
OPTIMA
Mathematical Optimization Society Newsletter103

MOS Chair’s Column

September 1, 2017. In this issue of Optima we are seriously

starting the countdown to ISMP in Bordeaux! All prize committees

are up and running and the Symposium Advisory Committee is busy

soliciting preproposals for the 2021 ISMP. The Bordeaux program

and organizing committees are working hard on putting together a

fantastic scientific program.

MOS is run purely by enthusiastic researchers and I feel very

grateful to all colleagues who invest a lot of time and effort on all

our committees, journals, newsletter, and meetings. We can all help

in the committee work by nominating researchers for the prizes! Do

not assume that “someone else most likely does it”, but get together

and nominate! All prize rules can be found in the MOS Bylaws on

our Web page. The calls for nominations can be found in this issue

of Optima and on our Web page. Notice that the deadlines for the

Dantzig and Lagrange Prizes are earlier than the other ones, which

is due to some practical reasons.

The ISMP is one of the backbones of MOS and we are looking

for an enthusiastic group of organizers for the 2021 ISMP. Are you

one of those who feel that it would be fun to be a part of an or-

ganizing team? To demonstrate the activities in your country? The

2021-ISMP should be held outside of Europe, which opens up for a

lot of interesting alternatives! Get in touch with the Symposium Ad-

visory Committee Chair Jon Lee (see the call for preproposals here

in Optima) and discuss the possibilities.

Finally, at the ISMP there will be a Business meeting. Here, we can

discuss topics that you feel are important that we deal with in the

Society. Do you want to suggest such a topic? Get in touch with me

and help me make the business meeting a lively relevant arena for

discussion!

Karen Aardal

Delft Institute of Applied Mathematics

k.i.aardal@tudelft.nl

Contents of Issue 103 / September 2017

1 Karen Aardal, MOS Chair’s Column

1 Note from the Editors

1 Matthew J. Saltzman, A Lightning Tour of the Optimization

Modeling Software Landscape

3 Iain Dunning, Joey Huchette, and Miles Lubin, JuMP:

An algebraic modeling language in Julia

4 Stuart Mitchell, PuLP

6 Steven Diamond and Stephen Boyd, Convex Optimization

in Python with CVXPY

7 Dirk Schumacher, Mixed integer linear programming in R

with ompr

8 Thorsten Koch, The ZIMPL modeling language

10 Calls for Nominations (Prizes ISMP 2018)

11 Calls for Special Issues (MPB)

12 Call for site pre-proposals: ISMP 2021

12 Imprint

Note from the Editors

Dear MOS members,

Algebraic modeling languages provide an indispensable link between

specific problems that need to be solved and all of our community’s

efforts over the last decades: fascinating structural insights, inno-

vative algorithmic developments, and critical software engineering

advancements. We invite you to read and enjoy this issue, which is

dedicated to algebraic modeling languages – particularly ones that

have appeared and grown quickly in the last few years.

Sam Burer, Co-Editor, Volker Kaibel, Editor,

Jeff Linderoth, Co-Editor

Matthew J. Saltzman

A Lightning Tour of the Optimization

Modeling Software Landscape

This issue of Optima is devoted to a sampling of software tools that

support the formulation of mathemtatical optimization models and

the generation and management of model instances. The other arti-

cles in this issue describe particular packages representing the state

of the art in modeling software. This article attempts to describe the

range of different types of software modeling tools available (beyond

those described in the other articles) and to make note of some

of the more widely known representatives of each class. There is

no hope in this limited space of including a comprehensive list of

tools or even a comprehensive list of features of the tools that are

covered, but we do try to indicate the range of types of tools, rep-

resentative products, and key features.

