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S.N. AFRIAT, University of North Carolina, Chapel Hill.

R *
The Progressive Support Method for Convex Programming

A solution to a convex problem P, to find a maximum x of f(x)
subject to g(x) < 0 where f(x), g(x) are functions which are concave,
convex respectively, is approached by solutions of a series of poly-
hedral convex problems Pm = P(x] . xm), where X is the solu-

tion of Pm = P(x1 4ol ¥ 5 xm—l)' The polyhedral problems, since they

-1
are expressible as standard linear problems, can be treated by the

simplex algorithm. The problem P_ is to find a maximum x of
m m+ 1

fm(x) subject to gm(x) < 0, where

fm(x) min[ol(x) b B E G cm(x)],

ngX) = maxtol(X) seves pm(X)],

and or(x), pr(x) are linear supports of f(x), g(x) at X e The func-
tion fm(x) defines a polyhedral concave function circumscribed to
the concave function f(x) at the points Xy seees Koo Similarly,
gm(x) is a polyhedral convex function circumscribed to g(x) at the
points. Then Pm is a polyhedral convex problem and defines a sup-

port for P based on points Xy seees Xoo

This process, with a different formulation but no essential
difference, is exhibited by the Algorithm IV of Cheney and Gold-
stein [1]. They cite earlier appearances of the basic idea, includ-

ing the cutting plane method of Kelley [2]. With
e(x,t) = max[t - £(x), g(x)1,

the problem P can be put in a standard form:
max[t:p(x,t) < 0].

The presently considered support method, as it applies to the pro-
blem put in this standard form, gives the same process as Kelly's

method. There is a diversity of ways in which the cutting plane

* SIAM J. Numer. Anal. Vol.7, No. 3, September 1970.



principle can be elaborated, and relative merit must depend upon
peculiarities of the problem dealt with. But a separate advantage
of the present development is that, in an extended version, to be
considered later, it can simultaneously determine dual solutions
for problems with several constraints. Discussion is also provided
for questions such as concern the starting procedure and the deci-
sion of boundedness and consistency. Of practical importance is a
condensation of the process which is pointed out, by which con-
straints are retired as new ones are introduced, so the successi-
vely treated linear problems remain strictly limited in size. Also
remarked is the advantageous application of the process to linear

problems which have a large number of constraints.

[1] E.W. CHENEY and A.A. GOLDSTEIN, Newton's method for convex pro-—
gramming and Tchebycheff approximation, Numer. Math.,
1(1959), pp. 253-268.

[2] J.E. KELLEY, The cutting plane method for solving convex pro-—
grams, SIAM J. Appl. Math., 8(1960), pp. 703-712.

LEIF APPELGREN, Salén Shipping Companies, Stockholm.

Computational Experience of a Vessel Scheduling Algorithm using

Column Generation and Branch—and—Bound Techniques.

The column generation part of this algorithm is described in
Transp. Science 3, No. 1, 1969. As this LP algorithm does not
guarantee integer solutions, a branch—and-bound algorithm has been
added.

The problem concerns the assignment of a set of vessels to a set
of cargoes. It is assumed that two cargoes are never carried simul-
taneously by the same vessel. The cargoes are characterized by size,
type, loading and discharging ports and dates. The vessels have

different size, type, speed and initial position.



The column generation algorithm iterates between a master LP rou-
tine and a subprogram using dynamic programming. In the dynamic
programming routine, an optimal path is generated for each vessel
using cargo values obtained from the dual variables of the master
program. The master program combines the previously generated ves-
sel paths into an optimum schedule under the constraints that each
vessel follows exactly one path and that each cargo is carried

exactly once.

If the planning period is so short that each vessel can carry omne
cargo during the period, the LP problem is an ordinary assignment
problem which always has an optimal integer solution. This is not
the case, however, when the vessels can carry sequences of two or
more cargoes during the period. In the branch-and-bound algorithm,
one fractional variable is selected from the previous solutionm.

1? 02 seecsy
for a specific vessel V. One of these cargoes, say Cl’ is selected,

This variable corresponds to a specific cargo sequence C

and a branching is made into the two alternatives that Vessel V

must/must not carry cargo C.. The column generation algorithm is

1
then applied on these alternatives, which are controlled by varia-

tion of the value of cargo C, for vessel V in the dynamic program-—

1
ming routine. If even the new solutions are fractional, a new vessel/

cargo combination is selected and the process is repeated.

The algorithm is presently run on a CD 6600 computer where the run-—
ning time until the first LP optimum is approximately five minutes
for a six week problem with about 110 vessels and 120 cargoes. The
branch-and-bound algorithm has to be used when the first LP opti-
mum is fractional, which it is in about 50 7 of the cases for this
problem size. In these cases between two and ten constrained pro-
blems have to be solved, but the running time for these problems

is only about 10 7 of the time for the initial solution since they
use the previously generated LP matrix and the old solution as a

starting basis.



MORDECAI AVRIEL, Technion, Haifa.

Nonlinear Programming with r—convex Functions.

In recent years several extensions and generalizations of con-
vex functions have appeared in the mathematical programming lite-
rature. The purpose of this paper is to present a unified theory of
nonlinear programs involving a large class of functions including

. . *
convex functions and most of the known extensions.

Denote by Mr(a], a2; q) the weighted rth mean of two nonnegative

numbers a] and az. Then we have the well known formula;

M o', a%5 @ = [q,ah)T + q, D"

q, 20, 9,20, q; +q, =1

Let f be a real valued nonnegative function defined on a convex

subset C of R". We call f r-convex if given xl e C, %% e C

1 2 1 2
£(q; x +q, x) <M (£(x), £(x); q)
for any two numbers q, > 0, q, > 0 such that q, + q, = 1.
For r = 1 the above relation reduces to the definition of ordinary

nonnegative convex functions. The well known relation

1 2 1 2
M (a, a5 q) <M (a’, a"; q)
for s > r determines a ranking of r-convex functions culminating

in quasiconvex functions for r - + .

In this paper we first present some algebraic and geometric proper-—
ties of r—-convex functions, then discuss necessary and sufficient
conditions for optimality in nonlinear programs with r-convex func-—
tions. Finally, relations between r—convex functions and other known
extensions of convexity are developed.

* .
e.g. pseudoconvex functions.



M.L. BALINSKI, City University of New York and IBM France, Neuilly-

sur—Seine.

A Totally Feasible Method for Linear Programming.

Consider the pair of dual linear programs (in ''canonical form'):

v

(P) : max{ey; Ay < b, y > 0} and

(D) : min{xb; XA > ¢, x > 0}.

Three conditions are necessary and sufficient for y" and x* to be
optimal solutions: (i) y* feasible ("primal feasible"), (ii) X
feasible (''dual feasible'), and (iii) X (b - Ay*) + (x*A - c)y* =0,
i.e., each term of the summation has at least of its factors equal

to zero ("complementary orthogonality').

The simplex method [4] begins with a feasible y-solution, a paired
x-solution satisfying the complementary orthogonality property, and
maintains these conditions while working to obtain a feasible x-so-
lution. The dual simplex method [ 1] begins with a feasible x-solu-
tion, a paired y-solution satisfying the complementary property,
and maintains these conditions while working to obtain a feasible
y-solution. The method of this paper fills the evident gap: it be-
gins with feasible x— and y-solutions and maintains these condi-
tions while working to obtain complementary orthogonality. As such,
it is related to recent work on ''complementary pivot theory"

(e.g., [3], [6]) although the method itself was inspired by the
existence of three similarly related methods for transportation
problems (e.g., a primal method [1], a dual or Hungarian method [5],

a totally feasible method [2]).

The interest of this approach is largely computational: in instan-—
ces where good initial guesses at feasible solutions for both pro-

grams can be made - such as is the case for a pair of mixed strate-



gies for matrix games or for industrial problems which are resolved
periodically with only slightly changed parameters — it would be
reasonable to expect that a method improving such good starts would
be preferable to methods which '"forget'" half of this information.
An experimental study is under way to evaluate this '"expectation"

and will be reported upon.

[1] Balinski, M.L. and R.E. Gomory, "A Primal Method for the Assign-

ment and Transportation Problems', Management Science,

Vol. 10 (1964), pp. 578-593.

(2] Briggs, F.E.A., "A Dual Labelling Method for the Transportation
Problem', Operations Research, Vol. 10 (1962), pp. 506-517.

[3] Cottle, Richard W. and George B. Dantzig, 'Complementary Pivot

Theory of Mathematical Programming', Mathematics of the

Decision Sciences, Vol 1, American Mathematical Society,

1968, pp. 115-136.

(4] Dantzig, G.B., '"Minimization of a linear Function of Variables

Subject to Linear Inequalities', in Activity Analysis of

Production and Allocation, John Wiley & Sons, 1951, pp.
339-347.

(5] Kuhn, H.W., "The Hungarian Method for the Assignment Problem",
Naval Research Logistics Quarterly, Vol. 3 (1956), pp.
83-97.

[6] Lemke, C.E., "Bimatrix Equilibrium Points and Mathematical Pro-

gramming', Management Science, Vol. 11 (1965), pp. 681-689.

[7] Lemke, C.E., "The Dual Method of Solving the Linear Programming

Problem', Naval Research Logistics Quarterly, Vol. 1

(1954), pp. 36-47.




JOSEPH L. BALINTFY, University of Massachusetts, Amherst.

Mathematical Programming Models and Techniques for Optimum Human

Diets.

Acceptable and economical human diets can be planned by mathe-
matical programming approaches and computers. The new technique of-
fers significant cost saving advantages with nutritionally control-
led diets especially for volume feeding systems and institutions.
The problem is solved by constructing mathematical models for menu
planning. The variables in these models are the Cartesian products
of the menu items and the days involved in a planning period. The
constraints are derived from dietary, palatability (variety) and
structural considerations. The formulation leads to large scale and
presently unsolvable mixed integer programming problems with some
stochastic elements. A special multiple choice programming algorithm
was developed and applied to find near-optimum menus by a fast multi-
stage solution process. An alternative linear programming model with
bounded variables and heuristic scheduling was also found to be ap-
plicable in certain cases. The rapid acceptance and application of
these models initiated a new computer technology for the food ser-—

vice industry.

E.M.L. BEALE and J.P. VIT, Scientific Control Systems Limited,

London.

Selecting subsets by Dynamic Programming.

In spite of recent improvements in general mixed integer al-
gorithms (see for example Tomlin (1970)), other procedures for fin-
ding optima to special classes of non—-convex problems remain impor-
tant. One such class is the selection of an optimal subset from a
finite set of elements. An enumerative tree search method for such
problems is described by Beale, Kendall and Mann (1967) and in more

general terms by Beale (1970).



Gortsko (1966) discusses a dynamic programming approach to the
problem of depot location in one dimension. At first sight this work,
while interesting, seems outside the mainstream of mathematical pro-
gramming. But this is not really the case. The problem reduces ma-
thematically to the subdivision of a line into non-overlapping in-
tervalls so as to minimize an objective function consisting of a
sum of functions of the selected intervalls. (These functions re-
present the cost of servicing that particular section of the line
from a single depot located in the best position for this task).

For numerical dynamic programming work we must select a finite num-—
ber N of possible break-points between successive intervals and we
must select an optimum subset out of them. Dynamic programming sol-—
ves this problem very easily, because the objective function C to

be minimized is of the form

) . (1)
k=1 ‘k-1'%

where io = 0, il e 5l ir denote the selected points in ascending

sod ™ N+1, and ajk denotes the cost associated with the

single interval from the th to the kEb point.

order, 1i

Problems with this precise cost structure may be rare. But in
many problems of selecting a subset from some ordered set one can

define quantities ajk such that

r+1
CEC+Zai : (2)
k=1 k=1"k
for any selection. The quantity C0 then represents the cost when
all points are selected, and ajk represents the net increase over

this cost when all points between the jth and the kth are omitted.

When (2) holds, dynamic programming can be used to provide a
lower bound on the possible cost and a suggested selection. This

analysis can be refined by using a tree-search algorithm, continu-



ing to a guaranteed optimum if desired. The branches of the tree
represent preselecting a single point to be either in or out of the
final solution. With any such preselections a new set of ajk can be
computed such that (2) provides a better bound on the cost of other
selections. Dynamic programming can therefore be used to evaluate

each node of the tree, and to derive bounds on unexplored nodes.

(1] E.M.L. Beale (1970) "Selecting an Optimum Subset" in Integer
and Nonlinear Programming. Edited by J. Abadie (North
Holland, Amsterdam).

(2] E.M.L. Beale, M.G. Kendall and D.W. Mann (1967). "The discar-
ding of variables in multivariate analysis''. Biometrika
54 pp. 357-366.

[3] A. Gortsko (1966) Mathematical Models and Optimal Planning,

Nauka Novosibirsk

(4] J. Tomlin (1970) "Branch—and-Bound Methods for Integer and

Non-Convex Programming', in Integer and Nonlinear Pro-

gramming. Edited by J. Abadie (North Holland, Amsterdam).

MARTIN J. BECKMANN, Technische Hochschule, Mﬁnchen,and Brown Uni-

versity, Providence, and
KAILASH C. KAPUR, General Motors Research Laboratories, Warren,
Mich.

On Duality and Conjugacy in Non-linear Programming and some Appli-

cations.

The purpose of this paper is to prove and apply a duality theorem
which is of considerable interest in transportation planning and

utility analysis.
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Duality Theorem

Let f(x) be concave and let the set (1) S = [x]x = 0, Ax = c] be
bounded. Then

(2) Sup f(x) = £(X) = Inf [u'e = @(u)]
x e S uzo0

where @#(u) is a generalized conjugate function of f(x)

(3) @(u) = Inf [u'Ax - f(x)].
x e S

This duality theorem differs from the conventional ones by using the
conjugate function concept [Fenchel, Rockafellar]. Of course, this
function is known explicitly only in special cases. Several will be

discussed here: The quadratic, the separable, and the Cobb—-Douglas

cases.

For a negative definite quadratic objective function

f(x) = 1/2 x'Qx + b'x with linear constraints Ax S ¢ the conjugate

function turns out to be
Fw) = 1/2 (u'A -b") Q' (Au - b)
and the dual problem is

In [u'c = FCu)] .

b
>
u =

0

For a separable differentiable objective function

*x

; p, (x)dx
P

. < . . .
and constraints Ax = ¢ the conjugate function is
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§' Yi8ik

*

6 (uw) =} J g, (P)dp
ko

where the functions gk(p) are the inverse functions to pk(x). The

conjugate function Q* is an alternative representation of a con-

sumer surplus. This has applications to transportation systems plan-

ning.

Application of quadratic, separable and Cobb-Douglas maximization
functions are given to utility maximization by households subject
to budjet constraint and to (unconstrained) profit maximization by

firms.

MANDELL BELLMORE, The Johns Hopkins University, Baltimore, and

H. DONALD RATCLIFF, The University of Florida.

Set Covering and Involutory Bases.

Some new properties associated with the special class of inte-
ger programs known as weighted set covering problems are derived.
While it is well known that an optimal integer solution to the set
covering problem is a basic feasible solution to the corresponding
linear program, we show that there exists an optimal basis which 1is
involutory (i.e., B = B-]).

This property and others are used to develop a new algorithm
which uses strong cutting planes. The cutting planes are strong in

the sense that they exclude both integer and non integer solutionms.

Computational experience is presented.
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R. BENAYOUN, J. de MONTGOLFIER, J. TERGNY, SEMA (Metra International),

Paris,; and
0. LARITCHEV, Profsojusnaja 81, Moscow.

Linear Programming with Multiple Objective Functions

This paper describes a solution technique for Linear Programming
problems with multiple objective functions. In this type of pro-
blem it is often necessary to replace the concept of "optimum' with
that of "best compromise'". In contrast with method dealing with a
priori weighted sums of the objective functions, the method descri-
bed h2re involves a sequential exploration of solutions. This ex-
ploration is guided to some extent by the decision maker who inter-—
venes by means of defined responses to precise questions posed by
the algorithm. Thus, in this manmodel symbiosis, phases of compu-
tation alternate with phases of decision. The process allows the
decision maker to "learn' to recognize good solutions and the rela-
tive importance of the objectives. The final decision (best compro-
mise) furnished by the manmodel system is obtained after a minimum

of successive optimisations.

Three major classes of problems are envisaged: those where the re-
lative importance of the objective functions is quantified, where
it is known but not quantifiable, and where it is completely un-

known. In every case, the intervening phases of computation, gui-
ding the exploration of solution space, are easily programmed on

the computer. The method is illustrated by an application in Man-
power Management. The model is a LP with four different linear ob-

jective—functions:

1. Employee satisfaction;

2. Employee efficiency;

3. Costs (salary, recruiting, training,...);

4. "Slack" between programme allocations and forecast staff require-

ments.
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A practical numeric example is examined, with the help of a stan-

dard Linear Programming code.

M. BENICHOU, J.M. GAUTHIER, P. GIRODET, G. HENTGES, G. RIBIERE,
O. VINCENT, IBM France, Paris.

Mixed Integer Linear Programming.

This paper first presents a branch—and-bound type method for sol-
ving mixed integer linear programming problems; new rules for bran-

ching and bounding are used.

This method has been implemented in a code, which appears as a mo-—
dule of the IBM Mathematical Programming System/360. The implemen-—
tation presents original features to give full efficiency to the
branch—and-bound search. Numerous parameters in the code enable the
user not only to produce and prove optimal integer solutions but

also to explore the set of integer solutions.

At last, extensive numerical results and comparisons between vari-

ous rules of branching and bounding are presented.

Several models of real problems have already been solved. See at-—

tached first results where:

Problem 1, 2, 3, 4 are investment models
Problem 5, is the model of a bank

Problem 6, is a production planning model.
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BERNARD BEREANU, Academy of the Socialist Republic of Romania,

Bucharest.

Numerical Methods in Stochastic Linear Programming.

The problem of determining the probability distribution and
(or) the moments of the optimum of a linear program with random
coefficients with respect to an a priori distribution (distribu-
tion problem) is solved in principle [1]; but no efficient numeri-
cal method was published except when such coefficients are affine
functions of a single random variable [2].

Here such a method is proposed which is operational if the num-
ber of random variables on which the coefficients (which may all
be random) depend is not too large. However, the limitations on the
dimensions of the program itself are only those imposed by existing
computers on ordinary linear programs. The method is also applica-
ble to nonstationary stochastic programming (the distribution of
the coefficients change with time) and it is shown that the upda-
ting of this distribution involves relatively little additional
running time.

The relation between the distribution problem and the two—
stage programming (recourse problem) [3], [4], computer implemen—
tation of the algorithm (stationary and nonstationary case), run-—
ning time, error estimation and efficiency are discussed. Sample

problems are given and some computational experience reported.

The method is based on the following. Let

(1) Y(&) = max  c(£)x subject to A(£)x = b(&),

x = 0, where £ is an absolutely continuous random r-vector with
sample space [ak, bk],'k € 1,r and the components of A(£), b(&),
c(g) are affine functions of £ (perhaps projections). Suppose that
(1) defines a random variable, e.g., we have a positive stochastic

program [1].
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In the nonstationary case { is replaced by a multidimensional sto-

chastic process with discrete parameter {Et, £t e Tl

Here after the indices i,j,...,p take the integer values ,n
and k takes the values 1,s, with s = r-1, and these limits will not
be indicated.

Let A? " h? be the coefficients and nodes of the standard
Gaussian quadrature formula with n nodes, x;i =1/2 (bk-ak)hg +

* 1/2 (a*b) and D = 27° I (b -a,). Put

_ n n n n n n
Fn(z) =D g " 2 Ai"'Ap FY(zlxli""’xsp)f(xli"'"xs

P

p).

2 n n 2 n n n n
M DY sss ) Ai...Ap M (Y[xli,...,xsp)f(xli,...,xsp

n .
1 P

) s

where f(.) is the marginal density of the vector (gl,...,gs) and

n n 2 n n
Fy(zlxli’°"’xsp)’ M (leli,...,xsp)
are the conditional probability distribution function and the mo-
ments of order % of y(£); then they can be computed for 2 = 1,2
with the computer program STOPRO of [2].

We have:

1. Fn(z) y Fy(z) and Mﬁ - Ml(y) when n > « and FY(E) and MR(Y) are
the probability distribution function and the moments of order

2 of y(£) (when such a moment exists).

2. Analogous relations hold for nonstationary programming and the

inputs to STOPRO do not depend on t.

3. If, for each t, the rth component of Et is independent of the
remainder of the components and identically distributed, then

2 n n
Fyt(zlxli""’xsp) and M (Ytlxli""’KSp) do not depend on t.
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[1] B. Bereanu, Z.Wahrscheinlichkeitstheorie und Verw. Gebiete, 8,
148-152, 1967.

[2] B. Bereanu and G. Peeters, D.P. 6815, Center for Oper. Res. and

Econometrics, Univ. of Louvain, 1968.
[3] G.B Dantzig, Management Sci., 1, 3-4, 197-206, 1955.

[4] D.W. Walkup and R.J. Wets, SIAM J. Appl. Math., 15, 1299-1314,
1967.

HANS BERGENDORFF, The Royal Institute of Technology, Stockholm.

An error estimate for discrete approximations of continuous state

space dynamic programming.

The presented result is part of a work concerning controlled Markov-
processes with incomplete state information. The model used is a
finite state infinite time, discounted, controlled Markov process
where the states are grouped into classes, superstates. The infor-
mation that is available to the decisionmaker is the superstate

plus a probability distribution over the hidden substates in the
superstate. An important special case is optimal control with no
information, viz. a process with only one superstate. Optimal con-
trol in that case can be found by solving a dynamic programming pro-
blem with a continuous state space (of probability distributions).
If that problem is solved with dynamic programming on a discrete
state space. (where the discrete state space represents an e-grid

in the continuous state space), the error depends on the maximal va-
riation of the partial derivatives of the true value function in

the interval between the discrete points. The results show this de-
pendence and give upper and lower bounds for the partial derivati-
ves. Upper bounds for the partial derivatives are given by the state
values of the corresponding optimally controlled Markov chain with
perfect state information. If these upper bounds are given by T(r)
where r is the payoutvector in each stage, the lower bounds are gi-

ven by —T(-;).
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ABRAHAM BERMAN, Northwestern University, Evanston, and Université

de Montreal, Montreal, and

ADI BEN-ISRAEL, Technion, Haifa.

Linear Inequalities, Mathematical Programming, and Matrix Theory.

Solvability theorems for linear inequalities over cones and
cones with interior are developed and applied to complex mathema-—

tical and to matrix theory.

UMBERTO BERTELE' and FRANCESCO BRIOSCHI, Politecnico di Milano,

Milan.

New Developments in the Theorz_gg_ggnsé;ial Dynamic Programming.
/

—

Consider the following optimization problem

min F(X) = min X f.(xl)
. 1
X 1el

where X = {x],xz,...,xM} is a set of discrete variables,
I=4{1,2,...,n} and X' < X.

Each component fi(xl) of the cost function F(X) is specified by

means of a stored table withlxil + 1 columns and olxll rows (it has
been assumed that all the variables have the same range).

One ordered partition among all the possible ones of the variables
of the set X is selected. For this partition the given optimization
problem {(the primary optimization problem) may be solved by dynamic
programming.

