem 2 arl'ses 1’n Stochastl'c Progrm1’ng, and the algor1‘thm seems
to be partl'cularl'v well adapted to solve Stochastl'c Progrms with Simple
Recourse, and the1'r generall'zatl'on by W1'lliams to the nonll'near case. In
partl'cular, 1't can be seen how the algorl‘thm takes advantage of the ap—
prox1'mat1'on fomulas developed by Wl'lll‘ams for Stochastic Programs with
Sl'mple Recourse.

MURSDAY AHERNOON

 

PRMWING WER WCERTAINW.‘ THE LINEM MCDWSE PROBLm

A. C. Wl'lll'ms

We con51'der a 11‘near progrm 1'n whl’ch the r1'ght—hand Sl'de (the supply/
dmand vector 1'n an activ1‘ty analy31's model) 1‘s a random. varl'able, and in
whl'ch ll'near penaltl'es or salvage values may be appll‘ed 1‘n case of under or
over productl‘on. It 1's assunred that we w1'sh to choose an x so as to
max'l'ml'ze the expected prof1't funct1'on. Thl’s problem has been called the
complete problm by R. Wets,‘ we call 1't the ll'near recourse problem, the
tem.1'nology suggested elsewhere by Wets and D. Walkup. It 1's perhaps the
$1ErPIESt of the stochastl‘c models that have been consl'dered, but 1't 1's of
1'nterest because (1) 1't 1’s a genul'ne generall'zatl'on of ord1'nary ll'near
program1'ng,' (2) manageable exl‘stence and characterl‘zatl'on theorems can
be gl‘ven, (3) gl'ven a solutl'on of an ordl'nary ll'near progrm, we may
estl'mate how good 1't 1's as an approx1‘mate solutl’on to the ll'near recourse
problem,' and (4) the case of convex penalty costs can be approx1’mated as
closely as we please by ll'near recourse problems.

Certal'n results on these problems have recently been obtal’ned by
us [1], [2], by A. Charnes, M. Kl'rby, and W. Ral‘ke [3], by Wets [4], and
by R. Wl'lson [S]. In thl's paper we show that the recent work of
R. T. Rockafellar [6] on conJ'ugate functl’on theory can be appll‘ed to obtain
essentl’ally all of these results (w1'th the exceptl'on of the algorl‘thml'c
development of lJets). Moreover, we extend s1'gn1'f1'cantly the duall'ty results
of [5], and strengthen the ex1'stence, characterl’zatl'on and approxl‘matl'on
results of [l] and [2].
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GMES, LINER PRWWING N THE TCHEBYCHEFF MPROXIMTION

L. B. Willner

The relations between these three topics are developed using new fomu—
lations of the equivalence between matrix games and the dual linear progrms
which correspond to discrete Tchebycheff approximation problms. This
approach leads to a very simple correspondence between matrix games and
discrete Tchebycheff approximation problems. It is show that while the
dual linear programs corresponding to a matrix game need not represent
Tchebycheff approximation problms, the game is nevertheless equivalent to
a dual pair of Tchebycheff problems. Further it is Show that every
Tchebycheff problem has a corresponding game.

TUESDAY EVENING

 

INTERCEPTION IN A NEWOM

R. D. Wollmer

This problem involves a game between two players, an evader and a
pursuer, who are constrained to operate on a network of nodes and arcs.
The evader w1’shes to choose a path from a source node in the network to a
sink node 1‘n the network in such a way that his probability of successful
traverse is maximized. The pursuer has N forces which he can place on nodes
and arcs wi’th the 1'ntention of mi'ni'mi'zi'ng the maximum evader escape prob-
abi’lity. Only the pursuer's strategy 1's developed in this paper. Each
node i has a nmber p(i)k representing the probabi'lity the evader will
be stopped at node 1' 1'f 1't is on h1's chosen path and the pursuer has k of
hi's forces placed there. Each arc (1',J') has similarly defined probabilities
p(i,j)k associ’ated with 1‘t.