The earliest computer solution of an optimization problem that

I am aware of is a 1953 paper solving LPs up to 10 × 10 using the

simplex method [2]. Even if the problem input format was dense, it

would not have been too difficult to prepare input for 120 matrix

and rim vector (objective, right-hand side, and bounds) values by

hand. But even by the late 1950’s, the process of preparing input for

an optimization solver was challenging enough to require technologi-

cal assistance. The first technology for input preparation was matrix

generators: special-purpose codes in FORTRAN or other conven-

tional programming languages that produced input files in MPS for-

mat – a sparse matrix representation developed by IBM, or some

similar format. MPS is still in wide use today as a data interchange

format for optimization models, although there was never a formal

standard for it so different solver vendors support the format with

minor variations.

MPS format is not a natural way to think about optimization

model formulation. For one thing, it is column oriented, which is

not the way we naturally formulate models. It utilizes fixed fields,

natural for the ancient Hollerith punchcard but not for humans, and

it requires row and column identifiers for every coefficient. Thus,

it is impractical to create MPS input files in any other way than

by writing a matrix generator program. Aside from being a “write-

mailto:k.i.aardal@tudelft.nl

2 OPTIMA 103

only” language, MPS format has no way to express the structure of

a model other than through row and column naming conventions.

We naturally think in blocks of variables and constraints, but MPS

format supports only simple lists of coefficients. Also, writing a ma-

trix generator requires knowledge of a conventional programming

or scripting language, restricting the community of users to experi-

enced programmers.

The natural next step in the evolution of technology for inter-

acting with optimization solvers was the development of algebraic

modeling languages. All algebraic modeling languages accomplish two

objectives:

• They support the representation of an abstract model in a form

that is familiar to the modeler, similar to the mathematical nota-

tion that we use to write formulations, with summation opera-

tors, symbolic constant and variable names, and indexes.

• They separate the abstract structure of the model from the data

associated with an instance of the model, so that the same ab-

stract representation can be associated with coefficient values for

any instance.

Some of these tools are published by solver vendors and link specif-

ically to the vendor’s solver library, however the ones from indepen-

dent modeling system vendors have an additional objective:

• They separate the construction of model and instance from the

choice of solver, so that users can select the solver best suited to

their needs.

There are three broad classes of modeling tools for optimization:

• standalone languages;

• spreadsheet-based tools; and

• tools integrated into object-oriented programming languages.

The latter class still requires significant programming experience.

Several of the remaining articles in this collection review tools in

this class. Following is a brief inventory of key players not covered in

those articles.

1 Spreadsheet modeling

Spreadsheets are the closest thing in the business world to a uni-

versal language for dealing with numbers, so there is a natural urge

among optimizers to integrate optimization tools into spreadsheets.

Microsoft Excel includes a Solver add-in from Frontline Systems, Inc.

(Frontline add-ins with more advanced features and access to com-

mercial solver libraries are available separately at additional cost.)

Similar functionality is available in OpenOffice.org and LibreOffice

open-source office suites.

These plugins all work along the same lines.

1. The user sets aside a block of cells to serve as variables and cre-

ates formulas computing the values of the objective and left- and

right-hand sides of constraints.

2. The user invokes the solver, sets a target cell containing the ob-

jective formula, the type of optimization, the block of variable

cells, constraint types, and left- and right-hand constraint expres-

sions.

3. The user presses a Solve button and the solver starts. On con-

vergence, the optimal variable values are stored in the designated

variable cells and the optimal objective value appears in the des-

ignated objective cell.

The pro for systems like this is that they operate within a spread-

sheet, so the environment is familiar and they are easy to learn. The

cons are that for large problems, they are difficult to validate and

the default solver engines are not the most robust.

Andrew Mason et al.’s OpenSolver add-in for Excel leverages the

popularity of Excel’s Solver by supporting additional solver engines,

adding a more intuitive model editor, and providing model valida-

tion tools that highlight model features in the spreadsheet display.

OpenSolver for Google sheets adds similar capabilities for users of

Google’s online spreadsheet tool.

Mason’s SolverStudio Excel add-in provides an interface between

the spreadsheet and a number of other modeling languages that are

more suitable than the spreadsheet for building large-scale produc-

tion models. SolverStudio manages the integration of the spread-

sheet data with these modeling languages, allowing users to build

and solve complex models from within the Excel application.