Since an optimal assignment for X can can be obtained by all ordered
partitions of X,it is clear that another optimization problem, the
secondary optimization problem, arises. It consists in determining
that partition that is the best from the point of view of the mini-

mization of the computing time and of the storage requirements.
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The solution of the secondary optimization problem is based on graph
theoretical considerations.

The previous works on non-serial dynamic programming [1,2,3,4] are
essentially concerned with finding a solution to the secondary op-
timization problem in the special case when each block of the or-
dered partitions consists of a single variable.

The consideration of this special class of decompositions is suf-
ficient for minimizing a reasonable index of the computing time
needed for the solution of the primary optimization problem.
However, for tackling the memory limitations it is essential to
deal with a more general class of decompositions than the one con-—
sidered here.

In this paper many interesting new results are given and their com-—

putational relevance is pointed out.

[1] F. BRIOSCHI and S. EVEN, Minimizing the Number of Operations
in Certain Discrete Variable Optimization Problems, to
appear in Operations Research. Technical Report 567,
Division of Engineering and Applied Physics, Harvard

University, Cambridge, Mass, August 1968,

(2] U. BERTELE' and F. BRIOSCHI, A New Algorithm for the solution of
the Secondary Optimization Problem in Nonserial Dynamic

Programming, Journal of Mathematical Analysis and Appli-

cations, Vol 27, No. 3, Sept. 1969, pp. 565-574.

[3] U. BERTELE' and F. BRIOSCHI, Contribution to Nonserial Dynamic
Programming, Journal of Mathematical Analysis and Appli-
cations, Vol. 28, No. 2, Nov. 1969, pp. 313-325.

(4] U. BERTELE' and F. BRIOSCHI, A Theorem in Nonserial Dynamic
Programming, Journal of Mathematical Analysis and Appli—

cations, Vol. 29, No. 2, Feb. 1970, pp. 351-353.
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OLE BILDE, The Technical University of Denmark, Lyngby.

On the solution of some road design problems.

In recent years efforts have been made in order to develop methods
and computer programs which can assist road design engineers in
their work. This paper contributes to these efforts with some me-—
thods of mathematical programming applied to problems related to

the determination of vertical road alignment.

Consider a road section with a prescribed horizontal alignment. The
data of the terrain are known and the problem is to determine the
vertical profile subject to the associated costs, the level of traf-

fic security, and the aestetic values.

Based on some simplified assumptions on technical design, the method
to be presented here tries to find a vertical profile which minimi-
zes costs and meet certain demands to traffic security and aestetic

values.

The solution method is iterative and each step consists of two sta-
ges. The first stage assumes a feasible vertical profile to be known,
and a transportation problem which minimizes the costs of earthmo-
ving is solved. In the second stage the shadow prices (dual varia-
bles) from the solution of the transportation problem and other

costs related to the vertical alignment are used in seeking a new
feasible profile with smaller costs. The procedure terminates when

no improvement to the current solution can be found.

The earth to be transported from one station i to another station

j on the road section must be shipped along the road. In order to

make the solution applicable one has to ensure that all the earth-
work on the part of the road section between the two stations is

completed before the earth is transported from i to j.

In the mathematical formulation of the transportation problem this
results in some non-linear restrictions. A special Branch-and-

Bound method for the last problem has been developed. Using the
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set of non—linear constraints to cut down the number of arcs in the
transportation network, the algorithm has proved to be very effi-

cient for various problems with '"real life' data.

LOUIS J. BILLERA, Cornell University, Ithaca, N.Y.

Some Recent Results in n-Person Game Theory.

The discussion will center mainly on some work on two solution
concepts: the core for games without side payments and the nucleo-
lus for games with side payments (characteristic function games).
The core has become an important equilibrium concept in Mathematical
Economics. The nucleolus is related to the theory of bargaining sets.

The core is the set of payoffs which cannot be blocked by any
coalition of the players. Various sufficient conditions for a game
without side payments to have a nonempty core have been derived. If
the payoff sets are assumed to be convex, then one can charaterize
the games with nonempty core in terms of the support functions of
the payoff sets. This characterization generalizes the result for

side payment games, which follows directly from linear programming

duality.
The nucleolus is defined for games given by a characteristic
function v. For each payoff x, arrange the numbers v(S) - z X
: ie$S

for all coalitions S, in decreasing order. The resulting vector in

n
R2 is denoted 6(x). The nucleolus is defined to be those payoffs

x for which 6(x) is minimal in the lexicographical ordering of

2" : . ; : .
R~ . The nucleolus is always non-empty, is contained in the bargain
set, and belongs to every non—empty e€-core. The nucleolus has re-
cently been characterized in terms of balanced collections of coa-
litions (which arise in the study of the core). This characteriza-—
tion provides simple proofs of the uniqueness and continuity (as

a function of v) of the nucleolus.
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EMANUELE BIONDI, PIERCARLO PALERMO, CARMELO PLUCHINOTTA, Politecni-

co di Milano, Milan.

A heuristic Method for a Delivery Problem.

This paper deals with a delivery problem which has been treated
widely in the literature.
There is a central warehouse in which there is stored a certain com—
modity that is to be distributed by common carriers to a number of
customers at various destinations within some region.
In any given time period the customers' demands have to be satisfied
in such a way to minimize the total transportation cost. The demand
of a given customer must be satisfied in one delivery only. The ship-
per specifies the delivery schedule to be followed by the carriers
taking into account the capacity constraints of the carriers and
the customers' demands. For sake of simplicity, given the capacities
of the carriers and the average demands of the customers, it is sup-—
posed that any carrier delivers the orders of k customers. It is
supposed also that the transportation cost on a route depends only
on the time ruiquired to travel along that route.
This problem has been treated in the literature as a set covering
problem and exact algorithms have been developed for its solution.
The drawback of that approach is the huge number of variables to
be considered even for problems of moderate size. This justifies
the search of different approaches and of heuristic methods of so-
lution, as done in this paper.
The algorithm is based on the partition of the overall problem in-
to the sub-problem of satisfying the demand of each customer; for
each of them it is determined a set of customers which are likely
to be supplied in the same delivery, in a good solution of the pro-
blem.
It is possible to give an upper bound for the difference of the va-
lues of the objective function corresponding to the ''good" solution
found by the algorithm and the optimal one. The algorithm has been

tested on some practical problems with satisfactory results.
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P. BOD, Hungarian Academy of Sciences, Budapest.

On an extremum problem concerning graphs (the generalized minimum

length tree problem).

The following problem has been brought up in the "Problem Sec-
tion" of the "Colloquium in Combinatorics'" organised by the Bolyai

Janos Mathematical Society in Balatonfured last autumn.

Given the finite graph: G = (X,U) with non negative lengthson
its edges: 2(u) 2 0,\VL € U, and a subset X, < X of the vertex set.
It is to find such a GO = (XO,UO) connected subgraph of G for

which

X, cX.cX;U U

1 0 0 °

and

)} 2(u) + min!
uer

It is obvious that the problem involves: i) the minimum length

spanned tree's one if

and ii) the problem of the minimum length if
Xl = {x,v}; x #y; x € X; y € X.

We are showing that G0 always exists if X] lies in one connec-

ted component of G, and is necessarily a tree if
2 (u) > 0,\74 € U.

A complete description type algorithm will be sketched which
uses as subroutine an algebraic representation of the well-known

algorithm due to Kruskal.
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As the correct algorithm may necessitate an excessive number

of iterations, an approximating algorithm will also be proposed.

GHEORGHE BOLDUR, Academy of the Socialist Republic of Romania,

Bucharest.

Linear Programming Problems with complex Decision Conditions.

Consider an n variables and m relations system:

n
(1) Z 8 X: ™ b i=m] .2 00050 T%=1,2,6005005 xj = 0,

and:

— r objective functions with distinct signification by no means re-
ducible to a common matter;

— s states of nature;

- t decision—makers with possibly different opinions.

If we simultaneously take into account all the objectives con-
sidering the opinions of the t decision-makers and all the states

of nature, we get r.s.t objective complex functions:

= opt .X., h=1,2,...,r, k=1,2,...,s8,

(2) opt Fp,» i) hkei®;

o~ 8

£=l ’2,... ’t.

The system (1) and the functions (2) define a linear program-—
ming problem in complex decision conditions. To solve it we avail
ourselves of the subjective utility, of the methods of solving the
games against nature and of some elements in the group—decision

theory.

First we sum the opinions of the decision—-makers, thus obtain-
ing r.s objective functions:
t n

G
(3) opt F, = opt Yoy 89 Chigi¥sr P=1525.005T, k=1,2,..0,5.
2=1 j=1
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g, are "competence coefficients'" associated to each decision-maker.

Secondly we solve r.s linear programming problems determined
by the system (1) and the functions (3); so we obtain r.s optimal

values of the objective functions (3): X],Xz,...,Xr . We also sol-

ve r.s linear programming problems determined by the system (1) and

the functions:

G G .~
4) pes Fhk = - opt (—Fhk) )

obtaining in this way r.s pessimal values of the efficiency func-

tions YI’YZ""’Yr.s'

Using the Von Neumann-Morgenstern—-method (or any other method),

we estimate the utilities of the optimal and pessimal values found

before:

Values of tﬂe

objective Xl X2 Xr.s Y1 Y2 Yr.s

function

Utilities u(Xl) u(Xz)...u(Xr.S) u(Yl) u(Yz)...u(Yr.s)

and we make the linear transformations:

%k Fne * Bpk = v ()
(5)

ok The * Bpk = UV

In the following, the method will be differentiated according

to the conditions of certainty, risk of incertainty.

We find a synthesis function for each state of nature:

*) If the functions (3) have not their both extreme value finite,
we introduce new additional restrictions through which we get

this condition.
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r t r

n
(6) opt ) 2 ) d, .a_ .g, .cC X, + ) d B,
he=i f=1 j=i h' "hk*®2" "hkej*™j he; BBk

where dh are "'importance coefficients" of the objective func-

hk k
solve s linear programming problems determined by (1) and (6) find-

tions, and « and Bh are obtained by solving the systems (5); we

ing the solutions: Sl,Sz,...,Ss.

We apply further the known schemes of the theory of games against

nature (the case of certainty conditions is equivalent to k=1).

P. BONZON, University of Toronto, Toronto.

Combinatorial Dynamic Programming: a set theoretical approach.

It is well known that, in the discrete case, Dynamic Program-
ming is identified with a combinatorial algorithm equivalent to a
partial enumeration of feasible solutions. This paper is an attempt
to provide a general framework for enumeration algorithms, in order
to be able to give a normal definition of Dynamic Programming of
combinatorial type. It distinguishes this particular algorithm from
more general algorithms and gives necessary and sufficient condi-

tions for its application.

We first consider the most general discrete optimization pro-
blem of the form:minimum f(x],...,xnx where f 1is any function over
(xl,...,xn) € E and E any finite set.

i.e. an optimal solution must belong to a given set of feasible
solutions. We describe a general recursive optimization procedure,
which is equivalent to a total enumeration of E. This process of
enumeration uses the equivalence classes of E defined by successive
cuts which generalize the cuts of a graph. The function f itself

is decomposed in a sequence of successive applications Qk such that
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®n
(xl,---,xn) > vy
¢n-l teh th 5 _
(¢n,x1,...,xn) - wn—l with the ¢k increas
sing functions of
Pp-1
(wksx]""’xk) = wk-] wkf]
?y
(wz’xl’xz) - lpl = f(x]’.o.,xn)

i.e. £=¢ 90 0..00

It is always possible to find such a sequence for any function

by taking

¢k(¢k+l’xl""’xk+l) = wk+]’ k=n-1,...,1
with

v = f(x],...,xn).

We then demonstrate how, by assuming a priori hypotheses for
the structure of the successive cuts and applications, this gene-
ral procedure is simplified to a shorter procedure involving only
a partial enumeration of E. This shorter procedure happens to be
identified with the algorithm of Dynamic Programming and thus the

a priori hypotheses for E and f constitute a posteriori necessary

and sufficient conditions for Dynamic Programming of combinatorial
type.

Under these conditions, the function f must be defined by a

sequence of applications of the form
¢k(wk+l’xl"°’9xk+]) - gk(¢k+]’xk,xk+]),
k = n-1,...,1 with b = gn(xn).

The condition for the cuts of E expresses the fact that the feasi-
bility of any component X (possibly vectorial) can depend only on
its direct neighbours X and Xib1”



28

C.G. BROYDEN and W.E. HART, University of Essex, Wivenhoe Park,

Colchester.

A new algorithm for constrained optimisation.

We describe a new algorithm for minimising the function of n
variables ¢ (x) subject to the m(<n) nonlinear equality constraints
f(x) = 0. It is assumed for the purpose of this paper that both the
gradient g(x) of ¢(x) and the Jacobian F(x) of f(x) are available

as explicit expressions.

Following Greenstadt and Bard (Keele Optimisation Conference,
1968) we solve the (m+n)th order system of nonlinear equations in

X eny
T
F (x)y = g(x) (1)
f(x) =0

where y is the vector of Lagrange multipliers. The method used 1is

a quasi-Newton one (see '"Quasi-Newton methods and their Applica-
tion to Function Minimisation'", C.G. Broyden, Math. Comp., 21,
368—-381) but the matrix update employed is designed specifically

to take advantage of the special features of the Jacobian J(x,y)

of the system. It was shown by Greenstadt and Bard that this latter
had the form

where G(x,y) is an nth order matrix which is symmetric but not
necessarily positive definite. Thus J(x,y) itself is symmetric but
not necessarily positive definite. The update used (which is a rank-
2 update of the approximation to the inverse Jacobian) maintains

the symmetry of the approximation to J(x,y) and also maintains the

zero lower righthand corner partition.
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Because of the imposition of this structure upon the approximation
to the Jacobian, rapid convergence in the neighbourhood of the so-

lution is attained.

We also assume that an initial estimate.x0 is available for
the independent variables (if one is not it may be obtained by the
use of penalty function techniques coupled with one of the uncon-
strained minimisers described in ""Quasi Newton Methods ...") . To

obtain an initial estimate of y we solve the equation
T
F(x)F(x) vy = F(x)g(x)

thereby obtaining the best y in the least—squares sense.

Another possibility of solving (1) when a good initial approxima-
tion is not available is to use a Davidenko path technique ('"On a
New Method of numerical solution of systems of non—linear equations'",
D.F. Davidenko, Doklady Akad. Nauk. SSSR 88, 601-602). This is
clearly related to the S.U.M.T. and we hope to further investigate

this relationship in the near future.

NATHAN BURAS, Technion, Haifa.

Investment Scheduling in the Development of Water Resources.

The analysis of multiple-purpose projects, single-structured
or where several structures compose a complex water resource sys-—
tem, necessitates often the application of mathematical program-—
ming methods. These methods may be used in solving problems of hy-

drology, engineering, and applied economics.

The development of water resources in a given region requires
large investments for which several projects may compete. The o-
verall investment is planned for a development period of several
years, a given portion of it being allocated each year. The ques-
tion arises as to which projects (or parts of them) should be built

every year.
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Moreover, it is desirable to establish the optimal allocation of
the overall development investment to each year of the development

plan.

Given revenue—-outlay curves for each of the projects considered
for the regional development of water resources, this double opti-
mization problem is formulated as a sequential decision model. It
is assumed that at specified descrete times t (years), decisions

have to be made regarding the yearly investment x,_ and regarding

t
its allocation among the i possible projects. The sequential deci-

sion model is solved using forward dynamic programming.

Defining f](§) to be the maximum net revenue generated by an
investment x at the first stage (year) and pursuing an optimal po-
licy, one can determine its allocation among the technologically
feasible projects. This optimal allocation may be displayed as an
mxn array, m being the number of values admissible by x and n be-
ing the number of projects. At the second stage (year), fz(;) is
determined so that development funds are allocated to projects
showing most promise. An iterative correction may be necessary for
the previous year investment allocation, which would optimize the
overall net revenue. One proceeds in a similar fashion until the
entire development period is covered and fT(i) is determined. The
set of tables obtained as computer printout for each t will form
the basis of the optimal investment scheduling for the regional

development of water resources.

C. BURDET, Carnegie-Mellon University, Pittsburgh, on leave from
ETH, Zurich.

A Class of Cuts and Related Algorithms for Integer Programming.

The efficiency of the cutting plane approach to solve optimi-
zation problems in integers depends, to a large extent, on the depth

of the cuts.
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In recent publications, Balas and Young have established in
somewhat different contexts that valid cutting planes could be ge-
nerated from the intersection of (basic) rays with adequately con-
structed hyperspheres. Later Balas, Bowman, Glover and Sommer rec-—

ognized that these intersection cuts could be improved by replacing

the sphere by a polyhedron whose faces are tangential to the sphere.
Here is family of polyhedra is introduced in replacement of
the sphere; these polyhedra are not tangential to the hypersphere
and produce cutting planes with particular characteristics which
are discussed. The Gomory cuts are contained in this family of
cutting planes as an extreme case; and in general, the fémily con-
tains cuts deeper than any of the Gomory cuts. (Depth is meant here
to be measured in the direction of the objective function).
Constructive procedures are presented for gemnerating step by
step cutting planes which become deeper and deeper at every step,
until the deepest cut is obtained. This construction often relies
on a partial enumeration schema of the set of integer solutions;
(\ the corresponding algorithms may thus be viewed as a compromis be-
\j\tween the partial enumeration and the cutting plane techniques.
Finally some concluding remarks on numerical experiments and
their computational efficiency, convergence and further open ques-

tions are included.

R. CHANDRASEKARAN, Case Western Reserve University, Cleveland.

A Special Case of the Complementary Pivot Problem.

The fundamental problem in linear programming, quadratic pro-
gramming and bimatrix games is the following: Given a real m-vector

q and a real mxm matrix M, find vectors w and z which satisfy:
(1) w20, z20, w=Mz + q and

(2) w'z = 0.
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So far the most general class for which there are algorithms is a
class«xz defined by B.C. Eaves. In the present paper we provide a
simple algorithm for a class Z which is not a subset of Jl.(z is

a class of matrices defined by Fiedler & Ptak: On matrices with
Non-positive off-diagonal Elements and Positive principal Minors -
Czech. Math, Journal 12 (62), pp. 382-400.) It is also shown that
if M € Z, then feasibility of (1) implies the existence of a so-

lution to the whole problem.

A. CHARNES, USC Inc. and the University of Texas, Austin,

W.W. COOPER, USC Inc. and Carnegie-Mellon University, Pittsburgh,

M.A. KEANE, Applied Devices Corporation, College Point, N.Y.,

E.F. SNOW, Applied Devices Corporation, College Point, N.Y., and
A.S. WALTERS, Carnegie-Mellon University, Pittsburgh.

A Mixed Goal Programming Model for PPBS in a Consumer Protection

Regulatory Agency.

This work reports some new approaches to cost/benefit and re-
lated issues that have emerged in the course of studies for a pu-
blic regulatory agency. The agency's operations are directed toward
consumer protection, some parts of which were reduced, in one way
or another, to dollar measures of potential benefits of proposed
and existing regulations. Other parts of this agency's protection
duties, however, involve objectives with components that are non-
comparable, incommensurable, or both, and hence do not admit of
such reductions. The formulations and interpretations utilized to
deal with all of these-commensurable, incommensurable and non-com-
parable elements—are discussed in a way that relates them to past
and possible future courses of development for mathematical pro-

gramming applications.
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A.R. COLVILLE, IBM Corporation, White Plains, N.Y.

Acceleration of LP Computations.

The economic importance of Linear Programming applications to ma-
jor users of this technique has been increasing almost exponential-
ly since the early days when LP was first used. A good part of this
growth is due the generation of larger and larger models in the stu-—
dy of time—-staged and multi-facility systems. This trend has led

to an increasing emphasis on the efficiency of the linear program—

ming system being used.

Since the original implementations of the revised simplex method
using the product form of the inverse, numerous mechanisms have
been proposed for increasing performance of these codes by tailor-
ing them to specific computing systems, taking into account common
model structures, improving data processing characteristics, etc.
This paper will describe a number of approaches for accelerating
LP computations which have been tested and proven. It will also
discuss conjectures for future efforts in this area. Included in

the topics to be covered will be:

1) Pre—conditioning the matrix

2) Obtaining better starting solutions
3) Speeding up iterations

4) Reducing the number of iterations
5) Improving inversion

6) Handling special structures

The influence of LP performance considerations and other special
algorithmic and functional capabilities on the design of future

Mathematical Programming Systems will also be discussed.
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JAMES W. DANIEL, The University of Texas, Austin.

Approximate Minimization of Functionals by Discretization.

This paper presents the simple general theory for analyzing
the convergence properties of solutions of discretizations of con-
strained continuous optimization problems including discretized
penalization or regularization methods. As specific examples, we
survey convergence results for discretizations of continuous op-

timal control problems including discretized penalization methods.

L. DEKKER, Delft University of Technology, Delft.

Hybrid Computation in the Field of Mathematical Programming.

This paper will illustrate possibilities of hybrid computa-—
tion for solving problems in the field of mathematical programming.
In contrast to each other, digital and analogue computation

are favorite with regard to respectively

- memory, control of the computation

- computing speed, solving ordinary differential equations.

A hybrid computer — as a cooperation between an analogue and a
digital computer — is able to combine these features in practice.
Computing methods in mathematical programming often ask for
a digital computer because of the memory capacity and the flexi-
bility of control of the computation by means of a stored program.
However, mostly these methods are very time—consuming, in the first
place because a solution is determined iteratively and often more-
over a search procedure has to be applied in order to assure that
the absolute optimum is found in stead of a local optimum. In hy-
brid computation one can apply discrete as well as continuous ite-
ration processes. A continuous iteration process is equivalent with

solving ordinary differential equations until (approximately) the
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steady-state solution is reached. Solving a continuous iteration
process asks for an analogue computer because of the high compu-
ting speed and its elegance for solving ordinary differential equa-
tions.

So for solving problems in the field of mathematical program-—
ming hybrid computation is attractive. This will be illustrated by
discussing briefly some hybrid-numerical methods. For example atten-
tion will be given to an iterative method for solving the nonlinear
problem: minimize f(x), subject to gi(x) = 0, i=1,...,m and where
x € R®, m < n. This method can be formulated as a (convergent) dis-—

crete iteration process
H (x) = £x) -y .,

with

y—,] =f(x ’)QH

. *
r r- l(xr-l) B m;n Hr—l(x)’ Yo < £,

r-
* 5 ... .

where £ represents the minimum of f(x), subject to gi(x) = 0.

Determining of m%n Hr-l can be realized as a continuous iteration

process by applying the gradient-method. The above method is based

on transforming the original problem into:

min {min H(x,y)}, y < £

y X

where

2
H(x,y) = {f(x)-y}° + o ) g%.
i
Applying the gradient-method twice to the last problem the iterative
method can also be formulated as a nesting of two continuous itera-
tion processes in different time-scales.

Some practical results will be presented.
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HANS—-GEORG DIESS, SACLANT ASW Research Centre, La Spezia.

Game Theoretical Solution to an Aiming Problem.