The p(i)k and p(i,j)k are assmed to satisfy the law of dimin—
ishing returns. The pursuer's problem 1's thus one of ch0031‘ng numbers
n(i') and n(i,j), representing the expected nmber of forces he will place
at the nodes and arcs, such that the1'r sm 1's at most N, and such that the
evader's maximum probabi’lity source sink path 1's minimized. %ile this
problem can theoretically be solved by constructing the gme matrix, the
nmber of pure strategi‘es for moderate Si'zed networks can be extremely
large.

Thi’s paper presents 1‘ncremental approach which is much shorter and
reduces the computation to solv1'ng a sequence of maxmm flow problems.
The algorithm found yl'elds an optimal soluti’on for N—-l, and yields a
good approx1'mat1‘on for N>l.

WEDNESDAY AFTEMOON

ON A PRIML IMEGER PROGWING ALMRITW

R. D. Young

mis paper descri’bes a primal, all-integer algorithm for solving a
bounded and solvable pure integer Programing problem. The method is a
primal analogue to the Gomory All—Integer Algori’thm, and 1‘s a vari’ant
of the simplex method 1'n the sense that the Gomory algorithm is a variant
of the dual method. The simplified primal algorithm includes these major
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um-tndmentn ll) lllt‘ ‘.il111;)!(’x In(-l'||<)d.' (i) .1' sp(»(c'itz'l row, indexed by L, is
de)(lnt'(l t,'o Illi‘ [11)|l<'znu and In [wttrlodlc'ally revised by a well-defined
;)r\(‘((‘dlir('.' (Ii) [n lll()Hl (‘y(‘tl('H ()f t'hc Iqlg()ritl1m thc‘ pivot column, A
1.3' .qt»l(-(,-t (‘(i q.() tl1z|l .l'll - f) lxnd (1/.1'”)AJ .i.q lexicographically

snxallc'r tlxarl (l/nI )AI t ()r 1111 otlxe,*r non-basic columns A that have

J,

a n - 0 ,' (Iii) In all ey'( .1 1‘..s of time al.gorithm a Gomory cut is adjoined
aftt-EJ sclo ct i<)n of L'llt‘ pivot column, and the cut is selected so that it
wil l lxavc- a ulliL (‘oc-fficle‘nt' in the pivot (‘olumn and it will qualify (in
c»rd(‘r L'o 1)e 11.4~Ld) aH“ tlle, pivot row. With c.0mparatively weak restriction
011 Linc: selection ()f tlle row u.qed to generate tlle Gomory cut the simplified
primal algorithm is.‘ tshom to be finite.

FRIDAY AFTERNOON

 

APPLICATIONS OF ME CONVERCIENCE CONDITIONS

W. I. 7Jangw1'll

In a previous paper this author posed necessary and sufficient
conditions for the convergence of algorithms. In this paper these con—
ditions are specialized and the relation of the upper sem1‘—continuous
mappingr developed. Exploitation of these tools provides straightfomard
convergence proofs for many algorithms. As examples, algori‘thms, by
Cauchy, Newton, Huard, and Frank and Wolfe are establi‘shed.

TUESDAY EVENING

ENWEMTION ALGORITHMS FOR PURE MD MIXED INTERGER PROGWING

G. Zoutendijk

The mai’n subJ'ect of th1's paper is the description of an enmerati'on
algori‘thm for the 0-1 pure 1'nteger programing problem. Thi’s algori’thm 1's
partially based on exclusl'on rules and selecti’on cri’terl’a developed by
Benders, Balas and Clover but a number of new rules have been added. Ini’tial
computati’onal experi’ence has been encouragi'ng. Next 1‘t 1's shown how th1‘s
algorl’thm, 1’n a sll‘ghtly modifi‘ed form, can effl'ciently be used to solve the
integer sub—problems which ar1'se when dual decomposition 1‘s applied to the
solution of the mi'xed integer linear programi’ng problem of the 0-1 type.

As an alternative to decompositi'on direct tree-searching; can be appli'ed
to solve the mixed problem. The effi‘ciency of the search 1’s heav1’ly
dependent upon the structure of the tree and the way i't is being bu1'lt.
A particular way w1'll be demonstrated which is supposed to be more effective
than previous proposals.