This paper discusses the game theory solution to the following aim-—

ing problem:

An attacker receives information about the location of a target and
launches a weapon. It is assumed that the target may be anywhere
within an annulus with radii Rl’ R2, which depend on the weapon de-
livery time and the target evasion manoeuvres. Using a polar coor-—
dinate system R, B, the assumption is made that the target is uni-
formly distributed in B, but chooses R between the limits Rl’ R2,
in order to maximize its chance of escape. The attacker will then
distribute the weapon aimpoints uniformly in the angle B over its
range 0, 2m. For a single weapon B = 0 is chosen arbitrarily and
the problem is reduced to the choice of the radial coordinate X

for the zimpoint. The pay-off for this two-person game, where both
players have continuous strategies, is expressed by the probabili-
ty of the target having a distance from the aimpoint of less than

a fixed damage radius e. Pure and mixed strategy solutions are dis-

cussed and conditions are derived for the normalized parameters

2e R2
— > =
Ry"Ry 7 Ry7R,

which allow one to determine the type of strategies for a given set

of values of the parameters e, R] and R2.
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PIERRE DOULLIEZ, Société de Traction et d'Electicité, Belgium.

M.R. RAO, University of Rochester, Rochester, N.Y.

A Labeling Algorithm for a Multiterminal Network with Any One Arc
Subject to Failure.

In this paper we consider a multiterminal network consisting
of several demand nodes, each with an associated demand function
increasing over time. The demand nodes are connected to a common
source node through several intermediate nodes. Associated with
each arc of the network are two values which represent the normal
and reduced capacity of that arc. It is assumed that at any given
instant at most one arc may have a reduced capacity. It is required
to find the maximum time upto which all demands can be satisfied.

A labeling algorithm is given to solve this problem and finiteness

of the algorithm is proved.

IRINEL DRAGAN, C.O0.R.E., Heverlee, Belgium.

An improvement of the lexicographical algorithm for solving discrete

programming problems.

Consider the following problem: minimise fo(xl,...,xn), sub-

ject to
fh(xl""’xn) < 0, (h=1,...,s8), x, € {0,],...,pi},

(i), 00e:8)

where p; are positive integers.

For solving this problem by the lexicographical algorithm,
it is always necessary to carry out a previous transformation.

The above stated problem thus becomes: find the "first' vector

- in the sense of the lexicographical ordering - beldnging to



38

X = {(xo,...,xn)/f(xo,...,xn) < g(xo,...,xn)},
x, € {O,I,...,pi}, (i=0,1,.4.,0)}

where Py is alpositive integer and f(xo,...,xn), g(xo,...,xn) are
lexicographical monotone nondecreasing functions. The function
g(xo,...,xn) is chosen from a certain subset G of the set of all
lexicographical monotone nondecreasing functions.

In the present paper is shown that the number of necessary
steps N, for solving the last problem by the lexicographical algo-
rithm, depends on the chosen function g € G : N = N(g). A procedure
is given for constructing a function g(xo,...,xn) € G in such a
way that N(g) < N(g), for all g € G. Of course, when the ordering
of the variables is changed the function E(xo,...,xn) will be changed
as well. Another procedure for selecting the appropriate ordering
is given such that the optimal solution will be found after a mini-
mal number of steps. Finally, a numerical example is presented, in
which the two procedures and the lexicographical algorithm are used.

At the present time the described procedure is worked out for
the linear case; the extension for the nonlinear case is not yet

completed.

SALAH E. ELMAGHRABY, North Carolina State University, Raleigh, and
MONMAHAN K. WIG, The Corning Glass Co., Corning, N.Y.

On the Application of Diophantine Programming Concepts to Stock-

cutting Problems.

Two specific problems of the one-dimensional stock cutting
activity are discussed. Problem I minimizes the maximum absolute
deviation of realized production from desired production subject
to upper and lower bounds on the total quantities produced of m
different lengths. Problem II determines the stock length (or stock

lengths) that minimizes the total material used and satisfies a
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given demand schedule. The approach to both problems is through

Diophantine arguments and dynamic programming formulations.

ALEXANDER J. FEDEROWICZ, Westinghouse Research Laboratories,
Pittsburgh.

Asymptotic and Approximate Analytic Solutions to Geometric Program-

miq& Problems.

Zener's initial result (1961) showed that an analytic solution
to a simple (i.e. zero degree of difficulty) geometric programming
problem can always be obtained. This paper shows how an analytic
solution to a complex G.P. problem can be obtained by solving either
an approximate problem or an asymptotic problem both of which are
L.P. problems. The interpretation of these L.P. problems, their
duals and of the various cases which can occur in solving these
L.P. problems are of interest. The asymptotic technique has been
applied to transformer design equations; the approximate technique
has been useful in obtaining answers to large Chemical Equilibrium
problems and in obtaining starting point solutions to complex G.P.
problems. These results highlight the close theoretical and com-
putational relationships which exist between G.P. and L.P.

JACQUES A. FERLAND, Stanford University, Stanford.

Quasi-convexity and Pseudo-convexity of Quadratic Functions.

It is well known that quasi-convexity and pseudo-convexity
play a "natural' role in nonlinear programming theory. Despite this,
these notions lack utility because they have defining conditions

involving infinitely many inequalities and are not easily checked.

Extending two recent works of Béla Martos, we prove that test—

ing the quasi-convexity (pseudo—convexity) of a quadratic function

p(x) = %-xTDx + ch
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on the nonnegative (semipositive) orthant can be reduced to an exa-

mination of finitely many conditions on the matrix

associated with the function ¢, D being a real square symmetric ma-

trix of order n, ¢ and x vectors of order n.

This criterion applies to the quasi—convexity of quadratic
functions over convex sets larger than the nonnegative orthant. We
are interested in the maximal domain of quasi-convexity for a qua-
dratic function and give a characterization thereof. A similar ana-

lysis is pursued for pseudo-convexity.

JEAN CHARLES FIOROT, Faculté des Sciences, Lille.

Some Linear Inequalities ;5_22,

We propose to resolve practically some linear inequalities in
integers i.e. to generate all the vectors with integer components

which satisfy the following inequalities:

1) Ax 2 b where A is a matrix with integer or rational entries - it
will always be so in the following - of rank n, with n rows and

n columns, b ¢ R,

Then Ax > b is a regular polyhedral cone whose vertex x is the

unique solution (non necessarily integer) of Ax = b.

We introduce a particular set (noted Pf) of integer points
called fundamental points all situated in a parallelotop the faces

of which are parallel to those of the cone.

Theorem: Every integer point of a regular polyhedral cone of

R" is either a point of P_ or is translated from a point of Pf by

f
integer translation vectors parallel to edges of the cone.
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The set Pf and the translation vectors are perfectly determined:
a construction of them is given. A simple formula gives the number

of these fundamental points.

2) Ax 2 b, A of rank m with m rows and n columms, m < n, b e R".

As before we introduce Pf and the linear varieties

Kj = {x | Aix = bi’ i# j} and
* o
A = {x | Aix = bi’ i=1,2,.0.,m} .

A corollary is given.

3) In the case when Ax > b define a polyhedral cone whose number of
faces is greater than the dimension of the space, we decompose
the cone into a union of regular cones having at most one face

in common and we apply 1).

4) b < Ax < ¢, A of rank n, with n rows and n columns, b and c are
vectors of R". This defines a parallelotop of R". We introduce
a set of integer points (noted P;), called fundamental points of
the parallelotop which is a subset of P_ associated with one of

f
the cones asymptotic to the parallelotop. A theorem is given.

5) We also treat the case of an unbounded parallelotop defined by

by < Aix < Cp, by < Apyx, |J v J'| =n,

J - J* "J
' -
JnJ @, AJ MRL of rank n.
Or by:
by S AX<Cpy by SALX, J= {152,538k

Jl

{s+l,...,m}, m < n, Ay L g of rank m.

Application: Let us consider the problem:
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PM : Max {fx | Ax > b} where fx is a linear form, and {x | Ax > b}
is a cone. Let us suppose that the vertex x is the optimum for PM,

then the optimum in integers is a point of P_. This conclusion is

f.
identically extended to the parallelotop replacing the set P by P;

J.S. FOLKERS and 0.B. de GANS, Delft University of Technology, Delft.

Geometric Programming: Some hard Questions.

The literature on geometric programming may be summarized by a quo-—
tation from one of the publications: "When it works, it works admi-—
rably'.

Trying to apply the method to some relatively simple problems, the
authors were faced with the situation in which it did not work. This
paper is a report on the analysis of the questions raised by that
failure, which are mainly concerned with the use of Lagrange multi-

pliers for the development of geometric programming.

A.M. GEOFFRION, University of California, Los Angeles.

Vector Maximal Decomposition Programming.

Many problems in large-scale mathematical programming, decen-—
tralized economic planning, and engineering can be cast in the fol-
lowing terms. There is a system composed of a number of subsystems,
each seeking to optimize its own objective function by choice of
its own variables but subject to some control by a coordinator of
the system as a whole. The task of the coordinator is to exercise
control over the subsystems in a way that achieves the most preferred
vector maximum of the (possibly incommensurate) subsystem objective

function values.

Two iterative coordination procedures are derived for a fairly

broad class of nonlinear but convex systems, one ''global" in its
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view at each iteration and the other "local'. These procedures can
be viewed as extensions of the Tangential Approximation and Large-
Step Subgradient methods presented in a previous paper by the au-
thor ["Primal Resource-Directive Approaches for Optimizing Non-
linear Decomposable Systems,'" The RAND Corporation, RM-5829-PR,

December, 1968; soon to be published in Operations Research]. The

implications of each procedure for decentralized decision-making
are examined. Some interesting possibilities are indicated for
interactively guiding the coordinator when he cannot explicitly
state his entire preference function. This in turn raises some very
fundamental questions concerning how a decisionmaker can or ought

to deal simultaneously with numerous criteria.

GERZSON KERI, Hungarian Academy of Sciences, Budapest.

A Modified Stepping-—Stone Algorithm for the Tramnsportation Problem.

The computational efforts required for the stepping-stone

algorithm to solve the tramsportation problem

n

2 xs =2 (G=1,2,...,m

4=l

m

Y} x.. =b, (j = 1,25.0.,m)

i Y]

xij >0 (L=1,2,...m3 j =1,2,.0.,n0)
Tl

min c.. X..
i=1 j=1 3 M

can be reduced by carrying out the transformations of the numbers

- cij throughout basis changes in the following way.

Given a set H as a system of basis cells, let us consider the

numbers 8.. = z.. — ¢c.. and let &8!. be thei¢ new wvalues after a
ij ij ij ij
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cell (i ) € H leaving and another cell (il,jl) é H entering the

>]
basis. gowplet us construct the sets C and D, which represent some
rows and columns of the transportation tableau respectively, by the
following algorithmic labelling process. First let us label the ilst
row and the columns of all basis cells, except the cell (io,jo)

lying in the i, st row. At the general step let us label the rows

of all basis célls lying in the previously labelled columns, pro-—
vided that these rows have been unlabelled till now. Next let us
label the columns of all basis cells, except the cell (io,jo)

lying in the rows labelled just now, provided that these columns
have heen unlabelled till now. The process terminates when either
no further row or no further column can be labelled in this way.

The indices of all labelled rows will form the set C and the indices
of all labelled columns will form the set D. The transformation

formulae for the numbers are as follows:

§!. = §.. if 1 € C and j € D,
1] 1]

or i ¢ C and j ¢ D,
§'.=6..-6. . if i € C and j 4 D,
1j 1] 11,31
8§'. =68., + & if i ¢ C and j € C.

1j ij i3,

The method described here for the transformation of the num—

bers Gij is also inserted in the algorithm elaborated in details.

P.M. GHARE, Virginia Polytechnic Institute, Blacksburg.

Multi-step Gradient Methods for Non-linear Programming.

We consider a general mathematical programming problem of op-

timizing a function

F(X) = F(xl,xz,...xn) 1.1
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subject to constraints

gi(x) = gi(xl,x2,...,xn, bi) >0 i=1....m 1.2
and

X, 2 0 i ™ 1 seee Do 1.3

Several subsets of this general problem have been solved by gradient
methods. As a class the gradient methods are based on the existence
of a continuous curve (a trajectory) from any point Xo to the opti-
mal X* such that the F(X) is a monotonic (increasing or decreasing)
function along the curve. Although it is not necessary, it is de-
sirable that the entire trajectory lies within the feasible domain
described by 1.2 and 1.3. In the steepest gradient methods the di-
rections of the trajectory and the steepest gradient coincide. In
deflected gradient methods a direction other than the direction of
the steepest gradient is chosen.

One Step Finite Iteration Methods.

Most practical gradient method solutions to mathematical pro-
grams employ linear steps of finite length. The trajectory is re—
placed by segments of straight lines. The length of each step is
obtained by optimizing the objective function along the chosen di-
rection (full step) or as a multiple of the full step. The direc-
tion is chosen by a matrix transformation of the gradient direction.

Thus a ''one step finite iteration' method can be described as
S = B VX, 0)
a; > F(Xk + a; Sk) > F(Xk + a, Sk) for any a,
= *s o+
Xpwl = Vie 8 S ¥R

The designation 'one step" implies that the optimization poli-
cy (Yk,Hk) is determined for one step at a time and "finite'" implies

a finite movement (X, - Xk_l) for each step rather than infinitesimal
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movement 93X in pure gradient methods. Examples of one step finite

iteration procedures are
a) Steepest gradient methods when Y = 1 and H =1 for each k
b) Gradient Projection methods when Hk is a projection matrix and

c) Conjugate gradient methods when S, is orthogonal to each

S, | 1< k.

k

Multi-Step Finite Iteration Methods.

In an s—-step finite iteration method the optimization policy
is determined for "s" steps simultaneously whichareincorporated in-
to a single computational process. Consequently an s—step method

would be desirable if

a) the error (or suboptimization |F(x?) - F(Xk)l) after one itera-
tion of s—step method is smaller than s iterations of a one step

method; and

b) the computational effort for one iteration of an s—step method

is smaller than s iterations of a one step method.

Multi-step methods have been studied extensively in connection with
the solutions to linear algebraic systems and the rate of conver-
gence of multi-step methods is shown to be uniformly superior to
corresponding one-step methods. Although multi-step methods have
not teen used for M.P. problems, the '"Pattern Search'" procedure
used for unconstrained experimental optimization can be shown to

be an elementary multi-step method.

The purpose of this communication is to extend the application
of multi-step gradient methods to the solution of general mathema-—
tical programming problems. Successful multi-step solution techni-
ques can be developed by expressing the Kuhn-Tucker optimality
conditions as a system of equations (in the general case these
would not be linear) and solving them by a multi-step gradient pro-—
cedure. This paper describes the conditions for convergence and the

rate of convergence in the generalized case. A simple 2-step algo-—



47

rithm is described for the Quadratic Programming problem as an illus-
tration and possible extensions to experimental optimization are

discussed.

FRANCO GIANNESSI, Universita' di Venezia, Venice.

A gradual algorithm for the resolution of linear programming problems

of large scale.

The aim of this paper is first of all the description of an
algorithm which lets us to solve a linear programming problem by
considering the m constraining equations one at a time; that's we
consider m linear programming problems which have the same objec-
tive function as the initial problem, and which have, as constraints,
the first equation, the first two,..., the first m equations of the
initial problem respectively, and obviously the nonnegativity in-
equalities. Knowing a solution of the first subproblem we go to a
solution of the second subproblem, and so on to a solution of the
last subproblem, which is a solution also of the initial problem.

Such an algorithm (which is a variant of Simplex Method) is
different from the Cross—section Method (by J.J. Stone), because it
maintains the optimality (instead of the feasibility) during the
various iterations.

The algorithm we introduce has some advantages in respect of
those already existing: it is more efficient from a computational
viewpoint (we have a cut of about 507 in computational time and of
about 307 in required memory in respect of Revised Simplex Method.
Moreover, it does not degenerate and cannot have cycles.

The preceeding algorithm is especially interesting when applied
to linear programming problems of large scale. In these problems,
as it really happens, the matrix of constraining system has a large
number of zero elements, which are not assigned at random, but they
are arranged to form submatrices (blocks); this happens for in-

stance in block angular, and block triangular problems. In such
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cases the algorithm we consider lets us operate only on non-zero
blocks of the matrix of constraining system, by solving only at one
time the subproblems which correspond to the preceeding blocks.

We obserwve that by such an algorithm it is possible to treat
in the same way block angular, block triangular problems and every
other problem containing some zero blocks located at random.

Till now we have experimented the algorithm on many numerical
problems with an unexpected success.

At last an extension of such algorithm lets us consider in a
similar way quadratic programming problems having zero blocks. The
numerical experiments in this field are at the beginning.

The algorithm we have introduced has been applied with success

to optimal control and stochastic programming problems.

P.E. GILL and W. MURRAY, National Physical Laboratory, Teddington.

A Numerically Stable Form of the Simplex Algorithm.

This paper is concerned with the solution of the following

linear programming problem:
. T
min: ¢ x

subject to
A"x = b.

Standard implementations of the Simplex Method have been shown to be
subject to computational instabilities. A numerically stable form of
the Simplex Method is presented with storage requirements and com-
putational efficiency comparable with those of the standard form.
The algorithm is based on the ability to recur from one itera-

tion to the next the lower triangular matrix Li where:

Ack, = LiLY .
11 1 1
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Ai being the matrix of coefficients of the active constraints at the
ith iteration. Although the principle concern of the paper is not
with constraints with a large number of non-zero elements, all neces-
sary modification formulae for the extension to these cases are
given.

The algorithm has the following features:

(1) The algorithm admits non-Simplex steps, for instance, a
step can be made across the interior of the feasible re-
gion. This feature enables the method to be readily gene-
ralized to quadratic and non-linear programming.

(ii) The algorithm only needs an initial point which is feas-
ible.

(iii) In addition to the storage needed to define the problem
the algorithm requires at most half the storage required
for the Revised Simplex Method.

(iv) The number of operations involved per iteration is at
most O(nm) where n is the number of variables and m the

number of constraints.

R.E. GOMORY and E.L. JOHNSON, I.B.M. Thomas J. Watson Research

Center, Yorktown Heights, N.Y.

Some Continuous Functions related to Cormer Polyhedra and their

Applications to Integer Programming.

Methods will be presented for generating inequalities and ter—
minating conditions useful in enumeration or branch-and-bound algo-
rithms for integer programming. These methods avoid the complexity
of the corner polyhedra corresponding to large groups and are nu-—
merically simple. The work is based on approximating any corner
polyhedron using a class of continuous functions arising from a
fixed corner polyhedron. The theory is extended to apply to mixed
integer programs. Numerical experiments will be described to give

an indication of the effectiveness of these methods.
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S. GORENSTEIN, IBM N.Y. Scientific Center, New York.

An Algorithm for Project (job) Sequencing with Resource Contraints.

In this paper we present an algorithm for solving the project
scheduling (machine scheduling is included in project scheduling)
problem with resource constraints.

The machine scheduling problem has been formulated in several
ways as an integer program; it is the formulation as a disjunctive
graph that we are concerned with in this paper. This involves the
insertion of disjunctive arc pairs into the network. A disjunctive
arc pair is a pair of arcs between nodes, and only one of them is
permitted to appear in a derived fixed network. A selection of one
out of each pair of disjunctive arcs determines a fixed network
which represents the sequence of processing on each machine. This
network has a critical (longest) path. The optimal solution is a
selection (out of all selections without circuits) from all the
disjunctive arc pairs such that the resulting fixed network has the
minimal critical path length; i.e., a minimaximal path is sought,
or minimum overall processing time.

A further generalization is to allow for more than one machine
of each type and to allow for more general jobs (projects) than
sequencing through a set of machines. A multi-project network with
resource constraints can be cast into this form. In this case we
have to allow for the possibility that neither of the disjunctive
arcs of a pair need appear in a particular network determined by
a selection. However we need the additional condition that a network
must be feasible with respect to resources to be eligible for con-
siderationj that is, there must be sufficient resources to actually
accomplish the processing represented by the network. The feasibi-
lity of a network can be related to the generalized coefficient of
internal stability of its transitive closure. The generalization
to more than one machine of each type or to more general resources

requires a feasibility check, that is, those networks that are not
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feasible with respect to resources would have to be eliminated from
consideration, and the critical path computation made only for acy-
clic, feasible networks.

The prospective advantage of this approach is the elimination
of the need to consider individual time periods over the program
horizon. An algorithm is presented which uses partial enumeration
for what is essentially a mixed integer program. The algorithm em—
ploys a maximum flow computation as a check for feasibility with

respect to available resources.

F.J. GOULD and JON W. TOLLE, University of North Carolina, Chapel
Hill.

A Necessary and Sufficient Qualification for Constrained Optimiza-—

tion.

The following optimization problem with mixed constraints is

considered: maximize
£(x),
subject to

gi(x) €0, 1= 1;.s¢,m3} ri(x) =0, i=1,...,ki and

n
x € Dc R, n
where D is an arbitrary set in R . The objective and constraint

functions are assumed to be continuous on some open set containing
D and differentiable at a local optimum for the given problem. A
weak qualification is given which insures that this problem satis—
fies the analogue of the Kuhn-Tucker conditions at the local opti-
mum. The qualification is weaker than that of Mangasarian and
Fromovitz, and for the problem with pure inequality constraints it
is weaker than the qualifications of Abadie and of Arrow, Hurwicz
and Uzawa. It is shown to be the weakest possible in the sense of

being necessary and sufficient for Lagrange regularity of the above
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problem. In the special case of pure equality constraints, the new
qualification is evidently necessary and sufficient for the classi-
cal Lagrange multiplier rule to be valid. In order to express the

qualification, suppose x,. is a local solution to the given problem.

0
Let
I, = {i: gi(xo) =0, 1 =<ics m},
- n T .
C0 = {x e Rt x Vgi(xo) £0, ic¢€ IO},
and let Lg be the orthogonal complement of the subspace spanned by

Vri(xo), 1 o §nasski

Let A' be the polar cone of an arbitrary set A c Rp, let S be the
constraint set of the given problem, and finally let T(S,xo) be the

cone of tangents to S at x Then the weak constraint qualification

0.
can be stated as

Liv _ mi
(CO n LO) =T (S,XO).

G. GRAVES and ANDREW WHINSTON, Purdue University, Lafayette, Ind.

Application of Mathematical Programming to Regional Water Quality
Management.

It has become apparent that major changes are desirable in the
institutional structure for water quality in the United States, The
desirable structure would be a regional or basin-wide water quality

management authority.

A single agency would control all discharges (industrial and
municipal) and operate all treatment plants in a region. It would
contruct new regional treament plants in optimum locations and con-
trol the distribution and re—distribution of treated and partially

treated wastes.
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The authority would be responsible for finding and implementing the
least cost solution of meeting the stream (or estuary) water quali-
ty goals. The question of setting water quality goals relates to
social and economic desires and needs. This question need not be
resolved by the authority but it could make valuable contributions
to the xationality of the process. When a change in goals is pro-—
posed, the authority will determine the optimum solution to meet
the changes in addition to the cost. Thus, an informed public should
be better able to decide what quality of water it is willing to pay
for.

It is the purpose of this work to present a planning tool (al-
gorithm) to provide optimal solutions for the complex choices in-—
volved in balancing alternative methods for attaining water quali-
ty goals. As one might suspect, there are a tremendous number of
alternatives that would achieve these desired goals in a body of
water. One of the most commonly proposed solutions is for the pol-
luters to increase their levels of treatment. This is also one of

the most expensive solutions.