FRIDAY AFTERNOON
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MONDAY, AUGUST 14

REGISTRATION: Princeton Playhouse,
9 am. to 10 a.m.

OPENING SESSION: 10 a.m. to 12 noon

DEAN L. SPITZER, JR., Princeton University
W'elcoming Remarks

6%.B.ANTZIG
vited Survey: Large Scale System

E. M. L. BEALE
Matrix Generators and Output Analyzers

PARALLEL SESSIONS: 1:45 p.m. to 4:30 p.m.

A: LARGE SCALE SYSTEMS: McCosh 10
/~ A. C. W’ILLIAMS

SESSION
Chairma   

  

 

and M. SAKAROVITCI—I
Method of Decomposition

J.ABAD

L. D. PYLE and D. K. SMITH
Iterative Solution of Large, Sparse Linear Systems

\W. ORCHARD~HAYS
VThe Block Product Decomposition Algorithm

R. H. COBB and J. CORD
A Decomposition Approach for Solving Linked
Programs

T. O. M. KRONSJO
Centralization and Decentralization of Decision
Making: The Double Decomposition Method —
Generalization and Proof of Convergence

SESSION B: ALGORITHMS: Frick 138
Chairman: A. W. TUCKER

d’A. BEN-IS 'AEL
O ‘ ewton’s Method in Nonlinear Programming

\
.lwfi.
\. XD.L V

Ex ding Newton’s
nequalities

ofMethod to Systems

].D.ROODE
Interior Point Methods for Mathematical Progrnm~
ming Problems

V. NALBANDIAN
The Shifting-Objective Algorithm

G. L. THOMPSON
A New Algorithm for Transportation and Assign-
ment Problems

EVENING SESSION: McCosh 10, 8 p.m.

PANEL DISCUSSION OF THE DESIGN AND DE-
VELOPMENT OF MATHEMATICAL PROGRAMMING
SYSTEMS

Chairman: E. M. L. BEALE
D. W. I’IALLENE, M. MINNS, C. A. HAVERLY



TUESDAY, AUGUST 15

GENERAL SESSION: Princeton Playhouse, 9 a.m. to 12 noon
Chairman: ABADIE

P. WOLFE
Invited Survey: Nonlinear Programming

G. ZOUTENDIJK
On
Optimization

R. T. ROCKAFELLAR

Continuous Finite Dimensional Constrained

Conjugate Convex Functions in Nonlinear Pro-
gramming

A. R. COLVILLE
A Comparative Study of Nonlinear Programming
Codes

PARALLEL SESSIONS: 1:45 p.m. to S p.m.

SESSION A: A PROGRAMMING UNDER UNCER-
TAINTY: McCosh 10

Chairman: R. M. THRALL
M. J. L. KIRBY

The Current State of Chance—ConStraincd Pro-
gramming

D. \V. WALKUP and R. J. B. W'ETS
Stochastic Programs with Recourse: Special Forms

A. C. “WILLIAMS
Programming Under Uncertainty: The Linear Re-
course Problem

A. PREKOPA
On Probabilistic Constrained Programming

B. BEREANU
Renewal Processes and Sonic Stochastic Program—
ming Problems

it re;

SESSION B: ALGORITHMS: Frick 138
Chairman: P. WOLFE

A. V. I-‘IACCO and G. P. MCCORMICK
Nonconvex and Convex Programming by Gen-
eralized Sequential Methods

M. COURTILLOT
A Method for Convex Programming

R. E. CLINE and L. D. PYLE
On the Solution of Structured LP Problems using
Generalized Inverses

D. F. SHANNO
An Algorithm for Linearly Constrained Non-
linear Estimation

J. B. ROSEN
Approximate Computational Solution of Nonlinear
Parabolic Partial Differential Equations by Linear
Programming

EVENING PARALLEL SESSIONS: 8 p.m.