Within the framework of a proposed regional water quality ma=
nagement authority, we are going to investigate this problem with
some powerful tools from non-linear programming and control theory.
Note that for the Delaware estuary, which we are going to study,
an authority such as proposed above (namely the Delaware River Basin

Commission) already exists.

Considering the size and complexity of the problem, the cost

of computer time, and assuming a reasonable number of computer rums,
one of the prime goals of this work was to develop an algorithm that
gives efficient solutions in a reasonable time. This became a for—
midable undertaking because of the many undesirable features inhe-
rent in our non-linear programming model of the physical situation.
It haé over 2000 variables and over 80 constraints. Some of the
first partial derivatives are discontinuous and the transfer func-—

tions have such a wide range that scaling is extremely difficult.
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J. GREENSTADT, IBM N.Y. Scientific Center, New York.

Variable—Metric Formulas from Variational Principles.

The main problem in variable-metric methods is to estimate
the essential quantities that characterize a quadratic approximation
to the function to be minimized. In those problems in which the
gradient can be independently calculated, the essential quantities
are the components of the (symmetric) Hessian matrix. Where the
gradient cannot be independently calculated, it is necessary to

estimate it (or some version of it) as well.

By defining a '"'best'" correction (in the sense of minimizing a
quadratic norm) to be made to the essential quantities after each
step, and by imposing certain natural restrictions on these correc-—
tions (which are based on identities holding for quadratic functions),
one is let to an equality-constrained variational problem, which
is easily solved. By assigning various simple forms to certain
weighting matrices appearing in the quadratic norm, one may generate
various correction formulas (including the well—known Davidon for—
mula). In the gradient—free case, formulas for the corrections to

the estimated gradient and to the estimated Hessian result.

These formulas have been tested on a computer, and all conver—
ge and yield the correct Hessian at the end. (The exceptions are
those cases where the minimum is not quadratic). The result for

various well-known test functions will be shown.




55

MICHAEL D. GRIGORIADIS , IBM N.Y. Scientific Center, New York.

A Projective Method for a class of Structured Nonlinear Programming

Problems.

This paper describes a partitioning method for solving the fol-

lowing structured nonlinear programming problem:
f(xT,.-c,Xi:,Y‘; - mi.n {f(x],...,xk,}’) l (X],...,xk,y) € S}
where

< s,

S = fv.
=0 7]

w0
I

n. .
0 {xj €R 335 J=l,...,k; y € Y}

S.
J

{x, €ERj; yeY | BJ!xj + DJ!y < By} §=l,...k

Y = {y €R0 | D (y) < 0}
E(X. g0 y) = zk f.(x.,y) + £.(y)
1? ’xk’ j=175%5° 0

B!, D!, h. are (m.,n.) and (m.,n,)-matrices and m.—vectors respec-
5 Do By (J,J) (J’O) s P

tively and D : R0 > R™ is a given vector function.

0
The proposed algorithm uses the special structure of the con-
straints to reduce the given problem by elimination of variables.,
In variance to other methods proposed previously, this elimination
is effected through the use of the general solution to an underde-—
termined system of linear equations representing the active con-
straints at a given feasible point. For weakly coupled systems
(n0 << z?;]nj), this arrangement provides a drastic reduction in
the number of variables and the problem reduces to one with only n'
variables. Under appropriate differentiability assumptions it is

shown that a constrained stationary point of the overall problem
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is obtained by solving a sequence of the reduced nonlinear programs.
Primal feasibility is maintained throughout the optimization pro-
cedure. Global optimality of the solution is then assured by addi-

tional convexity assumptions on £ and DO.

Specializations to quadratic functions £(x,y), matrix struc-—
tures arising in distribution problems, implicit handling of upper
and lower bounds on the variables (x,y) and the resulting algorith-—
mic simplifications are also discussed. Computational experience
and results for several structured quadratic programming problems

are presented.

MICHAEL D. GRIGORIADIS and W.W. WHITE, IBM N.Y. Scientific Center,
New York.

A Partitioning Algorithm for the Multi-commodity Network Flow Pro-
blem.

This paper presents an algorithm for solving the multi-commo-—
dity flow problem for directed networks. Appropriate partitions of
the network into the usual master problem—subproblem divisionaliza-
tion are used in the framework of a flow method. This approach dif-
fers from specializations of Dantzig-Wolfe decomposition and is ex-—
pected to avoid the familiar "tailing" problems encountered with

that method.

For treating the subproblem, the structure of the associated
network is utilized. Any network technique which records the tree
structure is satisfactory since the computations performed are es-
sentially those of the usual network flow variety, e.g. as in the
Out-of-Kilter method. Analysis of any nonbasic arc in a subproblem
amounts to finding a cycle containing this arc along which flow

can be augmented.
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The "master" problem is a linear program which is treated by
a modification of the simplex method. In certain cases, use of a
modified dual simplex method is considered. For computational ef-
ficiency these algorithms utilize a working basis of considerably
smaller dimension than the number of arcs in the given network. A
set of secondary constraints is periodically examined during the
optimization procedure. Additionally, the network structure of the
subproblems and that of the bounding requirements allow the gene-
ration of nonbasic columns for the master problem in a simple fash-

ion. Thus explicit representation of this problem is avoided.

The proposed algorithm is easily extended to handle the case
where there are given restrictions on the weighted sums of the flow
through the arcs. Some computational aspects, including programming
and data handling considerations, in comparison to other existing

methods are also discussed.

M. GUIGNARD, University of Lille, Lille, and
K. SPIELBERG, IBM N.Y. Scientific Center, New York.

The State Enumeration Method for Mixed Zero—One Programming.

This paper reports extensions of, and results obtained with,
the algorithm proposed in '"Search Techniques with Adaptive Features
for Certain Integer and Mixed Integer Programming Problems', M.

Guignard, K. Spielberg, IFIPS Congress 1968. Consider the problem
min ¢ = 8¢ + yn
D + Cn < B (1)

£20 e {0,1}, k =1,2,...,p

’nk

and an enumerative search procedure of the single branch type.
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At a node v of the search tree the situation is as follows. Certain
components n, are fixed at one (zero), i.e.: k ¢ EY (k ¢ ZV). The
others are yet "free", k ¢ F'. The task is to devise effective de-

vices for:

a) determining whether the node may be abandoned (return to a pre-

decessor node),
b) determining what free variable may be eliminated at the node,

c) choosing a new branch of the tree, i.e. fixing some free varia-

ble arbitrarily at 1 or O.

The essential notion is that of a "state", which is a parti-

tioning of the set of free variables into three sets,
F¥ = (F1Y, F2Y, F3V).

The state is usually passed from a predecessor node with obvious mo-
difications. It may be prespecified at the start of the computation

and modified later in auxiliary problems.

Problem (1) is replaced by a sequence of "State Problems" sV,

one for each v. S" is (1) with
n, = 1(0), k e EY + F1V(2Z¥ + F2Y), 0 < n <1, ke F3V.
The solution to (1) is eventually obtained as a solution to
one of the state problems. Also, each state problem, whether feasi-
ble or not, furnishes an associated inequality for the Ny (related

to those of J.F. Benders), which in turn is utilized in a-c above,

as well as in the establishment of global bounds.

General programs have been written. One of them functions with-
in a general linear programming, mixed integer programming system
LPS/MIP developed at the IBM New York Scientific Center. Special
problems of the Knapsack — and Plant Location Type have been consi-

dered. Numerical results will be discussed.

A well constructed program, in which the states are determined
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intelligently and the inequalities are exploited judiciously, one
or several at a time, should yield good operational results. Branch-
Bound Programming, for example, can be viewed as a simple, special
form of a State Enumeration Algorithm, augmented by the usual penal-

ty calculations.

MILTON M. GUTTERMAN, Standard Oil Company (Ind.), Chicago.

Efficient Implementation of a Branch-and-Bound Algorithm.

The general mixed integer programming problem can be solved,
at least conceptually, by the branch and bound algorithm. In order
to make this approach an effective computational tool, a number of
techniques must be used to keep the computation time and cost with-
in reasonable bounds. These techniques can be divided into four ca-

tegories:

algorithmic choices (heuristics)
algorithmic shortcuts
data handling techniques

computation techniques.

The first two categories relate to the algorithm details; the last

two to the computer programming work to implement the algorithm.

The author has just implemented a branch and bound algorithm
which operates under MPS/360 on the IBM system 360. This paper des-—
cribes the exact algorithm which was implemented, including the
choices and shortcuts. The data handling and computation techniques

which were incorporated to improve efficiency are also described.

During the development and implementation of this algorithm a
number of techniques (primarily in the data handling area) were con-
sidered and rejected because they would take too long to develop.

These techniques are also described.
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PETER L. HAMMER, Université de Montréal, and Technion, Haifa, and
URI N. PELED, Israel Defence Forces and Technion, Haifa.

On the Maximization of a Pseudo-Boolean Function.

A B-B-B (Boolean Branch and Bound) type method is proposed for
the maximization of real valued functions with variables taking only
the values 0 and 1. The importance of the problem consists in the
fact that numerous problems in operations research, graph theory,
combinatorial mathematics, etc. can be brought to this form. The

method has been tested on an IBM 360/50 with good results.

(1] P.L. HAMMER and URI N. PELED, On the Maximization of a Pseudo-
Boolean Function. Technion, Mimeograph Series on Operations

Research, Statistics and Economics, No. 69, 1970,

PIERRE HANSEN, Université Libre de Bruxelles, Bruxelles.

Non-linear O-1 Programming by Implicit Enumeration.

An algorithm is proposed for the problem: minimize f(S) under the
conditions G(S) 2 0 and S € B;, where f(S) is a pseudo—-boolean func-—
tion, G(S) is a vector of pseudo-boolean functions and S a boolean
vector. No requirements such as convexity or monotony are made on
f(S) or the functions gi(S) of G(S), but if such properties do

exist the algorithm can make use of them. A theorem on pseudo-bool-
ean functions provides upper and lower bounds on the values taken
by £(S) or gi(S) on subsets of the set of boolean vectors. This al-
lows to construct for the general nonlinear 0-1 programming problem
an implicit enumeration algorithm similar to those of BALAS, GLOVER,
GEOFFRION for the linear case. Because of the nonlinearity of the

functions, the ceiling tests and direct or conditional feasibility
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tests are more powerful than corresponding tests in those algo-
rithms. Computer experience is favourable: all problems of a series
with 40 terms and 10 to 80 variables were succesfully passed on an

IBM 7040 with a maximum computing time of 626 seconds.

N.A.J. HASTINGS, University of Birmingham, Birmingham.

Optimization of Markov Decision Problems.

Methods for the optimization of Markov decision problems have been
developed by several authors using linear and dynamic programming
techniques. The dynamic programming methods include the value ite-
ration algorithm developed by Bellman and modified by White and the

policy iteration algorithm of Howard.

A recent development is the policy-value iteration method of Has-
tings which combines features of both earlier dynamic programming
approaches. A discription of this method in its application to un-—
discounted, discounted, recurrent chain and transient Markov pro-
cessess is given in this paper. A new and shorter proof of conver-
gence of the policy-value iteration algorithm is also given. Bounds
on the steady state gain of single recurrent processess are develop-—
ed. These bounds provide a basis for terminating a computation when
a current policy gives a gain which for practical purposes is suf-
ficiently close to the optimum. Both the policy-value iteration me-

thod and the system of bounds extend to Markov renewal programming.
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MICHAEL HELD, IBM Systems Research Institute, New York, and

RICHARD M. KARP, University of California, Berkeley.

A Combined Ascent and Branch-and-Bound Algorithm For the Traveling-

Salesman Problem.

This paper presents an algorithm for the solution of symmetric
traveling—salesman problems which embeds an ascent method within a
branch and bound procedure. Central to this approach is the concept
of a 1l-tree which consists of a tree on the vertex set {2,3,...,n}
together with two distinct edges at vertex 1. The transformation on
.. > c.. + 1, + . leaves the traveling-sales-
ij ij i
man problem invariant but changes the minimum l-tree; also a tour is

"intercity distances" c c
a l-tree in which each vertex has degree 2.

Clearly,

cC+ 2 Z m; > minfe, + Z m.ds ]
1 k 1

where C is the weight of a minimum tour with respect to (cij)’ k 1is

a generic index for l-trees, ¢ is the weight of the k-th l-tree

with respect to (Cij)’ and dik is the degree of vertex i in the k-th

l-tree. Setting

w(dl) = min[ck + Z ni(dik -2)1,
k 1
we see that C > w(ll); furthermore, the "best" such lower bound on

the solution of the traveling-salesman problem is given by max w(l).
I

Various approaches at achieving an ascent method for the computa-
tion of this maximum have been tried. The one that has been most

successful is given by the following scheme:

(n Set T. equal to some initial value ;i
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(2) Find a l-tree k of minimum weight with respect to
.. + W, + .
(clJ L ﬂJ)

(3) m. <« m. + (d.

1 1 1k - 2)

(4) GO TO 2.

The iteration is terminated when the maximum obtained value of w(ll)
fails to improve after a certain number of steps. Although convergence
may not be obtained, this iteration scheme seems to work well in prac-
tice. It resembles the method of ficticious play for the solution of
max—min game problems; one player choosing values of I and the other

player choosing k(l-trees).

The combined ascent and branch and bound method is designed to

produce an optimum tour in all cases, even when C > max w(ll). It may
II

be outlined as follows: Let X and Y be disjoint sets of edges. Let
T(X,Y) be the set of l-trees which include all the edges in X and

none of the edges in Y. Define

Wy () = min [c, + ) m.(d.,, - 2)].
s KeT(X,y) & § 1 ik

The state of the computation is given by a list, each of whose entries
has the form (X,Y,H,wX Y(H)); Wy Y(H) is called the "bound" of the

b b
entry. Initially the list contains the single entry (¢,¢,O,w(0)). At

a general step, an entry (X,Y,II,w (I1)) of least bound is consider-

X,Y
ed. The ascent iteration is applied starting at the point II in an
attempt to increase Wy Y(II). If the attempt is successful, a new en-
L
] \J
try (X,Y,I ’WX,Y( (') exceeds WX,Y

N')) such that w (1) by an inte-
gral amount is obtained, and the old entry is deleted. Otherwise it

X,Y
is determined if a direction of ascent exists. If so, the process

"branches'", i.e., the old entry is replaced by a collection of new
entries each determined by specifying sets Xi’ Yi such that Xi =1 &8

Yi 5> Y and T(X,Y) = v T(Xi, Yi)'
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If no direction of ascent exists, then a search is conducted to de-
termine if T(X,Y) includes a tour. If so, the process terminates,

otherwise, branching is performed.

To date the method has been tested on standard 20, 25, 42, and
48-city problems appearing in the literature. The results have been
outstanding. The 20 and 25-city problems were solved using the ascent
method alone, without any branching required. With branching, the 42
and 48-city problems were easily solved. In each case the solution
obtained was proved to be optimum. Computational experiments on lar-—

ger problems are now being performed.

ELI HELLERMAN and DENNIS RARICK, CEIR Professional Services Division
of CDC, Washington.

Reinversion with the Preassigned Pivot Procedure (P3)

Mathematical programming computer systems using the product form of
the inverse (PFI) must periodically resort to a reinversion with the
current basis in order to reduce the amount of work to be done in

the succeeding iterations.

In this paper, we show the consequences of column, pivot selection

and sequence upon the transformation vector (eta) density and give
. 3 3 . P i

an algorithm (P”) which will tend to minimize eta density and work

done per iteration.

The algorithm has been implemented and tested as a replacement for
the previous inversion algorithm on the OPTIMA system for the CDC
6000 computers. In performance it shows itself to be from six to ten
times faster than the previous algorithm with a proportional reduc-

tion in work.
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L. HELLINCKX and M. RIJCKAERT, Katholieke Universiteit Leuven Neder-

lands, Leuven.

A Solution Procedure for Geometric Programming Problems with degrees

of Difficultz.

Geometric Programming is a very suitable method to solve highly non-
linear programming problems. Instead of solving the original problem,
GP solves an auxiliary problem, which yields the same optimal solu-
tion. This solution can be found easily, when the degree of diffi-
culty of the problem is zero. This means that T = N + 1, where T is
the total number of terms in the objective function and in the con-
straints, as formulated in the original problem and where N is the
number of variables in the same problem.

However, when the degree of difficulty is not zero, as in most prac-
tical cases, the solution is not uniquely determined by the linear
orthogonality and normality conditions. Passy and Wilde (1), recent-
ly developed non-linear conditions, called equilibrium conditions,
which when added to the regular linear conditions, determine the
solution to the auxiliary problem uniquely. Although the problem

was theoretically solved, in practice however, the solution is hard
to be found, because of lack of convergence in the solution scheme.
This paper presents an algorithm that converges to the optimal point
starting from an arbitrary initial point. The algorithm consists of
2 major parts. The first one is an iterative solution scheme for the
set of linear orthogonality and normality conditions and the non-
linear equilibrium conditions. The second part deals with the con-
vergence problem, mainly arising from auxiliary variables becoming
negative during the solution procedure. To obtain convergence, a re-
laxation of the original equations is used together with a phase I

procedure of linear programming.

Although the starting point of the algorithm may be chosen. arbitrary,
it is evident that a rational choice of the starting point will de-

crease the computer time for the algorithm. Therefore the choice of
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a starting point will be discussed too.

Finally the method will be demonstrated on a highly non-linear exam-

ple, involving the optimal design of an oxygen production plant.

(1) U. Passy and D.J. Wilde, Mass Action and Polynomical Optimiza-
tion. Journal of Engineering Mathematics, VOL. 3, No. 4, October 1969,

Wolters—-Noordhoff, Groningen, The Netherlands. .

T.C. HU, University of Wisconsin, Madison.

Discrete Decision Tree.

Many problems in operations research reduce to the following mo-—
del. A set  consisting of n objects is given. One object from Q is
chosen. The ith object has a known probability P of being chosen. A
set of tests Tj(j =1,...,m) are used to identify the object. A test
Tj can decide if the object belongs to one subset of Q or to its com-—
plement. The problem is to find an optimum sequence of tests which
minimize the expected cost.

When the cost cj of performing Tj are the same, and m = Zn—]—l

the problem becomes that of constructing an optimum variable-length
binary code. This was solved by Huffman [1]. When Cj are the same,

and m = n—-1, the problem becomes that of constructing an optimum va-
riable-length alphabetical code and was solved by Gilbert and Moore
[2]. The present paper gives a better algorithm than [2] and considers

some extensions.

[1] D.A. Huffman: "A Method for the Constructing of Minimum—-Redundan-
cy Codes", Proc. I.R.E., 40, Sept. 1952, p. 1098-1101.

[2] E.N. Gilbert and E.F. Moore, 'Variable-length Binary Encodings",
The Bell System Technical Journal, 38, July 1959, pp. 933-968.
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WILLIAM S. JEWELL, University of California and TECHNEKRON Inc.,

Berkeley.

Branch-and-Bounding the Simplex.

In many respects, the ordinary linear program resembles a dis-
crete optimization problem more than a continuous one. For example,
the simplex method may be considered as a discrete decision problem
in which a known number of activities are to be selected as basic,
the remaining activities then being non-basic. Once this arbitration
is accomplished, the actual levels of the activities in an optimal
solution are uniquely determined.

This paper explores the use of implicit enumeration techniques,
such as branch-and-bound (progressive separation and evaluation),
backtracking, etc. to solve ordinary linear programs. The resulting
solution procedures are not computationally competitive with modern
computer—oriented algorithms, such as the revised simplex. However,
this approach provides interesting pedagogical insights into the com—
plementary nature of the primal and dual decisions, and demonstrates
how "extra" information from the real problem can be advantageously
used to influence and organize a loose and unstructured solution
framework.

Among the freedoms open to the optimizer are adaptive choices
of: which activities to arbitrate first; the order in which to price
out resources; the amount of work to be expended in making the par-
tial solution bounds (evaluators) tighter; and, the choice of when
to accept an approximate solution. One can even "surrender'" at any
point, and switch to any ordinary simplex method.

This unusual approach to a well-solved problem also gives in-—
sights into the workings of implicit enumeration techniques, by de-
monstrating the additional leverage obtained through duality and or-
thogonality. This approach is also a natural starting point for dis-

cussing the inclusion of discrete variables into a mixed program.
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After presenting the basic ideas of the B&B Simplex approach,
various computational details on the separation and evaluation of
partial solutions will be explored. The application of this framework
to special problems in network theory will be shown, followed by a

discussion of relationships with pivot theory and integer programming.

K. KAPUR, General Motors Research Laboratories, Warren, Mich., and

R.M. VAN SLYKE, Network Analysis Corporation, Glen Cove, N.Y.

A Cutting Plane Algorithm in Function Space with Application to Op-

timal Control Problems.

Cheney-Goldstein and Kelley independently proposed a cutting

plane algorithm for convex programming. The problem they consider 1is
(1) Minimize {c(u) | g(u) < 0, u e S}

where u ¢ En, c(u) is a linear function of u. S = {u | A u < b} is
assumed to be a bounded polyhedral set, g is a continuous vector
valued functional with uniformly bounded derivative. For this problem
the cutting plane algorithm converges on at least a subsequence to

an optimal solution (assuming the problem is feasible). The proof
depends strongly on the compactness of S and the uniform bound on the

derivative.

The algorithm and the convergence proof can be generalized di-
rectly to apply to the case where u belongs to Banach space U, and
g(u) has a Frechet differential which is uniformly bounded on a com-—
pact subset S of U. However, in most applications of interest it is
unrealistic to assume that S is strongly compact;usually weak comp-
actness is the best one can hope for. Thus, we consider (1) in the

situation where c(u) is a lower semi-continuous convex functional,

g(u) a lower semi-continuous convex functional, and S is a convex,

weakly sequentially compact subset.
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Since in many applications a Frechet derivative is not availa-
ble we use the more general sub-differential. ag(uo), the subgradient
of g at u0 is given by
3g(u0) = {g* e U” | g(u) = g(uo) +<g’, u- u® > for all u € U}.

The cutting plane algorithm for this problem is then

Step 0. Solve: Minimize {c(u) | u e S},

call the solution uo; let k = 0. Go to Step 1.

Step 1: If g(uk) <0, uk is a solution of (1). If not add the ine-

quality

(2) < g*k, u > < < g*k, uk > - g(uk) to (3) and go to

Step 2, where g*k € Bg(uk).

Step 2:

Solve

(3) Minimize {c(u) | e € S, < g*J, ux S g*J, uwl > - g(ud),

j = 0,...,k} obtaining as an optimal solution uk+l, set k = k+1 and

go to Step 1.
Note that the efficiency of the above algorithm depends on our

ability to solve (3) significantly more easily than we can solve (1).

Theorem 1: Suppose in addition to the previous hypotheses for (1)

that

*K . o
(& ho
is relatively compact in the strong topology. Then the sequence
{uk} of points generated by the algorithm contains a weakly conver—
gent subsequence and for any weakly convergent subsequence {uki}

converging to u, say, u solves (1).

A convex function c(u) defined on a convex subset K of a Ba-

nach space U is uniformly convex if there exists a monotone function

§(1) on jUC0,=) with & (1) > 0 for T > 0 such that for all ul € K,
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u2 € K with u1 # u2 there exists A € (0,1) such that

2
[

(1-2) c(uz) + A c(uz) Zc((l-k)uI + A u2) + 6(||u] - u ).

Theorem 2: If in addition to the hypotheses of Theorem 1, c(u) is u-
. k 0 .
niformly convex then u converges strongly to u which corresponds

to the unique optimal solution of (1).

Another consequence of uniform continuity is that we do not need
to keep all the added constraints in the algorithm. This is important
for computational efficiency. This last result is a straight forward
generalization of the corresponding result in finite dimensional spa-

ces due to Topkis.

The cutting plane algorithm we have discussed is applied to a
linear optimal control problem with state space constraints, where
the problems solved in Step O and Step 2 of the algorithm become op-
timal control problems without state space constraints. Thus we have
a method of solving state space constrained problems by solving a se-

quence of problems without state space constraints.

S. KARAMARDIAN, University of California, Irvine.

The Complementary Problem:

The general complementary problem is a problem of the following
form: Given a map F from E” into itself find a vector x such that
x 2 D, F(x) = 0, xTF(x) = 0. A very important special case is the
linear complementary problem where F(x) = Mx + b. The importance of
these problems lies in the fact that they arise in a variety of fields
such as mathematical programming, game theory, mechanics, and geome-
try.

This paper deals mainly with the question of the existence of

solutions to both the linear and nonlinear complementary problem.
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For the nonlinear case both nondifferentiable and differentiable F
are considered. Several existence theorems are established which ge-
neralize previous results. In particular it is shown that the general
complementary problem has a solution if the map G(x) = F(x) - F(0)

is continuous, positively homogeneous of some degree, and its Jaco-
bian is a P-matrix i.e., all its principal minors are positive. For
the linear case a new class of matrices called proper matrices is in-
troduced. It is shown that if M is proper then the linear complemen-—
tary problem has a solution for any b. The class of proper matrices
includes as proper sub-classes all other classes for which it is
known that the linear complementary problem has a solution for any b.
In particular it includes the class of P-matrices, the class of
strictly co-positive matrices, and the class of semi-monotone matrices.

This class has the added two features:
(1) it can be characterized by its minors, and

(2) it may possess negative elements on its diagonal, a property
which is lacked by all previously considered classes. Several

examples of proper matrices are provided.

LASLO BELA KOVACS, Hungarian Academy of Sciences, Budapest.

An Algorithm for the Solution of an Integer Programming Problem by

Dynamic Programming.

The problem is the following:

- T
min ¢ x
Ax > b
xj = 0,1,2,605 €1 ™ Tyusepil)

where A is an mxn matrix and ¢ > 0,b are vectors of corresponding

size.
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This problem is solved by an algorithm of dynamic programming type.
In order to decrease the memory requirement the principle of branch
and bound is also used.

For the case m=1 the requirement c > 0 is not necessary. In this
case the solution of the problem is given for any b > Q. The solution
of the general problem for any b > 0 only if there exist a variable

X and positive numbers kj (] = 1,44+,01) Such that
B, ZEC., K8, 2 d,,; [I=l,enemy §=1,66:,0)s

In order to avoid duplication of solutions a special grouping
of solutions 1is introduced, which at the same time makes the use of

branch and bound principle possible.

C.B. KRABEK, Control Data Sweden AB, Stockholm.

An Algorithm for the Solution of the Fixed Charge Network Flow

Problem.

The problem treated here is that of finding the minimum total cost
solution to a minimum cost network flow problem where some or all of

the arcs may also have fixed charges associated with them.

The algorithm proposed is a combination of two implicit enumeration
algorithrs. The first, the '"foreward'" algorithm opens arcs one at a
time and generates lower bounds for the total fixed cost of the op-
timum solution. The second algorithm, the '"backward'" algorithm closes
arcs one at a time to generate lower bounds for the total variable
cost of the optimum solution. The lower bounds on the variable cost
developed by the '"backward'" algorithm are used by the "foreward" al-
gorithm in branch trimming in the enumeration scheme and the lower
bounds on the fixed charge developed in the "foreward'" algorithm are

used in the "backward" algorithm for branch trimming.
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These and other branch trimming rules are explored in detail and a
description of an existing large scale computer code based on the al-

gorithm is given, along with computational results.

The algorithm has the advantage that no non integer solutions are
obtained, that each potential feasible solution is examined at most
once, and that a lower bound on the total cost is available at all

times for use in selecting near optimal solutions.

J. KRARUP, The Technical University of Denmark, Lyngby.

The Relationship between Outerplanar Graphs and a Class of Discrete

Optimization Problems.

This paper is a result of a discussion with professor Frank Harary,
University of Michigan, Ann Arbor. We met in November 1969 and
Hararay drew my attention to the concept of outerplanar graphs but
knew of no '"real life" applications. I missed at that time a way to
characterize a certain class of graphs related to coordination of
traffic signals. It turned out that my question answered his and vice
versa.

Given a connected graph 6 = (N,A) consisting of a finite set N of
vertices together with a set A of unordered pairs of distinct ele-
ments of N. Each pair (i,j) € A constitutes an edge in G. Let n = |Nl
and a = |A| denote the cardinality (the number of distinct elements)

of N and A respectively.

A set of variables, xi,\ji € N, is associated with the vertices of G
and fij(xi,xj),\VQi,j) € A is a given set of real-valued functions
associated with the edges of G and bounded below.

Problem: Choose x = (xl,xz,...,xn) s0 as to minimize g fij(xi’xj)
subject t8\7€ e N: X, € Q where Q is a finite set with cardinality
qa=lq].
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To formulate and solve this is terms of dynamic programming is
straightforward. The number of computations, however, ranges from
(n-l)q2 if G is a tree to qn if G is complete. It will be demonstra=
ted,that the number of computations can be written as clq2 * cyq
where ¢, < n-1 and cy < n-2 if and only if G is homeomorphic with an
outerplanar graph.

In the traffic signal coordination problem, Q is a set of consecutive
integers and fij(xi’xj) depends solely on (xi-xj). Thus, if G is ho-
meomorphic with an outerplanar graph, the number of computations

amounts to clq + c2q2.

P.D. KROLAK, W. FELTS and G. MARBLE, Vanderbilt University, Nashville,

Tenn.

Heuristics for Solving the Traveling Salesman Problem and Various

Related Scheduling Problems.

The traveling salesman problem is a well known scheduling pro-
blem. In this paper we will describe a heuristic procedure for solv-
ing large scale traveling salesman problems. This heuristic differs
form other heuristics in that (1) it exploits the relationship of the
traveling salesman problem and the related assignment problem, and
(2) its performance does not decrease rapidly with an dincrease in
problem size. This heuristic has been found to solve 100-200 city
problems in a fraction of the time of currently reported procedures.
When this heuristic is further combined into a real time computer
system, the result is a highly reliable and economical method of
solving very large problems. The paper will describe extensions of
the above approach to solwing several major related problems includ-
ing the coin collector, (the salesman must return home after every

so many stops), the bottleneck problem, and the traveling salesman

in time.
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The traveling salesman in time is a new generalization of the
original problem. The salesman's reward is based not only on the cost
of travel but also on how many clients are available to see him on
the day of his arrival in town. This means that the circuit he makes
will be closed in space but not in time. An exact algorithm for solv-

ing this problem will be given.

T.0.M. KRONSJO, University of Birmingham, Birmingham. G;fgg) (PeRs

Theory of Decomposition of a Large Nonlinear Convex Separable Pro-

gramme in the Dual Direction.

A decomposition method is developed for the solution of the pro-

blem:

Min {fl(xl) + fz(xz) I gl(xl) + gz(xz) = 0, X, € Cl}
X2%y

where super- and sub-script denote row and column vector (scalar),
respectively, and fl(xi) and gl(xi), (i =1,2 ), denote convex scalar

and vector functions, respectively.

The method describes the total cost of the problem as a function

of the X, variables, for any X value assuming the corresponding op-

timal x, values, i.e. by the function:

2
1 ; 2 1 2
f (xl) + Min {f (x2) | g (xl) + g (x2) < 0} | x, € Cl}
%
2
and then finds the value X, which minimizes the above function. In-
stead of using the exact function an approximating function is derived

based upon the solution(s) of the subproblem of minimizing the func-

i X, .
tion of 2

Upper and lower bounds upon the optimal value of the objective

function, and a proof of convergence are derived.
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The method may be seen as a nonlinear generalization of a decom—
position method by J.F. Benders. It may be interpreted as a dialogue
between two organisations. The first one minimizes an approximation
of the total costs and informs the second one about the resulting
requirements. The second one minimizes the cost of meeting these re-—
quirements and informs the first one about the actual cost and the
marginal costs of each requirement. The first one uses this infor-

mation to form an improved approximation of the total cost function.

H. KWAKERNAAK and R.C.W. STRIJBOS, Delft University of Technology,

Delft.

Extremization of Functions with Equality Constraints.

_—

The problem considered is that of minimizing the function a(x) sub-
ject to the constraint g(x) = O where x = col(x],...,xn) and

g™ col(gl,...,gm) with m < n. By introducing the vector of Lagrange
multipliers A = col(Al,...,Am) the necessary conditions for a sta-
tionary point of the constrained minimization problem may be express-—

ed as

h(x,) = gradla@®] + J.GOA = O
(1)
8y =0 .

Here gg(f) is the Jacobian of the vector function g. In this manner

the solution of the minimization problem is converted to the solution
of a set of (n+m) non-linear equations in the (n+m) unknowns x and A.
In order to evaluate these equations the matrix gg(f) and the vector

gradla(x)] are assumed to be explicity available for all x.

To find the solution of the set of equations (1) by Newton's

method the inverse of the Jacobian of these equations is required.
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This Jacobian is given

G(x,)) E _J_i(_)
JEA) = [ == q—— = —
J@® | 0

where G(x,)) is the Jacobian of h(x,)) with respect to x. By using
the formula for the inverse of a partitioned matrix it is possible
to evaluate gfl(g,ﬁ) provided the (nxn) matrix ETI(EAA) is known.

To avoid the repeated computation of ETI an initial guess_g“ is
made, which is updated during the course of the computations using
compact and efficient formulas. The resulting method has the proper-
ty that if the function a(x) is quadratic and the constraint func-
tions g(x) are linear in x,the exact solution of (1) is obtained at
the end of n iterations.

Further considerations should point out whether the stationary
point found is an extremum or not.

The proposed method has been tested on several examples and
compared with a sequential unconstrained minimization technique pro-
posed by Powell.

The paper also presents compact formulas for the solution of

simultaneous nonlinear equations by the quasi—-Newton method.

P.0. LINDBERG, The Royal Institute of Technology, Stockholm.

Planning of transportation with stochastic production and demand.

The usual operations research transportation problem is an approxi-
mation of the real world transportation problem. One simplifying

assumption is that demand and production is known in advance.

When random fluctuations are present you run the risk of getting

short of goods or not getting everything sold. To put a value to
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not used goods you have to solve the planning problem for several
periods. In this way you run into a multistage stochastic decision
problem. This latter problem can in principle be solved by dynamic
programming techniques, but as usual you get a formidable state space

which prohibites a practical solution.

I propose a method which lies between the deterministic and the mul-

tistage one:

For a given planning period you decide for a fixed tramsportation
program. You evaluate the different programs by averaging over all
possible outcomes during the planning period. The programs are made
feasible for all outcomes by allowing backordering. Negative inven-
tory is punished with a shortage cost. The problem of finding a pro-
gram with optimal average performance is shown to be a network flow
problem with convex cost in some arcs. This problem can be attacked

by different algorithms.

When you have your optimal program you use the first period part of

it as your action and then resolve the problem next period.

This problem was studied with transportation of empty containers and
railway cars in mind. For these, ordering cost is negligable and
shortage cost is much higher than transportation cest. By the time
of the symposium computational results for problems with these cha-
racteristics will be available. For problems with very few places
of production / consumption a comparison with the dynamic program-

ming solution will have been made.

F.A. LOOTSMA, Philips Research Laboratories, Eindhoven.

Boundary Properties of Penalty Functions for Constrained Minimization.

Penalty-function techniques are designed to take into account

the constraints of a minimization problem or, since almost none of
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the problems arising in practice have interior minima, to approach
the boundary of the constraint set in a specifically controlled man-
ner. The presentation starts therefore by a classification of penal-
ty functions according to their behaviour in the neighbourhood of

that boundary.

Appropriate convexity and differentiability conditions are im—
posed on the problem under consideration. Furthermore, certain
uniqueness conditions involving the Jacobian matrix of the Kuhn-
~Tucker relations are satisfied by assumption. This implies that the
problem has a unique minimum x with a unique vector u of associated

Lagrangian multipliers.

Under these conditions the minimizing trajectory generated by a
mixed penalty-function technique can be expanded in a Taylor series
about (x,u). This provides, as an important numerical application,

a basis for extrapolation towards (;,E). The series expansion is al-
ways one in terms of the controlling parameter, independently of the
behaviour of the mixed penalty function at the boundary of the con-

straint set.

Next, there is the intriguing question of whether some penalty
functions are easier or harder to minimize than other ones. Accor-
dingly, the condition number of the principal Hessian matrix of a
penalty function is studied. It comes out that the condition number
varies with the inverse of the controlling parameter, independently
of the behaviour of the mixed penalty function at the boundary of the

constraint set.

The parametric penalty-function techniques just named can be
modified into methods which do not explicitly operate with a controll-
ing parameter. These ''parameter-free versions', which are based on
moving truncations of the constraint set, may be considered as penal-
ty—-function techniques adjusting the controlling parameter automa-
tically. The crucial point is the efficiency of the adjustment. It

is established how the rate of convergence depends on the vector u

of Lagrangian multipliers associated with X, on the boundary proper-



80

ties of a penalty function, on a weight factor p attached to the ob-
jective function, and on a relaxation factor p. The method of centres
is a remarkable exception: its rate of convergence depends on the

number of active constraints at x, and on p and p.

HARRY R. LOVE and MICHAEL J.L. KIRBY, Dalhousie University, Halifax,
N.S.

Extreme Point Mathematical Programming Models.

The paper considers a class of optimization problems. The pro-—
blems are linear programming problems (maximize c¢ x subject to
Ax = b) with the additional constraint that x must also be an extreme
point of a second convex polyhedron Dx = d, x 2 0. A cutting-plane
algorithm for solving such problems is presented. Two examples to

demonstrate the applicability of the algorithm are included.

CHRISTOPH MAIER-ROTHE and MARTIN F. STANKARD, Jr., Arthur D. Little

Inc., Cambridge, Mass.

A Linear Programming Approach to choosing between Multi-Objective

Alternatives.

A common difficulty in decisionmaking is a choice between two multi-
objective alternatives. Each alternative results in a vector of va-
lues, yet neither alternative surpasses the other on all criteria si-
multaneously. The decisionmaker wants to select only one alternative.
This paper presents a procedure for collecting simple preference data
from a decisionmaker and for using this data to reveal the decision-

maker's preference between the two multi-objective alternatives.
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The procedure presents a series of hypothetical pairwise tradeoff
questions to the decisionmaker. The answers to these questions imply
linear constraints upon weights applied to the values of each objec-
tive. Two linear programming formulations test whether one alterna-
tive's weighted objectives has a larger value then the other's for
all sets of weights allowed by the inequality constraints. If neir
ther alternative is preferred to the other for all feasible weigh-
tings the procedure generates further questions so that fast conver-

gence to a unique choice is achieved.

An analysis of the dual linear program produces these further ques-
tions so that their answers are most likely to force the choice of
one of the alternatives. The dual formulation of the original linear
programs have a very simple structure and the possibility of using

a special simplified solution algorithm on the dual is discussed.

A numerical example is also provided for illustration of the pro-

cedure.

ANTAL MAJTHAY, Hungarian Academy of Sciences, Budapest.

Some Remarks on Nonconvex Quadratic Programming.

The problem we are concerned with is that of finding the global
minimum of a general quadratic function clx + xTQx subject to the
linear inequality constraints Ax > b, x > 0, or showing that none
exists.

The only rigorous algorithm is Ritter's method [2], which works
in three phases. Each of these phases can return many times during
the procedure. In the first phase we are seeking a feasible point
if there is any. In the second phase starting from this point we
are looking for a local minimum or an unbounded solution, while in
the third phase we construct a cutting plane which excludes the

previously located local minimum without excluding the global mini-
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mum if it has not yet been found. After the cutting plane has been
placed we apply the first phase to the augmented problem.

Ritter proved that if the set of feasible solutions is bounded,
the algorithm cycles through the three phases only a finite number
of times.

In their excellent paper it is shown by Cottle and Mylander
(1] that there is a strong relationship between complementary pivot
theory and Ritter's algorithm.

Following Cottle's presentation of the algorithm and using
combinatorial methods only we show that a slight refinement of the

algorithm is finite in the case of an unbounded feasible set as well.

[1] R.W. COTTLE and W.C. MYLANDER, Ritter's Cutting Plane Method for

Nonconvex Quadratic Programming, Stanford TR 69-11.

[2] K. RITTER, A Method for Solving Maximum Problems with a Noncon-
cave Quadratic Objective Function, Z.Wahrscheinlichkeitstheorie
verw.Geb. 4., /1966/, 340-351.

0.L. MANGASARIAN, University of Wisconsin, Madison, and
L.L. SCHUMAKER, University of Texas, Austin.

Discrete Splines via Mathematical Programming.

Mathematical programming is used to investigate constrained
minimization problems in real Euclidean spaces which are the dis-
crete analogs of spline problems posed as minimization problems
in a Banach space. Existence, uniqueness, characterizing properties

and computational methods are given.
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B. MARTINET, Centre d'Etudes Nucléaires de Grenoble, Grenoble.

A General Algorithm for an Approximate Solution of a Game by using a
Dual Method.

a) dual methods for the resolution of an optimisation problem with

constraints, see [1] and [2].

We are dealing with a generalisation of cut—off and penalty
functions methods. Let us consider the problem:

(n m}i;n (£(x) | gj(X) < O,Vj e J) = £(x).

The proposed method is iterative: for instance, for each step n
we have the unconstrained problem:

(2) min (f(x) + ¢n(x)),
x

where ? is a partial constraint penalisation.

Let x" be the point where the min (z) is reached. We go from n to
(n+1) by adding one of "the most unsatisfied constraints'in x".
If the set in which we want to minimize is empty then:
lim £(x7) + ¢_(x") = + =,
n>e =
otherwise x° converges to X.
The interesting points of these methods are the following:
- a great mathematical generality,
- J may be any set (for instance infinite, which is important for
the next application))
- 1if f is uniformly convex and g convex in x, we will be able to

suppress the non—active constraints at each iteration.

a,a) a general method for the resolution of a strategic game ,

see [3]. Let us consider a min-max problem

min max J(x,y) = v = J(x,y).
xeC yeD
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Let:
E(a) = {x e C | J(x,y) ZAaIt/y € D}
F(a) = {y € D | J(x,y) < a;}/x e C}

be two sets defined in general by an infinity of constraints.

We have:
v =max (a | F(a) # @) = min (a | E(a) # @).

We are going to use a dual method in order to find if E(a) (or
F(a)) is empty; if not we find an approximate element of the
sets. Whence an iterative method which enables us to build {an}

. n .
such as 1lim a = v and {(xn,yn)} : sequence of e—strategies.
n—-

Under convenient hypotheses (xn,yn) converges to (X,y).

We can apply the methods to very general cases such as: infinite

games, differential games, n—person games, etc.

[1] P.J. LAURENT et B. MARTINET, Méthodes duales pour le calcul
du minimum d'une fonction convexe sur une intersection de

convexes, Colloque d'optimisation, Nice 1969.

[2] B. MARTINET, Méthodes duales pour la résolution approchée d'un
probléme d'optimisation, Seminaire d'analyse numérique,

Faculté des Siences de Grenoble, décembre 1969.

[3] B. MARTINET, Algorithme de résolution approchée d'un jeu,

Colloque d'analyse numérique de Super—Besse, France, juin 1970.
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BELA MARTOS, Hungarian Academy of Sciences, Budapest.

Subdefinite Matrices and Quadratic Programming.

Many algortihms are known to solve the minimization of a pseudo-
convex objective function subject to linear constraints. Within the
problem of quadratic programming this fact directs our attention to

quasiconvex and pseudoconvex quadratic functions. The notions intro-

duced here enable us to characterize and recognize such functions.

A n x n real symmetric matrix C is called positive subdefinite, if
for any v ¢ En, v'Cv < 0 implies that the n-vector Cv is either
semipositive or seminegative. Positive semidefiniteness implies po-—
sitive subdefiniteness but not conversely. C is positive subdefinite
without being pos. semidefinite if and only if all its entries are
nonpositive and the matrix has exactly one negative eigenvalue. The

quadratic form Q(x) = x'Cx is quasiconvex in the nonnegative orthant

if and only if C is positive subdefinite. Q(x) is pseudoconvex in
the semipositive orthant if and only if C is positive subdefinite

and either positive semidefinite or free of O-rows.

The quadratic function ¢(x) = 3 x'Cx + p'x is quasiconvex in the

nonnegative orthant if and only if for any v En, v'Cv <0 implies

Cv . . o s 5 .
that the (n + 1)-vector [ ] is semipositive or seminegative.
p'v

Otherwise: ¢ (x) is quasiconvex in the nonnegative orthant if and
only if C is positive subdefinite, and either it is positive
semidefinite or the vector p satisfies the following two conditions:
a) p< 0, b) there is some q ¢ En, such that p = Cq and p'q < O.

If ¢ (x) is quasiconvex in the nonnegative orthant and C is free of

O-rows, then ¢(x) is pseudoconvex in the semipositive orthant.

The above results enable us to find the minimum of a quasiconvex
quadratic function in a polyhedral subset of the nonnegative orthant

by any known method of general pseudoconvex programming (Frank-Wolfe,
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Rosen, Zoutendijk, etc.). None of the special convex quadratic
programming algorithms, which guarantee finiteness, has been

amenable to a similar extension as yet.

G. MENSCH, Tulane University, New Orleans.

Single-stage Linear Programming zero-one Solutions to some job-

machine type Problems.

Scheduling problems can be formulated as mathematical programs
with integrity requirement on some variables. In this paper some
properties of linearly solvable mixed integer programs are discussed,
and experiments are reported where integer solutions have been ob-

tained by linear programming.

G. MITRA, S.I.A., London.

Designing Branch—and-Bound Algorithms for Mathematical Programming.

The theory of Branch—and-Bound technique has not to date been
rigorously formalized: this is because the concept of splitting a
problem into solvable and mutually exclusive subproblems has proved
to be successful in varied contexts; the justification of the

theory plays a less important role. An important property associated
with the problems solved by Branch-and-Bound technique, however,
should be stressed: that is the subproblems proposed and solved by
this technique always possess global bounds and hence propose simi-

lar bounds on the original problem. In travelling salesman problem
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this bound is obtained by canonical reduction [1]. In all the

other known applications of this technique [2], [3], [4] the sub-

problems are known convex mathematical programming problems.

The present paper is not just a survey of the work done by other

workers. The advantage of computing penalties to obtain variables to

branch on are questioned and the experience of using a priority
scheme for choosing branching variables is described. Computational
aspects of using dual and parametric RHS for the solution of sub-
problems are outlined.

In general branching strategy is a combination of two level decisions:
1) which subproblem to sclve next,

2) which variable to branch on within the subproblem.