SESSION A: McCosh 10
Chairman: R. H. COBB

T. L. SAATY
On Nonlinear Optimization in Integers

]. MORAVEK
On the
Problems
SAUNDERS and R. SCHINZIGER
The Shrinking Boundary Algorithm for Diophantine
Programming
GEOFFRION
Implicit Enumeration Using an Imbedded Linear
Program

J. K. THURBER

Complexity of Integer Programming

R. M.

A. M.

The Solution of Programming Problems by Gen- -
crating Functions

E. VALENSI
The Guiding Permutation Method for Combina-
torial Problems

J. R. HEMSLEY
A Class of Finite-Time Markov-Renewal Program-
ming Situations

L. E. SCHWARTZ
Application of Nonlinear Programming and Bayesian
Statistics to the Theory of the Firm

SESSION B: Frick 138
Chairman: R. W. COTTLE

V. DzANGELIS
Minimization of a Separable Function Subject to
Linear Constraints

P. BOD
The Solution of a Fixed Charge Linear Program-
ming Problem

0. L. MANGASARIAN
Optimality and Duality in Nonlinear Programming

L. B. WILLNER
Games, Linear Programming and the Tchebychefi
Approximation

W. I. ZANG\lv"ILL
Applications of the Algorithmic Convergence Con-
ditions

L. HALLER /
‘ ‘ A Hypercone Search Optimization Method
M. AVRIEL and D. ]. WILDE

Stochastic Geometric Programming

V. J. LAW and R. H. FARISS
Nonlinear Programming via Rotational Discrimina—
tion
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WEDNESDAY, AUGUST 16

GENERAL SESSION: Princeton Playhouse, 9 am. to 12 noon
Chairman: J. B. ROSEN

M. CANON
Invited Survey: Control Theory and Mathematical
Programming

H. HALKIN
Programming in Infinite Dimensional Space and
Control Theory

F. SUPNICK
The Traveling Salesman Problem

PARALLEL SESSIONS: 1:45 p.m. to 6 p.m.

SESSION A1: CONTROL THEORY: McCosh 10,
1:45 p.m. to 3:45 p.m.
Chairman: H. HALKIN

W. P. DREWS and R. G. SEGERS
Continuous Mathematical Programming
Linear Integral Constraints

under

D. TABAK
Application of Linear and Nonlinear Programming
in Optimal Control of Nuclear Reactors

G. HORNE and G. S. TRACZ
Nonlinear Programming
Schemes

and Second-Variation

SESSION A2: THEORY AND DUALITY: McCosh 10,
4:15 p.m. to 6 p.m.
Chairman: C. E. LEMKE

A. CHARNES and K. KORTANEK
On Classes of Convex and Preemptive Nuclei for
n-I’erson Games

R. ]. DUFFIN and E. L. PETERSON
Recent Developments in Geometric Programming

G. E. BLAU and I). WILDE
Second Order Characteril.‘ation of Generalized Poly-
nomial Programs

W. F. TYNDALL
An Extended Duality Theorem for Continuous
Linear Programming Problems

SESSION B: NETWORKS: Erick 138,
Chairman: G. L. THOMPSON

T. C. HU
A Decomposition Algorithm for Shortest Paths in
a Network

D. R. FULKERSON
The Max-Flow Min-Cut Equality and the Length-
Width Inequality for Real Matrices

M. L. BALINSKI
On Maximum Matching, Minimum Covering, and
Duality

E. L. JOHNSON, EDMONDS and S. LOCKHART
The Degree-Constrained Subgraph Problem

V. E. BENES
Optimal Routing in Connecting Networks over
Finite Time Intervals

J. W. SUURBALLE
Algorithms for Minimal Trees and Semi—Steiner
Trees

0. I. FRANKSEN
Mathematical Programming by Physical Analogies

R. D. WOLLMER
Interception in a Network

EVENING SESSION: McCosh 10, 8 p.m.