Using combination of the above experiments of tree search for fixed

charge problems are described. A technique of constructing feasible

solution at every node of fixed charge problem is outlined.

Finally, a branch-and-bound method for solving mixed integer quadratic

programs is described. Such a technique is easily designed on the

basis of the properties of convex mathematical programming problems
and finds use in solving Media Scheduling Problem.

(1] LITTLE, John, D.C., MURTY, KATTA G., et al, An Algorithm for the
Travelling Salesman Problem. Opern. Res., (1963)(972-989).

(2] DAKIN, R.J., A Tree Search Algorithm for Mixed Integer Programming
Problems, Computer Journal, 8 (1965), 250-255.

[3] BEALE, E.M.L., TOMLIN, J.A., Special Facilities in a General
Mathematical Programming System for Non-Convex Problems using
ordered sets of variables. Presented to International Conference
in 0.R.,VBNICR,1969.

[4] MITRA, G., A Dichotomizing Procedure for the Fixed Charge Problem,

Presented to SIAM conference in Optimization, Toronto,1968.
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HEINER MULLER-MERBACH, Universitat Mainz, Mayence.

Approximation Methods for Integer Programming.

The application of exact integer programming (IP) methods are re-
stricted (and seem to remain restricted) to small problems. There-
fore, there is no chance to solve large IP problems by any other

method than by approximation methods.

A survey on the existing approximation methods shall be given in
the paper. The emphasis will be put on the basic principles of the
algorithms, on the numerical experiences, and on the application

to problems of different structures.

Method 1 (Method of "cautious approach'" [3]):
In each iteration one small step (at least of the size 1) is

carried out towards the direction of the ''greatest change".

Method 2 [1]:
A different criterion is used to find a path of small steps from
the origin to a near-optimal solution. Some special exploration is

carried out in the neighbourhood of the solution.

Method 3 [2]:
Combinations of variables are considered in order to improve a

solution.
The numerical experiences are encouraging.

[1] ROBERT E. ECHOLS, LEON COOPER, Solution of Integer Linear
Programming Problems by Direct Search. Journal of the ACM,
vol. 15 (1968) no. 1, pp. 75-84.

[2] HEINZ KREUZBERGER, Ein Naherungsverfahren zur Bestimmung ganz-—
zahliger Losungen bei linearen Optimierungsproblemen. Ablauf-

und Planungsforschung, vol. 9 (1968) no. 3, pp. 137-152.
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(3] HEINER MULLER-MERBACH, Das Verfahren der ''vorsichtigen An-
naherung" - Eine heuristische Methode zur Losung gewisser Pro-
bleme der ganzzahligen Planungsrechnung. Elektronische Daten-—

verarbeitung, vol. 11 (1969) no. 12, pp. 564-566.

HEINER MULLER-MERBACH, Universitat Mainz, Mayence.

Separable Programming using the Upper Bounding Technique

In optimization problems there may occur separable nonlinear
functions. HADLEY [1] and other authors have described two methods
(the A—form and the &-form) by which these functions can be approxi-
mated by sets of linear functions. Each of these linear functions

is valid within a certain interval. Thus the problem converts into

a linear optimization problem and can be solved by means of a

slightly modified simplex method.

A disadvantage of the A-form and of the &§-form is the largely in-

creased number of variables.

In this paper it will be shown that separable programming does not
require additional variables at all, if the upper bounding technique

is used to handle the borders of the intervals.
The main parts of the algorithm are:

1. Define the initial linear approximation of each function (including

the border of the current interval as an upper bound).

2. Apply the simplex method (including the upper bounding technique).

If any border is reached, - 3.

3. Redefine the approximations of the very functions (including the

border) whose border is reached, > 2.
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In addition to the saving of variables there is a second advantage
of this method: The intervals of approximation of the single functions
need not be established before the computation; they may be defined

during the computation. This makes the method more flexible.

Numerical experiences [2] will be reported.

[1] G. HADLEY, Nonlinear and Dynamic Programming. Reading, Mass.
1964.

[2] H. MULLER-MERBACH, Separable Programming mit Hilfe der Upper-

Bounding-Technique. Unternehmensforschung, vol. 14 (1970) no. 3,

to appear.

W. MURRAY, National Physical Laboratory, Teddington.

An algorithm to find a local minimum of an indefinite quadratic

program.

We present an algorithm to find a local minimum of the program

min : F(x) = ﬁxTQx + fo

subject to Ax 2 b

where Q is not restricted to be either semi-positive definite or
non—-singular. The algorithm is based on the ability to recur from

iteration to iteration the following matrices:
L : An m x m lower triangular matrix such that
L
AT=r[L | o01P

where A is an n X m matrix of the coefficients of the currently
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active constraints and P is the product of m Householder transfor-

mation matrices.
Z : An n x (n—m) matrix such that

Atz = 0

ZTQZ = D a diagonal matrix.
The algorithm has the following features.

i) It starts from a feasible approximation and all subsequent
approximations are feasible.

ii) Provided F(x) is bounded below, the algorithm will converge in
a finite number of iterationms.

iii) F(xk+l) < F(xk) where X is the kth approximation.

iv) Each iteration takes 0(n? + m?) operations where n is the number
of variables and m(< n) the number of active constraints.

v) In addition to the storage needed to define the problem we

. m2 2 .
require - + n< - nm locations.

K.G. MURTY, The University of Michigan, Ann Arbor.

A fundamental Problem in Linear Inequalities with application to the

Travelling Salesman Problem.

All linear inequalities can be transformed into linear equations
in nonnegative variables by introducing the necessary slack variables.
Without any loss of generality we therefore consider a system of m

linearly independent equality constraints in n nonnegative variables.
Ax=05>D (n
x > 0. (2)

The j—-th column vector of the matrix A will be denoted by A'j'

The fundamental problem that we discuss is the following: suppose
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we are given a set of r linearly independent columm vectors of A,
known as the special column vectors.

The problem is to develop an efficient algorithm to determine
whether there exists a feasible basis for (1), (2) which contains
all the special column vectors as basic column vectors and to find
such a basis if one exists.

Such an algorithm has several applications in the area of mathe-
matical programming. As an illustration, we show that the famous
travelling salesman problem can be solved efficiently using this
algorithm. Recent published work indicates that this algorithm has
applications in integer linear programming.

An algorithm for this problem will be discussed in another paper

to follow.

T.A.J. NICHOLSON and R.D. PULLEN, London Graduate School of Business

Studies, London.

An inlet—control system for multi-stage sequencing.

Perhaps the most important area of application for sequencing
techniques is in the preparation of production schedules. The pro-
duction scheduling problem is to determine the times at which a
number of jobs can be processed on a series of machines. Each job
consists of a sequence of operations which must take place in turn,
possibly on alternative machines, and the problem is to get the jobs
completed by their due dates and keep down work in progress. If there
are N jobs and yj is the completion time of job j, tj is its due time
and ej is the earliest time at which it could be completed, a useful
lateness measure to be minimized which stresses the reduction of

large lateness is

N V. = e, 2
F(yl’yZ L yN) = .E (t. — e.) e
=) j j
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The yj quantities cannot themselves be controlled but depend
on the series of start times of the successive operations and their
durations, and the start times are restricted so that the total
machine requirements do not exceed the capacities available. The
capacity constraint prevents the use of linear or non-linear pro-
gramming. The problem has previously been tackled by machine prior-
ity rules which give answers which are far from optimal or by per-
mutation procedures which manipulate the schedule in total but

require excessive computation.

Both these methods take the problem variables as the start

times of all the operations of a job. However, as we are primarily
concerned with minimizing the time a job spends in the system it may
be adequate to consider only the times at which the first operations
of the jobs start. Thereafter the multi-stage production system is
simulated using a standard behavior pattern such as first—come—-first-—
served to determine the timing of the other operations and the com—
pletion times of the jobs. This inlet control scheme greatly reduces
the size of the optimization problem and is much easier to implement

in practice.

Mathematically the task is to determine the inlet times

(xl,x . xN) of N jobs so as to minimize F(yl,y2 +. yy) where

2
X and y are related through the simulation rules. When a schedule
is created an interaction matrix can be calculated to express the
tendency for the jobs to delay one another and this information

can be used to give an estimate for the rate of change of F with

AF i g
xj say = These discrete derivates can be used to conduct a

controlled direct search in terms of the x. quantities to minimize
F(yl,y2 W yN). This direct search over tﬂe inlet times means that
the method is independent of the peculiarities of individual

application requirements which can be built into the simulator and

it offers a practical method of control.
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A. ORDEN, University of Chicago

On the Solution of Linear Equation/Inequality Systems.

Let the problem of finding a solution or showing that there is
no solution to a linear equation/inequality system be written

n

(1.1) )i aij xj g/=/2 bi’ i=1...m,
]=1
(1.2) xj > 0 for some subset of Xy oeee X,

where: (a) %/%/é means that for each i one of the three relation-

ships <, =, or > applies.

(b) Non-negativity of variables is set apart from other in-—
equalities. Non—-negative variables will be called

"restricted", and the others "unrestricted".

(c) Systems of equations only (no inequalities) are not ex-—

cluded.
A straightforward plan of solution is:

(2A) Insert non—negative slack variables into the inequalities in

(1.1).

(2B) Apply Gaussian elimination by pivoting on the unrestricted

variables.

(2C) 1f, after (2B), there remains a reduced system which involves

restricted variables, apply phase I of the simplex method.

Conventionally, although the given problem (1.1), (1.2) has
nothing to do with optimization, step (2C) calls for introduction
of artificial variables and an artificial objective function. An
alternative derivation of the simplex conputational procedure will
be given which is based only on linear algebra arguments—inequality

considerations are involved, but not artificial optimization.

A generalization of homogeneous linear systems, called

"systems with conspicious solutions'" will be used in place of the
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concept of basic solutions.

s}

Definitions: Let } aij xj = bi , 1=1... mbe a linear system.
o

J

(3) The ith equation is in reduced form if either:

(a) it contains an isolated variable whose coefficient is
+1 in that equation and O in all of the other equations,
or (b) the coefficients a; e A in that equation are all

Zero.

(4) A linear system of equations has a conspicuous solution if each

equation either:

(a) is in reduced form,
or (b) has bi = 0.

Homogeneous systems are the classic type of system with a con-

spicuous solution. More generally, the conspicuous solution of a

system under (4) is given by:

If the ith equation is an equation in reduced form, set x. = bi
i
where x. 1is the isolated variable in that equation. For the
i
rest of the variables set xj = 0.

Assume procedures (2A) and (2B) have been carried out. The
problem to be solved under (2C) is the standard one of linear

equation in non-negative variables:

k
(5.1) T P Bi , 1 =1 ... p (assume all g. > 0),
j=1 J 1] 1
£5:2) xj >0, 3=1... k.
k
(6) Let % Y; X. = § be the equation which is obtained by
J=il

summing the equations in (5.1) which are not in reduced form. Adjoin

this (redundant) equation to (5.1). The matrix of the augmented

system is
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%11 %1k B
apl L B ) upk BP
LYI % 5ie Yk [ J

A simple algebraic derivation shows that under a pivot trans-
formation the last row of (7) always remains the sum of the rows
which correspond to non-reduced equations. In particular, § remains
the sum of the Si in the non-reduced rows. Using Max {yj > 0} to
select a pivot column, and the ratio technique of the simplex algo-
rithm to determine a pivot row, pivoting produces a new system with
all Bi 2 0 and with a lower value of 8. In a finite sumber of
stages either § becomes 0,-— in which case we must have Bi = 0 in
all non-reduced rows, and consequently we have a matrix which
corresponds to a system which is equivalent to (5.1) and has a
"conspicuous solution'"; or all Yj becomes < 0 and 8§ > 0,—— in which
case we have the matrix of a system equivalent to (5.1) which con-
tains an infeasible equation, hence the system is infeasible. The
argument is entirely in terms of linear algebra. Since there are no
artificial variables, it serves no purpose to say that an objective

function is involved.

Some properties of equation/inequality systems such as the Farkas
theorem follow rather directly from the solution process. This has of
course been done before via linear programming, but again the

extraneous matter of optimization is avoided.

T.D. PARSONS, Pennsylvania State University, University Park, and

A.W. TUCKER, Princeton University, Princeton.

Hybrid Programs:Linear and Least-Distance.

The convex quadratic program
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(1) minimize ¢ = nb + élAT for nA+ AC 2 ¢, n 20

is a hybrid of the linear program to which it reduces when A and C
are vacuous, and the strictly convex quadratic program to which it
reduces when n,b and A are vacuous. The latter is a ''least—-distance
program" which seeks the point of the polyhedral set {A|AC 2 c} at
least distance from the origin. Solutions of (1) are hybrids of
solutions of separate linear and least-distance subprograms that
arise from projecting certain faces of the constraint set of (1)

into the A-subspace.

Let P = CTC. Then (1) is dual to the concave quadratic program

(2) maximize f = cx - %xTPx for Ax < b, x > 0.
The key equation
T T T
9 — f = (NA+AC-c)x + n(b-Ax) + } (A" -Cx)~ (A -Cx)

yvields ¢ 2 £ for feasible solutions of (1) and (2). These become
optimal when ¢ = f. The hybrid nature of (1) sheds light on the
geometry of this duality.

URY PASSY, Technion, Haifa.

Generalized Weighted Mean Programming.

The use of inequalities in mathematical programming is not new.
The idea of Quasi-Linearization was initiated from Holder's in-
equality. The theory of Geometric Programming is intimately related
to the Arithmetic-Geometric Mean inequality. However, use of in-
equalities in actually solving mathematical programs, is not widely
practiced. In a recently published paper on Geometric Programmes,
methods for solving such problems were described. This work shows
that these methods can be viewed through a generalized relation
existing within a certain class of programming problems, termed

Generalized Weighted Mean Programming.
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The main idea underlying the class of programming problems
presently discussed is based on the well-known inequality relating

the different "Weighted Means".

Let
(1) ye (R and q e (R
with
n
(2) ‘Z q; = 1.
1=1

A generalized r-weighted mean denoted by Mr(y,q) is given

n

_ r.1/r
(3) Mr(Z’E) = (izl q;5; )

Notice that if r = 1, Ml(y,q) becomes the weighted arithmetic mean.

~ o~

The relation between different weighted means is given by

(4) M (y,9) < M (y,9) if r<s

~ o~ ~ o~

with equality holding only when all y; are equal.

Definition. A generalized weighted mean programme (G.W.M.) is a

minimization problem having the following form

(5) Min fo(f)

subject to

(6) XxeS |R"

and

7 g, GO ML (FLGDLE) <1, i=1,....p,
where

(8) R = [£(1),5(2),...,r(B)]

is a given vector.
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(9) Fi(z) [fil(?"{)’fi2<?‘(’)’..‘,fiI(i)(?‘s)J i l""QP

Ce.

11’€i2’°"’€i1(i)] im™ 1,560,Ps

(10) Ei(z)

The components of Ei are given positive numbers satisfying

I(1)
(11) 'il eij = ] Eij >0 j=1,0..,I(1)
d i=1,...,P.
(12) I(1),1(2),+...,1(P) are given positive integers.

The functions fo,f £ ,gP are continuous

l]’l.ﬂ’ ]I(i)’...’fPI(P)’gl’.‘.
differentiable non=—negative ones on the domain defined by the

constraints Eqs. (6) and (7).

Various relations between such programmes are proved, and al-

gorithms with solved examples are included.

The first algorithm is the Exterior Algorithm, which resembles
the cutting planes algorithms, but a hypersurface cut replaces the
linear cut. Thus, the programme need not be convex. In this al-

gorithm the solution is approached from outside.

The second algorithm called the Interior Algorithm, is similar
to polygonal approximation methods. When using this algorithm, the

solution is improved after each iteration.

JOHN D. PEARSON and ALBERT C. DE KONINCK, N.V. Philips Gloeilampen-

fabrieken, Eindhoven.

Interchange algorithms versus multi-pass restricted optimization

procedures, for a large scheduling problem.

This paper is concerned with a large schedule optimization problem
for a group of M different two-sided asymmetrical machines which
can process two jobs at a time, one on each side, from start to

completion.
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The problem is to rearrange 2 x m x T jobs into M sequances of T
pairs of jobs, one for each machine, such that the sum of the
sequence—-dependent changeover and pairing costs is minimized,
subject to constraints on pairing, due dates, labour requirements
and production facilities. An initial partially feasible arrange-
ment is provided by a prior capacity allocation phase, and an im-—
portant simplification is that the orders are all multiples of the
expected output from a job of standard duration.

In a practical situation 400 jobs are to be scheduled into 40
machines, 2 at a time, in a sequence of 5 pairs per machine. This is
about an order of magnitude beyond any known optimizing algorithm.
Most practical solutions to problems of this kind operate by inter-
changing blocks of jobs between machines or machine-sides, to
achieve an improvement. Such an interchange algorithm has been
implemented and it proves to be fast and effective.

The question investigated here is whether a better solution can be
obtained more quickly, by optimizing overlapping portions of the
scheduling problem in an iterative fashion.

If one or two machines are optimized at a time, the problem is omne
of quadratic assignment, which has been solved directly by a
branch-and-bound algorithm, indirectly by a double route travelling
salesman algorithm and heuristically by an extended but simplified
form of the 1-opt, 2-opt idea of Lin.

If the jobs in non—adjacent schedule positions are considered, the
optimization problem is one of integer assignment with side con-
ditions, for which a branch-and-bound routine has been written.
Using these algorithms suitable for restricted parts of the pro-
blem, a variety of scheduling procedures can be devized, which
make several passes to optimize the bad features detected in the
schedule at each stage. Two implementations of this philosophy

have been tested.

The paper describes the algorithms, the ideas behind the form of
the implementations and gives comparisons based on random schedules

generated from a practical situation.
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ELMOR L. PETERSON, Northwestern University, Evanston, Ill.

Symmetric Duality in Convex Programming and its Economic Inter-

Eretation

The first completely symmetric formulation of duality for all
convex programs with explicit constraints is given by generalizing
and suitably modifying the original formulation of duality in geo-
metric programming. The generalization consists of: (1) replacing
the special convex functions in the original primal program by
arbitrary convex functions, and (2) replacing the arbitrary pair of
orthogonal complementary subspaces in the original primal and dual
programs by an arbitrary pair of closed convex polar cones. The
modification consists of adding convex functions of a particular
type to the resulting primal objective function while simultaneously
enlarging the class of permissible dual constraints. The resulting
primal and dual 'geometric programs' have the same form, and the
"geometric dual" of the dual geometric program is the primal geo-

metric program.

The geometric dual of such a program is constructed from:
(1) the conjugate transforms of the convex functions appearing in the
objective function, (2) the conjugate transforms of the convex
functions appearing in the constraints, and (3) the polar of the

closed convex cone appearing in the program.

Some rather elementary observations about conjugate convex
functions and certain bases for orthogonal complementary subspaces
show that this formulation can be specialized to give either
Rockafellar's recent formulation or Fenchel's original formulation.
Moreover, a different specialization followed by a suboptimization

produces an extension of Wolfe's formulation.

In addition, complete econmomic interpretations of the various
formulations of duality are provided by new duality theorems that
are part of a new closed-form solution to a special, but economically

interesting, class of convex programs. In particular, the well-known
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economic interpretation of dual optimal solutions as '"'shadow
price" vectors is complemented by giving comparable economic
interpretations of the dual non-optimal solutions and the dual
objective function. It seems that these results are new even in

linear programming.
REFERENCES

[1] PETERSON, E.L., "An Economic Interpretation of Duality in
Linear Programming', to appear in Jour. Math. Anal. Appls.,
but presently available as Report# 953 from the Mathematics

Research Center, University of Wisconsin, Madison 53706, U.S.A.

[2] , "'Symmetric Duality for Generalized Uncon-
strained Geometric Programming', to appear in SIAM Jour. Appl.
Math., but presently available as Report?# 991 from the
Mathematics Research Center, University of Wisconsin, Madison

53706’ UIS.A.

(3] , '"Generalization and Symmetrization of Duality

in Geometric Programming', in preparation.

JOHAN PHILIP, Stanford University, Stanford, and The Royal Institute
of Technology, Stockholm

Algorithms for the Vector Maximization Problem

We consider a convex set S in R described as the intersection of
halfspaces aiTx < bi’ (1 € I) and a set of linear objective functions
fj = chx, (j € J). The index sets I and J are allowed to be infinite
in some of the algorithms. We give various characerizations of the
efficient points of S (also called functionally efficient or Pareto
optimal points). With the aid of the characterizations we give algo-
rithms that solve the following problems:

1. To decide if a given point in S is efficient.

II. To find an efficient point in S.
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III. To decide if a given efficient point in S is unique or if
there are other efficient points.

IV. 1If a given efficient point is not unique, to find directions
to other efficient points.

V. The solutions of the above problems do not depend on the absolute
magnitude of the Cj' They only describe the relative importance
of the different activities XpseeesX o Therefore we also consider
the problem

max g(x)
x efficient
for some function g. An algorithm that solves this problem for

linear g is given.

H.E. PICKETT, Aerospace Corporation, San Bernardino, Cal.

A Contribution to the Thaumaturgy of Nonlinear Programming

This paper reports on a method for solving nonlinear optimization
problems in which there is continuous gradient information about
both the objective function and the constraint functionms. The algo-
rithm may be divided naturally into two parts. The first, which we

call the basic set of constraints algorithm, deals with inequality

constraints by posing equality constrained optimization problems

for the second part of the algorithm to solve. It is a combinatorial,
or global, algorithm, as distinct from the local methods such as the
method of gradient projections. The second part of the algorithm is

a method for optimizing functions subject to equality constraints.
This method makes use of the Davidon-Fletcher-Powell algorithm for
unconstrained optimization, and, like that method, converges from

any starting point and has eventual quadratic convergence for

quadratic functions.

In the paper, we first heuristically motivate and develop the
basic set of constraints algorithm. Also we prove (Theorem 1) that
if the algorithm does not cycle, then it obtains a local optimum

of the function. A matrix method used to implement a portion of the
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algorithm is presented. The second method, which is essentially an
algorithmic procedure for eliminating variables, is developed next.
Because of its intrinsic simplicity, we hesitate to call it novel,
but we know of no place where it has been presented in its present

form.

In addition to the algorithm, we present a set of sufficient
conditions for the existence of a unique global optimum (Theorem 3)
which was suggested by the algorithm. The theorem is combinatorial
in nature and is not based upon the usual convexity assumptions.

We also consider the question of cycling of the basic set of con-—
straints algorithm. Since cycling can occur, we have preferred to
refer to this algorithm as part of the "magic arts" of nonlinear
optimization. However, we conjecture that under conditions only
slightly stronger than those of Theorem 3, the algorithm does not
cycle. We adduce supportive evidence for this conjecture and prove

(Theorem 4) certain special instances of it.

We conlcude with several illustrative examples.

JEAN-MARIE PLA, S.N.C.F., Paris

An "out-—of-kilter" Algorithm for solving Minimal Cost Potential

Problems

Most of network flow problems can be efficiently and elegantly
solved by means of the so-called "out-of-kilter" algorithm published
by D.R. FULKERSON in 1961. The present paper aims at producing a

similar algorithm suited to network potential problems.

This algorithm, being almost exactly the dual of "out-of-kilter",
has the same attractive features as the latter:
- the progress towards optimum is monotone for each arc of the
network;

- the strating solution may be infeasible;
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- finally, all or part of the data can be altered during or after
the calculation, keeping the current solution as a starting one

for the new problem.

Like "out-of-kilter", the algorithm to be described includes
three routines:
- a labeling process, which leads either to "breakthrough' or to
"non-breakthrough";
— a potential altering process (if non-breakthrough);

- a flow altering process (if breakthrough).

It allows detecting infeasibility, but also the lack of finite
optimum - what "out-of-kilter" likewise could do for slight
modifications — and terminates in a finite number of steps, provided

the data are integers or ratiomnals.

M.A. POLLATSCHEK and B.AVI-ITZHAK, Technion, Haifa

A Deep-cutting Procedure for Integer Programming

A cutting procedure is developed for the 0-1 linear program:

n
jE] aijxj < bi’ 1= 1,2,s6s,m3 0 < xj £ 1, 3= 1;2;6%e503
n
5oy i T (1a)
X, is integer, (1b)

where cj is integer and 0 < Cp S Cy < seesCoe
Supposing that z is an upper bound of the maximum,

we have:

=]

21 cjxj < B3 xj is 0or 1, j = 1,2,ees0s (2)

Considering x as a real vector, the convex hull of the

solutions to (2) can be written as:
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n
T o, «X:. <1, k=1,2,0.09 Kj:- 0 g x. £ 1, (3)
j=1 K013 J = 1,2,000, n, J
where n-vector gk and scalar K should be determined.
Theorem. @, are the basic feasible solutions to the system in B
n
jil yﬂ,’jﬁj_]’ 2'=],2,~00, L; Bj ZO, J=],2,...,n (4)

where Yoo 2 =1,2,..., L are all the solutions to (2).

Given a point u, the ''farthest" inequality,

among the inequalities of system (3) from point u in norm L],

approximately, is given by the solution of

u.B.
A

max

N ~mB

subject to (4).

Thus,

h~M3
el
]
IN

leJ
is the deepest cut in L1 norm, approximately, from point u, using

inequality (2).

The basic cutting procedure consists of the following steps:

(1)

1. Find a solution to (la). Let x be the solution and z(l) the

value of the objective function, k := 1.

(k)
x

2. 1E has 0-1 entries only, stop. It is a solution to (la-1b)

Otherwise proceed.

3. Find:

- (k) . = v (k) =
o = Max [ij Bj | V, i Iy, .B. <1, 8, 2 0] ij a



107

4, If a > 1, the constraint ijaj < 1 is added to the system,

(k+1) (k+1)

reoptimize, the solution is x with value z k:= k+1

and return to step 2. Otherwise proceed.

5. Find whether any 0-1 solution to chxj = [zk] satisfies the

original problem. In case of a positive answer, stop: the solution

is found. Otherwise proceed to step 6.

LOHD) ) G ()

-1 = x ; ki= k+1, return to step 3.

The procedure converges in a finite number of steps to the
solution of (la) - (1b).

The same ideas can be applied to general integer linear programs.

ANDRAS PREKOPA, Hungarian Academy of Sciences, Budapest

Programming under probabilistic constraints and programming under

constraints involving conditional expectations

1. The following fundamental theorem holds: Let Q(x) be a convex

function in R and g(z) be a decreasing and differentiable function

in the range of values of Q(x). We suppose that g(z) 2> 0, -g’(2) is

logconcave, Jg(Q(§)) dx < «(logconcavity of a function h(x) is
~
defined by the inequality

hOx, + (I-0) x) 2 [h(x)1" [h(x,)1' ™

s+ 0 << 1)

We consider the integral J g(Q(x)) dx which is a function of
A+t

the variable vector t. A is a convex subset of R" and A+t means a

translation by t. Statement: f(t) is logconcave in R". The function

g(Q(x)) will be used as the probability density of a random vector.

Logconcave densities satisfy the above assumptions because they are

-Q(x) z

of the form e and g(z) = e

. In this category we find among
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others the multivariate normal distribution (with arbitrary para-
meters), the Wishart, the Dirichlet and the multivariate beta dis-
tributions (with suitable parameters). If the density is logconvex
then the probability of the set A+t is a logconvex function of t.
This last statement is far more immediate then the fundamental
theorem. Example for a logconvex probability measure is the multi-
variate Pareto distribution. The fundamental theorem implies in
particular that log ¢(t],...,tn) is a concave function in the entire
n—dimensional space where ¢(tl,...,tn) is the multivariate normal

probability distribution function (with arbitrary parameters).

2. Applications to stochastic programming models.

a) Let §4’ §2 be random vectors where the components have a joint
normal distribution. Constraints of the type P(gl < Ax < EQ) > p or
P(h(x) = Eq) > p will be considered where h(x) is a concave vector-
valued function and p is an arbitrary probability between O and 1.

In view of the fundamental theorem the functions on the left hand
sides are logconcave in x thus such constraints can be parts of
convex Oor quasi-convex programming problems. Semi-infinite stochastic
programming problems can also be formulated by introducing constraints
e.g. of the following type: P(Bl(t) < A(t,x) < Bz(t), teT) = p,
where T is an interval, B](t), Bz(t) are stochastic processes with
Gaussian finite dimensional distributions and A(t,x) is a linear

. . n .
function in x € R for every fixed t € T.

b) The Dantzig—-Madansky-model (two stage programming under un-
certainty) is transformed by introducing a new condition containing
a prescribed lower bound for the probability of solvability of the
second stage problem (the second stage problem is not supposed to
be solvable for all first stage decision vectors Xx). The objective
function is also modified and the new model is shown to be a convex

programming problem.

3. Consider the problem: gi(ﬁ) 2 B i=1l,00e, m x 20, min g(x),

where the functions gl(z),..., gm(g) are concave. If Bys+-+sB are
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random variables then this problem looses its meaning. Our problem

is now formulated as:

E(Bi_gl(-}i) I Bi‘gl(g) >0) = fi’ i=1,...,m, X 2 0, min g(ﬁ);

here f],...,fm are arbitrary positive constants and on the left
hand sides there stand conditional expectations. If Bl,...,Bm have
normal distributions, then this last problem can be shown to be a
convex programming problem (provided, of course, g(x) is also

convex).

4. Algorithmic solutions. Algorithms for the solution of models

2.a) and 3.) will be given and the solution possibility of the
model 2.b) will be discussed.

L.D. PYLE and G.J. MCWILLIAMS, University of Texas, Austin

On the Use of the Projected Gradient in place of Ward's Transforma-

tion in the Approximate Solution of Two-Dimensional Transportation

Problems

In a paper in Psychometrika [1] J.H. Ward discusses a transfor-
mation similar to that for computing the projected gradient [2].
When applied to the cost vector of a two—-dimensional transportation
problem, Ward's transformation yields a vector which is then used
in determining a feasible solution often found to be optimal or
"near optimal".

This paper presents the results of a series of numerical
experiments being conducted using the projected gradient in place
of the transformed vector given by Ward. Implications for general
linear programming problems are discussed, together with some of the
attendant difficulties, such as the computation of projected gra-

dients for large, sparse linear systems [3].

[1] WARD, J.H., The Counseling Assignment Problem, Psychometrika,
Vol. 23, nr. 1, March 1958.
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[2] CLINE, R.E., and L.D. PYLE, The Generalized Inverse in Linear

Programming — An Intersection Projection Method and the

Solution of a Class of Structured Linear Programming Problems,

TNN - 103, Computation Center, The University of Texas at

Austin, Austin, Texas (1970).

(3] SMITH, D.K., A Dynamic Component Suppression Algorithm for the

Acceleration of Vector Sequences, Doctoral thesis, Purdue

University, Lafayette, Indiana (1969).

REZA RAZANI, Pahlavi University, Shiraz, Iran

Application of Mathematical Programming to Optimum Design of

Engineering Structures; a Survey and Recent Advances.

in the

where:

Optimum design of engineering structures can be formulated
form of the following mathematical programming problem:
Min{f(x) | ®(x,u) = 0, g(x,u) =2 0, h(x) = 0}

x
x represents the design variables such as the size of the
structural members,

u represents the behavior variables such as stresses,
displacements, etc.,

f(x) is the objective function representing the weight or
cost of the structure,

®(x,u) = 0 represents the set of analysis equations generally
consisting of the equilibrium and compatability systems of
equations,

g(x,u) = 0 represents the set of behavior constraints
guarding the structure against various failure modes such as
excessive strains, etc.,
h(x) =2 0 represents constraints on the design of structural
elements due to codes and specifications such as minimum

specified plate thickness, etc.



In the traditional method of structural design, the designer
tries to obtain feasible designs satisfying analysis equations and
constraints. He takes into consideration the design objectives using
design principles, intuition, experience, and numerous cycles of
trial analysis and redesign. For certain classes of structures the
designer finds that designs based on the Fully-Stressed principle
or the Simultaneous Mode of Failure principle leads to minimum
weight design. Unfortunately, the traditional designer often extra-
polates these principles beyond the range of their application re-
sulting in inefficient structures.

By considering the structural design as a mathematical pro-
gramming problem, it is shown that following the traditional design
principles 1leads to a particular vertex of the constraint set
g(x,u) 2 0. For some nonlinear cases this vertex is not the optimum
point. The Kuhn-Tucker Optimality Condition is used to verify the
optimality of the designs based on traditional principles.

Linear programming has been used for the limit analysis and
design of structures. In this case the minimum—weight design problem
is obtained using the Static formulation or its dual, the Kinematic
formulation. Recently, linear programming has been used in the
minimum-weight designs of trusses to find not only the areas of the
members, but the topology of the optimum truss as well.

In general, most design optimization problems are non-linear;
therefore, non-linear programming methods have been used for the
optimum design of many types of elastic structures. For the solution
of the non—linear problem, various methods of feasible directions or
methods of unconstrained minimization using penalty function
techniques or Cutting Plane methods using a sequence of linear
programming problems are used.

Problems of minimum—cost designs of structures have led to
the generation of many types of Integer Programming and Fixed-Charge
Problems. In the solution of some of these problems, a Dynamic

Programming technique is used.
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Optimum design of structures on the basis of reliabilify is
another important area of research. Here, the problem of the optimum
design reduces to that of mathematical programming under uncertainty.

By using either potential or complementary energy formulation,
many conservative structural analysis problems can be treated as un-
constrained minimization problems. Methods of unconstrained minimi-
zation in conjunction with energy formulation is also used for the
solution of combined structural analysis and design optimization
problems.

Under certain conditions the mathematical models of determi-
nation of the plastic strain rates in plastic and elastoplastic
structures results in the minimization of a quadratic function,
subject to linear inequalities. The solution of this quadratic
programming problem leads to a minimum theorem for plastic strain
rates. Quadratic Programming techniques are also used for the so-
lution of the matrix method of stationary creep analysis of struc-
tures and many other design—analysis problems using energy formula-
tion.

Many other applications of mathematical programming techniques
to the analysis and optimum design of structures together with the

problem areas, future trends and unsolved problems are also reported.

PIERRE ROBILLARD and MICHAEL FLORIAN, Université de Montreal, Montreal

(0,1)-Hyperbolic Programming Problems

The problem of (0,1)-hyperbolic programming introduced by
Hammer and Rudeanu (Boolean methods in Operations Research) can be

formulated as follows:

n
e e . . 5 e
minimize the function F(X) (a0 I a, xi)/(b0 z bi xi)
i=1 i=1
subject to the constraints Hj(X) < dj’ j=1,2,..., m where the Hj
are pseudo-Boolean functions and x, = {0,1}, i =1,2,..., n.

We denote this problem by P and x* is an optimal solution of P if

minimizes F(X) and satisfies the set of constraints.
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The solution X can be obtained by solving a finite number
of problems where a linear function is minimized under the original
constraints. When the functions Hj are linear the solution X is
obtained by solving a finite and usually small number of (0,1) linear
programming problems. When no constraints of the form_Hj(X) < dj are
imposed the method of solution reduces to the one described by
Hammer and Rudeanu.

The algorithm introduced above is illustrated by few numerical

exemples and a series of computer trials with a suitable code.

J.B. ROSEN, University of Wisconsin, Madison

Solution and Error Bound for Partial Differential Equations by

Linear Programming

A general method for obtaining an approximate solution, to-
gether with an error bound, for certain types of boundary value
problems will be described. An approximate solution is assumed as a
linear combination of selected basis functions. The coefficients of
this linear combination are determined using linear programming so

as to minimize the error bound on the approximate solution.

DAVID S. RUBIN and ROBERT L. GRAVES, University of Chicago, Chicago

The Modified Dantzig Cuts for Integer Programming

We consider the integer program
max c'x = z
subject to Ax = b (IP)

x 2 0 and integer

where ¢ is (m+n) x 1, b is m x 1, A is (m*n) x n, and all three
have all integer components.

Let B be the optimal basis for IP taken as a linear program,



114

o4 X

. & B 4 B
and let A be partitioned as (B,N), c as (C ), ang x as (_ ).
N

Then Tucker's linear programming optimal tableau is

xp = B b B N

Xy = 0 - I

B—]b and y' = ¢ B_IN - ¢!. We denote the elements of

where YO = c B N

B

X a8 Xg seees Xpoo and those of Xy as Xgpreeo an.

If B-]b is not an all integer vector, we can proceed by
adding additional constraints, or cuts, to the problem. In 1959 [1],

Dantzig proposed the cut

to be used for integer programming, but did not give a proof that an
algorithm based solely on this cut (the "Dantzig cut') would converge
to the IP optimum. In 1963 [2], Gomory and Hoffman proved that such
an algorithm would not converge in general. In this paper we present
some slightly modified versions of the Dantzig cut which can be
shown to converge in all cases.

We denote the matrix in the tableau by Y, and we number its
rows from O to m+n and its columns form 0 to n. Write Y = W+F
where fij = yij - [yij], the positive fractional part of yij' Choose
some index i such that in ¥ 0. We call row i the "source row" for

the cut. Let 61. = {] 22 fij *0 . We define the first modified

d 0if £,, = 0
1]
Dantzig cut (the '"MD1 cut') by
n

z S.. .> 1
= 1] xNJ
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and propose the MD1l algorithm:
1) Use the simplex method to solve IP as a linear program,

finishing with a lexico—dual feasible tableau. (We assume that the

problem is bounded.)
A. If infeasible, then IP is infeasible.

B. If feasible, and the solution is all integer, it is optimal
in IP.

C. If feasible, and the solution is not all integer, go to

step (2).
2) Let i* be the least i such that fiO # 0, and let row i* be
the source of an MD1 cut. (If all £.. =0, i = 0,...,m+n, then the
i0
Y00 Y00
tableau is optimal for IP.) Let n = . = 2 .
Yi%o Yi*o

Add the cut to IP, pivot once, and to to step (3).

3) If the new tableau (whose matrix we denote by Y') is
A, primal feasible, go to step (2);

B. primal infeasible, and if

[ £ n, pivot until primal feasibility is restored,

and go to step (2). If feasibility cannot be restored,
then IP is infeasible.

\J
Y00

Zal, > n, add another MD1 cut derived from the same

"
"%

10
row, pivot once, and to to step (3).
Lemma: The MD1l algorithm cycles in step (3) until either
s yi*o sni* or
b. yéo <Ny for some k = 0,],...,1* -1, or

c. it determines that IP is infeasible.
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One of these cases must occur after a finite length of time.

Theorem: The MD1 algorithm converges to the solution of IP or shows
that

IP is infeasible in a finite length of time.

Although convergent, the algorithm can be shown to be quite
slow. The paper continues by investigating ways to strenghten the
MD1 cuts. We show that in very general circumstances, the right hand
side of the cut can be changed to a two. We call this the MD2 cut.
It also turns out to be quite weak. For a final strenghtening of the
cut, we use its coefficients as an objective to Gomory's asymptotic
algorithm [3, 5], and let that procedure determine the right hand
side of the cut, frequently an integer greater than two. We call
this the MDk cut.

We conclude with a discussion of the computational aspects
of the MDk cuts, and a suggestion for an algorithm which combines

this cut with the method of integer forms cut [4].

[1] DANTZIG, G.B., Note on Solving Linear Programs in Integers.
Naval Research Logistics Quarterly, VI (1959), 75-76.

[2] GOMORY, R.E. and HOFFMAN, A.J., On the Convergence of an Integer
Programming Process, Naval Research Logistics Quarterly,
X (1963), 121-123.

[3] GOMORY, R.E., Some Polyhedra Related to Combinatorial Problems.
IBM Report RC2145, July 1968.

(4] GOMORY, R.E., An Algorithm for Integer Solutions to Linear

Programs, in R.L. Graves and P. Wolfe (eds.), Recent Advances

in Mathematical Programming. New York: McGraw-Hill, 1963.

[5] RUBIN, D.S., The Neighboring Vertex Cut and Other Cuts Derived

with Gomory's Asymptotic Algorithm. Unpublished doctoral

dissertation, Graduate School of Business, University of Chicago,

June 1970.
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R.W.H. SARGENT and B.A. MURTAGH, Imperial College, London

Projection Methods for Non-Linear Programming

The paper describes several projection algorithms for non-linear
equality constraints. These are based on the '"rank-one'" quasi-Newton
minimization technique combined with variable metric projection,
which in the best algorithm fits the constraints to second order.

To achieve convergence for non-linear constraints it was found
necessary to limit the extent of constraint violation at each step,
either by use of a penalty function, or by a correction procedure.
Several correction procedures are examined and compared with the
use of a penalty function.

Non-linear inequality constraints are effectively dealt with by
converting them to equality constraints using slack variables, and
linear inequalities by using Rosen's strategy for constructing a
sub-set of active constraints.

' Numerical results are given for the set of problems published
. by Colville, showing that the algorithm as finally developed con-
 verges satisfactorily to the correct solution for all the problems,
'in each case requiring fewer function evaluations than the best of

the algorithms previously recorded.
\

ROLAND SCHINZINGER, University of California, Irvine

On the Reduction of the Continuous Variable Component in Mixed

Integer Linear Programming

There exists for every mixed integer linear programming problem
an optimum at which the independent continuous variables assume the
value zero. These are surface optima, not necessarily unique, but
more easily located. More specifically, the locus of such an optimum

ic the intersection of g planes which in turn are defined by g zero-
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valued continuous variables; g is the original number of continuous
variables, i.e. excluding continuous slack variables.

As a reasonable starting point in the search for the optimum
one may therefore select g likely candidates from among the con-
tinuous variables; both design variables and slack variables may be
chosen as long as they are of the continuous variety. These g con-
tinuous variables would then be set equal to zero, leaving one with
m (or less) dependent continuous variables as well as the set of
integer variables. Here m is the number of constraints. There is no
assurance that the original set of g candidates was the optimum set.
Other combinations must therefore be explored, but the search is
truncated by stringent tests. The problem is then referred to any
enumerative type search, such as the Shrinking Boundary Algorithm *)
which may be modified to advantage to handle continuous variables
among the dependent variables, or to the conversion algorithm which
transforms a mixed integer problem into a pure integer problem. The
latter has not been described elsewhere; therefore it will be

sketched briefly in this paper.

*) "A 8hrinking Boundary Algorithm for Discrete Systems Models"
by R.M. Saunders en R. Schinzinger, IEEE Trans. on Systems Science

and Cybernetics, May 1970.

B.M.E. DE SILVA, University of Technology, Loughborough,

Leicestershire

Optimal Vibrational Modes of a Turbine Disc

This investigation is a continuation of a research program into
computational procedures based on the methods of mathematical pro-—
gramming for solving structural optimization problems in the presence
of design constraints. Such procedures were successfully developed

for obtaining minimum weight solutions |l,2,3| to a turbine disc of
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variable thickness in the presence of constraints on the stresses,
natural frequencies of vibration. The problem was formulated as a
general problem in optimal control theory in the presence of in-

equality constraints on the state and control variables.

Numerical solutions were obtained by transforming the variational
formulation into a discrete nonlinear programming formulation using

a piecewise linear representation for the control variables.

In the present investigation an attempt is made to further generalise
these procedures and to extend their scope to include more complex

structural optimization problems.

For this purpose, the paper considers the problem of maximising some
linear combination of the frequencies of vibration of a turbine disc
subject to constraints on the dimensions and tolerances of the disc
and its total weight. The problem is again formulated as a general
optimal control problem with the frequencies as control parameters.
The design requirements are represented by state and control in-
equality constraints, the control and state variables being given by
functions describing the variations in thickness and deformation
fields. Significant progress has been made in solving the problem
using purely analytical techniques based on the(restricted) maximum
principle of Pontryagin. (These include the analytical solutions of
systems of ordinary differential equations using perturbation
techniques and analytical solutions of fourth order differential
equations using WKB expansions.) These transform the problem into a
nonlinear programming problem which is then solved numerically

using the Heaviside penalty function transformation in conjunction

with Rosenbrock's hill-climbing procedures.

Available computational experience indicates that these procedures
provide powerful tools for handling complex structural optimization

problems.

[1] B.M.E. DE SILVA, The application of nonlinear programming to the

automated minimum weight design of rotating discs: Optimization
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(editor R. Fletcher), Academic Press (1969), pp 115-150.

(2] B.M.E. DE SILVA, The minimum weight design of discs using a
frequency constraint: Transactions of the American Society of
Mechanical Engineers, Journal of Engineering for Industry,

November (1969), pp 1091-1099.

[3] B.M.E. DE SILVA, The application of Pontryagin's Principle to a
minimum weight design problem: to appear in Transactions of the
American Society of Mechanical Engineers, Journal of Basic

Engineering.

MATTHEW J. SOBEL, C.O.R.E., Heverlee, Belgium

A finite Algorithm for Equilibrium Points of Games

This paper presents an algorithm for computing, in a finite
number of steps, an equilibrium point in any finite noncooperative
game. Thus the algorithm is also a constructive (algebraic) proof
of John Nash's theorem that such a game has an equilibrium point (EP).

Let @ = {1,...,N} be a set of players and Ai be the set of
actions available to player ieQl. The game is finite if K = ElAi| < ®
and none of the Ai is empty. The payoff to player i is ri(a) after
the players take their actions ag A If randomized rules are used,
the players' utilities are their expected rewards. Let x = (x. k)
be a randomized rule for player 1i, keA . Then xleﬂl which is the
IAiI - 1 dimensional unit simplex. Let =.Xhi. The utilities are

Ui(x) = zalEA] P ZaNEAN x]a] i xNaN ri(al,...,aN).

N 1 i-1  i+1 N
For x = (xl,...,x ), let X_; = > AP, » X jees X ) and

write x = (xl,x_i). Then xem is said to be an equilibrium point

(EP) if

e i — i .
Ui(x) 2 Ui(x ,x_i), all x T s all ieQ.
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It can be shown that an equivalent condition is that there be an

associated veEN and aaEk such that

(1) v, = Ui(e

+ Q
i )

k*¥-i keAi, 1eQ

ik’
(2) Xxem, & 2 0

(3) ax = 0.

Robert Wilson has recently used a system equivalent to (1)-(3)
to prove Nash's theorem algebraically. Our algorithm is closely
related to Lemke and Howson's algorithm for the case N = 2 (bima-
trix games) and to Wilson's proof.