SPECIAL INTEREST GROUP IN MATHEMATICAL
PROGRAMMING (SIGMAP): Report on activities. in-
cluding three recent Workshops on Branch and Bound,
Unconstrained Optimization, and Programming System
Development

 



THURSDAY, AUGUST 17

GENERAL SESSION: Princeton Playhouse, 9 a.m. to 12 noon
Chairman: R. R. SINGLETON

H. W. KUHN
Invited Survey: Mathematical Programming and
Economic Theory

H. SCARF
On the Computation of Equilibrium Prices

D. GALE
Optimal Economic Development: A Concave Pro-
gramming Problem in Denumerably Many Variables

PARALLEL SESSIONS: 1:45 p.m. to 6 p.m.

SESSION A1: THEORY AND DUALITY: McCosh 10,
1:45 p.m. to 3:45 p.m.
Chairman: D. R. FULKERSON

E. G. GOLSHTEIN
Dual Convex and Fractional-Convex Programming
Problems

J. EDMONDS
Matroids and Extremal Combinatorics

C. P. BRUTER
Orthogonality in Matroids and Mathematical Pro-
gramming

V. KLEE
Recent Results on the Combinational Structure
of Convex Polytopes

SESSION A2: ECONOMIC APPLICATIONS:
McCosh 10,
4:15 p.m. to 6 p.m.
Chairman: H. SCARF

R. BEALS and T. C. KOOPMANS
Maximizing Stationary Utility in a Constant Tech-
nology

D. MCFADDEN
On the Existence of Optimal Programs of Economic
Growth

A. K. KLEVORICK
Mathematical Programming and Project Interrela-
tionships in Capital Budgeting

G. CASALE
A Theoretical Analysis of Inputs Taxation under
Linear Programming Assumptions
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SESSION Bl: NONLINEAR PROGRAMMING
ALGORITHMS: Frick 138,
1:45 p.m. to 3:45 p.m.
Chairman: H. W. KUHN

R. B. WETS and C. WITZGALL
Minimizing a Convex Function over a Convex Hull

G. ZOUTENDIJK
Enumeration Algorithms for Pure and Mixed In-
teger Programming

lY/RRAY
Ill-conditioning Occurring in Penalty and Barrier
Functions

SESSION BZ: APPLICATIONS: Frick 138,
4:15 p.m. to 6 p.m.
Chairman: H. D. MILLS

B. MEISTER and W. OETTLI
On the Capacity of a Discrete, Constant Channel

A. HOFFMAN and T. RIVLIN
When is a Team “Mathematically” Eliminated?

L. S. LASDON and A. D. WAREN
Nonlinear Programming and Engineering Design

//

J. P. KOHLI and F. W. LEAVITT
Optimum Design of Long Pipe Line Networks

BANQUET: Princeton Inn, 7:30 p.m.
Speaker: F. J. WEYL,
National Academy of Sciences  



FRIDAY, AUGUST 18

GENERAL SESSION: Princeton Playhouse, 9 a.m. to 12 noon
Chairman: R. L. GRAVES

M. L. BALINSKI
Invited Survey: Integer Programming

R. E. GOMORY
Faces of an Integer Polyhedron

E. BALAS
Duality and Pricing in Discrete Programming

PARALLEL SESSIONS: 1:45 p.m. to 3 p.m.

urn-ohm “190*
SESSION A: INTEGER PROGRAMMING: Msh 10 SESSION B: NONLINEAR PROGRAMMING

Chairman: M. L. BALINSKI THEORY: Frick 138
Chairman: G. ZOUTENDIJK

R. E. D. WOOLSEY and C. A. TRAUTH, JR.
On Solving Some Classes of Integer Linear Pro- P. SCHONFELD
gramming Problems Some Duality Theorems for the Non-Linear Vector

Maximum Problem
P. HUARD

Programmes Mathematique Nonlineaires 3 Variables M- GUIGNARD
Bivalentes On the Kuhn-Tucker Theory

R. D. YOUNG
On a Primal Integer Programming Algorithm

K. FAN
Asymptotic Cones and Duality of Linear Relations

SPECIAL SESSION: McCosh 10, 3:30 p.m. to 5 p.m.
PIVOTAL METHODS AND COMPLEMEN-
TARY SOLUTIONS
Chairman: G. B. DANTZIG

A. W. TUCKER, C. E. LEMKE, R. W. COTTLE, T. D.
PARSONS, R. L. GRAVES