Our algorithm begins by constructing (by induction on N) a
starting point that satisfies (1) and (2); it also satisfies (3)

except possibly for one index (i,k) so ax = > 0. Such a

Oy X,
ik ik
point is an almost complementary solution (AC). If a solution is

AC and ax = 0, it is an EP.
The algorithm consists of examining a sequence of AC solutions
until an EP is reached. The pivot from one AC solution to the next

one is accomplished by solving a linear programming problem.

I.M. STANCU-MINASIAN, Academy of the Socialist Republic of Romania,

Bucharest

The Solution of a Transportation Network in the Case of Multiple

Criteria

In the paper we consider three problems, that appear in connection
with a transportation network, problems that are differently treated in
the literature. We prove that in fact we have one problem to which
distinct efficiency functions are associated.

Suppose that in m production centres A_, Az,... Am are a,,a,;...»a

1
quantities of a certain material that is asked by n centres of con-

l,bz,l..’an For

each route (Ai,Bj) we denote by dij the greatest quantity that can be

sumption BI’BZ"°"Bn’ each asking the quantities b

transported, by Ci; the transportation cost of a single unity of the



considered matevial, and by tiy the time of trvanaportation,

Problem 1. Lt ia vequived to ovganise the dispatoh process to that
within the avatlability limit and {rvveapective of the tranaporta-
tion costa and tiwea, the quantity to be transported should be max|=
WANR |
If we conaider a fictitioun centre A, that concentrates the whole
available quantity of wmaterial, and a fictitious centre “n#l that
concentrates the whole necessary quantity of material, we are con=
fronted with a maximal flow problem {n a tranaportation network,
We denote by tij the quantity to be tranaported, The mathematical
wodel of the problem is the following:

n

S X - § { = l.2.....m (')
j.l ij \‘i

m

ifl Cij - t‘jn#l J = 1L,2,i00yn (2)
°‘£°is.i i - 1.2.....“\ (3)
0= Ejn*l s bj J=1,2,vepn (4)

n
Max ¥ - jfl ejn+l (5)

Problem 2. In the same conditions it is required to organise the
dispatch so that the total cost of transportation be minimal., This
is a classical transportation problem. It is proved that the model
of the transportation problem can be expressed by the constraints
1) - (5).

The efficiency function of the problem will be:

m n
Min F, = 2 @ K (6)
I

Problem 3. The data being the ones in the problem |, organise the

dispatch so that the total time be minimal.
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Similarly to the problem 2, the constraints are (1) - (5), and the
efficiency function is:

m n
MinF, = I I ¢t..&,. (7)
3 = g=p ML

In order to take into account all the three efficiency functions,

they are transformed into utility functions:

n
F! = I a, &

1752 %1 S * Bys
m n
Fé = iil jil a2cij i3 + b2
m n
Fé = ii] jil a3tij i + b3

that are summed up; thus we obtain a synthesis function
*

= U ' '
F K,F] + K,F) + K F},

where K]’ K2, K3 are importance coefficients for each function,

and a a

1 3y 23 bl’ b2, b3 are some transformation coefficients ob-—
tained by the application of the von Neumann-Morgenstern's definition

of the utility function.

At the end of the paper, an example is considered.

JANOS STAHL, INFELOR, Budapest

On the two-stage Stochastic Linear Programming Problem

We deal with the two—stage stochastic LP problem

(1) inf {E(cx + inf(dy | A2x + By = &; y 2 0)) | A x = b; x = 0}

1
where A], A2, B, ¢ and d are given matrices and vectors of appropriate
size, £ is a random vector with known distribution function and E

denotes the expectation operator.
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As far as we know computationally feasible procedures for
solving (1) are known in the case B = [I, -I] and in cases equiva-
lent to the previous one. (I denotes unit matrix.) But in this
case the model is not too satisfactory from a statistical view-
point, since the solution depends only on the boundary distribution
of &.

It is known that the set of feasible solutions, i.e. that sub-
set of {x | Ax =b; x 2 0} for which {y | By = & —‘Azx; y 20} #¢
for every realization of £, is a convex polyhedral set. In the
first part of the paper algorithms for determining this set will be
considered.

If £ has a discrete distribution, (1) is a LP problem. Under
mild assumptions it can be proven that the optimal value of the
LP problem belonging to a discrete & converges to the value of (1)
if T converges (weakly) to £. A procedure based on appropriate
approximation of this type will be discussed.

Finally we consider some extensions involving further stochastic

elements among the parameters.

R.B. STANFIELD, ESSO Mathematics & Systems Inc., Florham Park, N.J.

Nonlinear Programming in Large Models

The use of large models today usually involves large application
oriented matrix generator systems. In addition, a number of these
simulations are limited by our ability to adequately represent non-
linear business situations. Most classical nonlinear algorithms are
unsuitable for the massive data processing and systems design problems
that occur in these large generator systems. Iterative linear pro-
gramming techniques are sufficient, however, to represent and solve
these nonlinear models.

These paper discusses a solution through the use of the modular
generator system, each module representing a generic business acti-

vity. The algorithms, linear and nonlinear, for the specific techno-
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logical areas of the model would be coded within these modules.
The coding would determine the existence, function, and arguments
to compute each element to represent an activity.

In the applications examined, a major fraction of the elements
are nonlinear. To recompute a linearized model based on new solu-
tion values, one wishes to avoid the input interpretation, file
searching and sorting required in matrix generation. The concept
of retaining the functional representation of an element until as
late in data processing as possible is proposed.

Each nonlinear element would then exist in a virtual form on a
master work file. The actual work file would be produced by passing
the master work file against an edit program and solution values.
Such regenerations can be extremely fast, as they will not involve
input interpretation or sorting.

A middle distillates blending model involving the nonlinear
pooling problem was chosen for a demonstration of the concepts. The
model involved 200 rows and 2500 nonzero elements. An algorithm for
pooling was implemented using iterative LP techniques. A system was
written to demonstrate both the system efficiently as well as the
stability and convergence of the pooling algorithm. The results have
been encouraging.

In general, considerable analysis will be required of a given
technology to generate general and reliable nonlinear codes.
However, the inclusion of such algorithms in general generator

systems now seems feasible. -

DANIEL TABAK, Rensselaer Polytechnic Institute of Connecticut, Inc.,

East Windsor Hill, Conn.

Optimal Control by Mathematical Programming

Direct applicability of mathematical programming techniques

in the design of optimal control systems is discussed [1,2] .
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Various case studies of actual implementation of mathematical
programming algorithms in various problems of practical applica-
tions are presented.

The types of control systems discussed, include linear, non-
linear, continuous and discrete(fime systems, deterministic and
stochastic as well as distributed)parameter systems. The applica-
bility of ideas derived from mathematical programming algorithms
to the solution of nonzero-sum, constrained difference games,
applied to problems of economic competition is also touched upon.

The areas of application include aerospace trajectory optimization

and rendezvous problems, computer control of processes, nuclear

reactors and constrained estimation problems.

(1] D. TABAK, Application of Mathematical Programming in the Design
of Optimal Control Systems, Ph.D. Thesis, University of Illinois,
Urbana, Ill., 1967.

(2] D. TABAK, B.C. KUO, Optimal Control by Mathematical Programming,
Prentice—-Hall Inc., Englewood Cliffs, N.J. (to appear in 1970).

GERALD L. THOMPSON, Carnegie—-Mellon University, Pittsburgh, and
ROMAN L. WEIL, University of Chicago, Chicago.

OptimizingA(or x) subject to Ax =ABx: the Generalized Eigenvalue

Problem

For square A, Ax = Ax is the standard eigenvalue-eigenvector
(hereafter, eigensystem) problem. We have studied the problem
Ax = ABx for m X n matrices A and B. We show how the problem of
finding such ()\,x) can be reduced by a recursive application of
elementary row and column operations to a standard eigensystem
problem.

If A and B are square and B is nonsingular, then the eigen-—
system of Ax = ABx is that of B-le = AX, a standard eigensystem

problem.
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When A is singular or, more generally, when A and B are
rectangular, more detailed analysis is required to isolate the
standard eigensystem whose solution is that of the generalized
eigensystem.

We believe the result to be fundamental and of wide potential
application. As of this writing the only application we have seen

is to optimal control problems of the form

X = Ax + Bu
s.t. Cx = f(t).

LEONARD TORNHEIM, Chevron Research Company, Richmond, Cal.

A Linear Programming Algorithm for Maximum Change at each Iteration

This algorithm selects a pivot at each iteration which maximizes
the change in the objective function and yet requires about the same
amount of computation. Since experiments [ 1] indicate that fewer
iterations are usually required, this method would be more economical
than the other common procedures.

Such a procedure was given by M.A. Efroymson, but only an ab-
stract was published [2]}. Also, G.B. Dantzig described one in an
oral communication but did not provide for degeneracy. It is not
indicated in the abstract of Efroymson that he allowed for degeneracy.
This is done here, with a small increase in time.

Also, the algorithm is extended to include upper bounding, which

requires appreciably more time to handle than in the usual simplex

method. -
The normal form used for the equations I aij xj = bi
lA=1,.0.,m), I ijj =z +z (minimize) is described as follows.

At each iteration, the indices 1,...,m of the equations are separated

into two sets, I, and IZ’ which correspond to the positive x. and the

P
zero x, in the present basis (xj reees X, ). We can assume I, # 0.
1 m
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For a certain index h € IP’ b 1, bi =0 (1 #h); c. =03

h is
a.. > 0; all for i =1,...,m. Also, for i # h, 8. = 0 (g # 1),

i i

ix ™ "y i L .. = i I.). H th t
ath ath (1€ P)’ and ath 0 (1 € Z) ence, e presen
solution is x. = 1/a.. (1 € I ) and x. =0 (1 € I1)).
I 1]. P i Z
i L
The choice of the next pivot is as follows. For each column j

having c. < 0, let a. = « if there is an a,. > O with i € I_.
J J 1] Z

a.. > 0; and
1]

Otherwise, let a,, = max a.,, for i # h, 1 € I_,
] 1] P

aj = max (a + aj,). If aj < 0, then the minimum of z does

hj’ 2hj
not exist. Otherwise, find the maximum of lcjllaj. This gives the
column s of the pivot, the row r having been determined when finding
as.

The formulas for pivoting are similar to the usual ones but
depend upon whether r is in I, or IZ and whether i equals h or is

in IP or Iz.

[1] P. WOLFE and L. CUTTER, Experiments in Linear Programming,
in R.L. Graves and P. Wolfe, Recent Advances in Mathematical

Programming, 1963, p. 188.

(2] M.A. EFROYMSON, Some New Algorithms for Linear Programming
(Abstract), in R.L. Graves and P. Wolfe, ibid., p. 219.

G.E. VERESS, I.M. PALLAI and G.A. ALMASY, Hungarian Academy of

Sciences, Budapest

Application of Dynamic Programming to an Industrial Problem

The problem is to find the optimum control for a chemical plant.
The objective of the optimization is to maximize the output of the
product. The plant is assumed to operate in quasi-steady—-state and

its operation is characterized, for a given input, by a certain
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number of manipulated and disturbing variables.

Because of the considerable number of variables, the process
should be divided into a sequence of the different units, where the
flows linking the consecutive stages are described by a limited num-—
ber of variables. Having partitioned the system, the optimization
can be carried out by means of dynamic programming.

The dynamic programming principle can be applied to systems
consisting of units of different type, provided that appropriate
objective functions of these units are available. Since the aim of
the optimization is to maximize the output of the product, terminal
optimization is concerned. In terminal optimization, the overall
objective function can always be described as a sum of certain
suitably chosen stage objective functions. In order to construct
such suitable functions, we introduce the concept of the ''potential
product', defining the stage objective functions as the increase of
the potential product.

The objective function of the nth stage, Gn’ depends on the
vectors of the input flow state variables X the stage control

variables pp and the stage disturbing variables z.s that is:

Gn = Gn(zn' T En) ol [, | 4

With the knowledge of the stage objective functions, the overall
objective function of the plant can be stated in accordance with the
dynamic programming principle. That is, if hn denotes the quantity

of the potential product over n stages using an optimal policy, then
L ] = + L
B2 seenzy) = max Co(,yo,2) + by (o b2y ez, )
Z
n=]’.'.’N

provided that

. Y S X ALN

*

2 .
K Cgodpozy) = Ky



(Rl

The value of the tunet Log “N {w, tor given diaturbing variable
vevtors and walng an vptbmal poliey, the maxlimum output of the
proaduet

Thin wethod (o belng appliad to an ammonia production problem,
Heve the potent bal proaduct e hydrogen (with the assumption of a
conatant hydvogen to nltvogen vatlo), The unlt models are consldered
hlackbox wodels with gquadvatbe objectlive functions and linear con=
atyvalnta,

VST TN T P Pr Yy e

MILAN VLACH, Delft Univeralty of Technology, Delft

On Conditions of Optimality In Linear Hpaces

For the formulation of optimisation problems the following
scheme iw adopted, Let G be a set, let ( be a subset of G and let
R be a reflexive and transltive relation on G, An element of G is
called optimal with respect to ¢ and R 1f (a) x ¢ 0 (b) y ¢ 0 and
y R x = x Ry tividently If x ¢ ¢, then x is optimal if and only if

R

R .
Gaf\u =, where (‘x

{(y e G|y Rxand = xRy, Depending on

the additional properties of G, §§ and R varlous "approximations"

to the setn ut and ) at the point x can be developed., 1If these
approximations have the property that G: ~f = ¢ implies (or even,
fa equivalent to) emptiness of the intersection of the corresponding
"approximationa", then we obtain necessary (or even, necessary and
suflticlent) conditions of optimality. It ims intended to present
neveral realligationa of thiws idea in real linear spaces and in some
classen of real linear topological mpaces and to demonstrate re-
lations to other, both clasmical and nonclassical, conditions of

optimality,
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WILLIAM F. WALKER Jr. and FRANCIS A. MLYNARCZYK Jr., First National
City Bank, New York

Solution to Nonlinear Least Squares Problems by Convex Programming

A convex programming procedure is applied to the nonlinear
least squares problem involving power transformations and to some
generalizations and extensions.

Consider a set of m observations AT SYRERES AN which are available
at m set of conditions Ko sXiogneresXe 320052 050005203
ie Il w {12550 nsils

Let E(yi) =n; (1

2

and  E(y; ~np G - = (% ] )

where the functions ni, ie I], can be represented

n k
n. = I B.x.. + LI v.z..0, (3)
1 j....] J l.] jl J lJ J
also let n Xk y
f.(byc,a,e) = I b,x,. * I c,z.,2, 1€I (4)
1 jm1 ] 1] jm1 J 1] 1
k
gi(a) = I dijaj’ ie I2 ={1,2,...,p} (5)
j=1
ho(a) = a;, jed; =1{1,2,...,q) (6)
o2
F(b,c,a,e) = L e (7
i=m

In this paper we describe a procedure to obtain estimates
b],bz,...,bn,cl,c2,...,ck,al,a2,...,ak of the parameters
81’82’...’BH’Y1’Y2’...’Yk’al’az,...’ak fOI‘ the nonlinear least
squares problem where the estimates bl’bz""’bn’cl’CZ""’ck’

3158yy0 008 are not constrained by linear constraints i.e.



132

I. MIN {F(b,c,a,e)|fi(b,c,a,e) = yi,i e I., 1, < hj(a) < uj,j e J .}

17 73 1
and for the nonlinear least squares problem where the estimates

b],bz,...,bn,cl,cz,...,ck,a],az,...,ak are constrained by linear

constraints i.e.
II. MIN {F(b,c,a,e)lfi(b,c,a,e) = yi,i € Il,ljs hj(a) < uss
j € J], gi(a) =r.,, ie¢ 12}.

Computational experience and statistical implications are

also discussed.

ROMAN L. WEIL and PAUL C. KETTLER, University of Chicago, Chicago

Rearranging Matrices to Block—Angular Form for Decomposition (and

other) Algorithms

The reader is perhaps most familiar with the exploitation of
block—-angular structures in the context of mathematical programming.
For example, if the rows and columns of the coefficient matrix of a

mathematical program can be arranged so that the matrix has form

B 7]
Ao] A02 o e Aon
Al] 0 e 0

0 A22 e 0 0
0 0 LI A
L nn.d

then the well-known time-saving decomposition algorithms can be
used. For other numerical calculations the discovery and exploita-
tion of block angularity can be just as useful. We describe a

method for finding block-angular structures in matrices. We specify
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the problem, outline the algorithm for solving it while illus-
trating with an example, detail the steps of the algorithm, and
relate some of our computing experience. The techniques for the
most part are not new. Their combination is. We have borrowed

freely from directed and bipartite graph theory.

DOUGLAS J. WILDE, Stanford University, Stanford, and
J.M. SANCHEZ-ANTON, IBM Corporation, Madrid

Discrete Optimization on a Multivariable Boolean Lattice

Consider the problem of finding the minimum value of a scalar
objective function whose arguments are the n components of 2n
vector elements partially ordered as a Boolean lattice. If the
function is strictly decreasing along any shortest path from the
minimum point to its logical complement, then the minimum can be
located precisely after sequential measurement of the objective
function at n + 1 points. This result suggests a new line of

research on discrete optimization problems.

A.C. WILLIAMS and CARL KALLINA, Mobil Research and Development Corp.,

Princeton, N.J.

Generalized Linear Programming

Our purpose is to give a new, elementary, self-contained account
of the theory of linear programming in infinite dimensional spaces.
The theory is developed from the appropriate generalization of the
Farkas Lemma, thereby providing an infinite dimensional theory which
closely parallels the finite dimensional theory.

The extensions of the theory of finite linear programs to the
case of linear programs in more general linear spaces was initiated

by Duffin in his fundamental paper in 1956 [1]. Duffin introduced
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the essential ingredients of a theory of programming in linear
spaces; namely, (1) the replacement of constraint equalities and
inequalities by the requirement that the indicated quantities lie
in given closed convex cones, (2) the notion of subconsistency of
the constraint set, and (3) the notion that the only two require-
ments that need to be specified for the topologies of the linear
spaces involved are that they be locally convex, so that the sepa-
rating hyperplane theorem holds, and also that they be reflexive so
that primal and dual programs are symmetrically related.

Ben Israel, Charnes, Kortamek [2] have made a significant con-
tribution by implicitly pointing out that to study programs in
quite general linear spaces it suffices to study finite linear
programs modified only by the replacement of constraint equalities
and inequalities by general closed convex cones. Their paper,
however, contains an error and is not complete, since their theory
does not provide a one-to—-one relationship between primal and dual
properties. The present paper provides this completion. We shall
show, also, how this leads immediately to the results of R.T.
Rockafellar [3], in which existence of optimal solutions and absence
of duality gaps are related to the notions of stability. Finally,
the interpretation of the dual solution as a measure of the rate of
change of the primal optimal value with the inhomogeneous term is

extended to the more general case.

[1] Ann. of Math. Studies, no. 38, Princeton Univ. Press. 1956,
pp. 157-170.

(2] Bull. Am. Math. Soc., 75 (1969), pp. 318-324,

(3] Pac. J. of Math., 21, (1967), pp. 167-187.

K.P. WONG, University of Birmingham, Birmingham

Computer Implementation of Decomposition of Nonlinear Convex

Separable Programmes in the Dual Direction

This will be a report on preliminary testings of Professor
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T.0.M. Kronsjo's decompositional scheme. At the time of writing
eight problems involving six to twenty-one variables and two to
seventeen constraints, grouped into two to nine subproblems, have
been solved directly and by decomposition. For the type of problem
considered, the computer time required to solve a problem directly
is generally less than that required by decomposition when the num-
ber of variables involved is fifteen or less. However, the former
tends to rise steeply as the number of variables increases beyond
fifteen. On the other hand, the latter rises at a relatively slow
rate as the size of the problem increases. The accompanying dia-
gram provides a bird's-eye view of the performance of decomposition
vis—a-vis the direct method of solution. Further investigations are

under way, the outcome of which will be presented at the symposium.

Computer Time
(Minutes)

20 1

15 7

10

0 . 4 6 8 10 12 14 16 18 20 22

No. of Variables
¢ =———== Decomposition

Direct Solution
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R.E.D. WOOLSEY, Colorado School of Mines, Golden

The author will review the state of the art of actually attempting
to solve (as opposed to devising new algorithms for) integer
programming problems. This review will be based wholly on the
computational experience of the author and others, using available
codes and common sense. Various special techniques in formulation,
and reformulation, will be pointed out which have materially aided
progress on various types of codes and problems.

No panaceas will be presented, but rather the accumulated results
of some years of bitter experience in attempting to run problems

of type X on code Y.

W.W.G. YEH, A.J. ASKEW and W.A. HALL, University of California,

Los Angeles

Optimal Planning and Operation of a Multiple Purpose Reservoir

sttem

A method is developed for the determination of optimal contract
levels and optimal operating policies of a multiple-purpose water
resources system. The system is capable of producing firm power
and firm water with flood control and mandatory releases for water
quality, fish and wildlife and navigation as parametric constraints.
The method used in obtaining the optimal solution involves the
combination of dynamic programming and a modified gradient technique.
Dynamic programming optimizes the sequential decision making process
while the gradient technique forces the system to achieve its op-
timality by constraints which recursively prevent nonoptimal be-
havior. The input to the system is the streamflow records. The ob-

jective function is the returns obtained from the sale of firm
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power and firm water for all planning periods. The state variable
is the storage level in the reservoir while all the decisions are
imbeded in a single decision variable, i.e., the release policy.
The result of the analysis is a unique set of optimal releases for
each period of the planning horizon such that the objective
function is maximized. Due to the stochastic nature of the input,
a first order Markov—-chain model is utilized to generate equally
likely hydrographs. The generated hydrographs maintain the first
three moments of the historical records and would have more
extreme events. These generated hydrographs are then used to
determine a set of long-term firm contract levels. The mean,
standard deviation and frequency distribution are determined.
Upon this information an optimum policy risk relationship is
derived. The method is applied to Shasta Reservoir in Northern

California, U.S.A.

FRIEDA F. GRANOT, Université de Montréal, Montréal, and
PETER L. HAMMER, Université de Montréal and Technion, Haifa.

On the Use of Boolean Equations in Bivalent Programming

The "resolvant" R(xl,..., xn) of a(system) of linear or non-
linear inequalities in 0-1 variables is defined as being a Boolean
function with the property that the given system holds for those
and only those values of the variables, for which R(x],..., xn) = 0.
An efficient way of constructing the resolvant is given. It is
shown, that the resolvant can be used for the construction of a
sequence of Boolean functions Rk(xl""’ xn) (k = 0,1,2,...) such
that the first k for which the equation Rk(xl,...,xn) = 0 becomes
infeasible (and there is a simple test of feasibility), deter-—
mines the optimal value of the objective function under the given
constraints; once this value is known, the determination of all

the optimizing points can be carried out either by using the sim-—
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plex method (in the linear case), or by solving a Boolean
equation.

Finally, it is shown that any linear or nonlinear system of
constraints in 0-1 variables, is equivalent to the system of con-
straints of a generalized covering problem (AX 2 b, where all the
elements of the matrix A are equal to 0, +1 or -1), and a B-B-B-

method is deviced for solving such problems.

[1] FRIEDA GRANOT and PETER L. HAMMER, On the Use of Boolean
equations in Bivalent Programming. Technion, Mimeograph

Series on Operations Research, Statistics and Economics,

nr. 73, 1970.
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