2 Standalone modeling languages and systems

Most MILP solver vendors support a simple and straightforward in-

put format commonly referred to as LP or LINDO format. This

format is row oriented and supports linear expressions described as

juxtapositions of (nonzero) numerical constants and identifiers sep-

arated by plus signs. While this format is sparse, it is suitable only

for very small problems. It also does not achieve either of the goals

of modeling systems. Problem structure is represented only through

variable naming conventions and the values of constants are included

in the problem statement. It is also not a reliable interchange format,

as it is not standardized. For example, some versions indicate multi-

plication of a variable by a constant using juxtaposition, and others

require the * operator to indicate multiplication.

Figure 1 displays an example of a linear program written in LP for-

mat (adapted from the COIN-OR Branch-and-Cut solver example

files).

Minimize

OBJ: COL01 + 2 COL05 - COL08

Subject To

ROW01: 3 COL01 + COL02 - 2 COL04 - COL05 - COL08 >= 2.5

ROW02: 2 COL02 + 1.1 COL03 <= 2.1

ROW03: COL03 + COL06 = 4

ROW04: 2.8 COL04 - 1.2 COL07 - RgROW04 = 1.8

ROW05: 5.6 COL01 + COL05 + 1.9 COL08 - RgROW05 = 15

Bounds

COL01 >= 2.5

0 <= COL02 <= 4.1

0 <= COL03 <= 1

0 <= COL04 <= 1

0.5 <= COL05 <= 4

0 <= COL08 <= 4.3

0 <= RgROW04 <= 3.2

-12 <= RgROW05 <= 0

Binaries

COL03 COL04

End

Figure 1. A linear program in LP format. (Variables are assumed to be

nonnegative and continuous unless otherwise indicated with bounds, integer,

or binaries keywords.)

3 Algebraic languages

Algebraic modeling languages (AMLs) are small languages for de-

scribing models in an abstract, structured format similar to math-

ematical notation and for associating the data corresponding to an

instance with the model. The AML “compiler” builds an internal rep-

resentation of an instance and invokes a solver, either through a dy-

namically linked library or via an intermediate file and an external

command. AMLs may also include scripting languages, allowing the

user to control a workflow involving multiple, possibly dynamically

constructed models and instances. They also provide mechanisms

for setting solver options and parameters.

Some solver vendors support proprietary AML tools. ILOG/IBM

(purveyor of CPLEX) provides OPL, FICO (purveyor of Xpress)

provides Mosel, and SAS provides SAS/OR. These systems are tied

closely to their respective optimization engines – they support all

types of models that their solvers handle, but they don’t support

changing solvers.

September 2017 3

set ORIG; # origins

set DEST; # destinations

set LINKS within {ORIG,DEST};

param supply {ORIG} >= 0; # amounts available at origins

param demand {DEST} >= 0; # amounts required at destinations

check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j

→֒];

param cost {LINKS} >= 0; # shipment costs per unit

var Trans {LINKS} >= 0; # units to be shipped

minimize Total_Cost:

sum {(i,j) in LINKS} cost[i,j] * Trans[i,j];

subject to Supply {i in ORIG}:

sum {(i,j) in LINKS} Trans[i,j] = supply[i];

subject to Demand {j in DEST}:

sum {(i,j) in LINKS} Trans[i,j] = demand[j];

data;

param: ORIG: supply :=

GARY 1400 CLEV 2600 PITT 2900 ;

param: DEST: demand :=

FRA 900 DET 1200 LAN 600 WIN 400

STL 1700 FRE 1100 LAF 1000 ;

param: LINKS: cost :=

GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8

CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WIN 9

CLEV STL 26 CLEV LAF 17

PITT FRA 24 PITT WIN 13 PITT STL 28 PITT FRE 99 ;

Figure 2. A transportation problem in AMPL. The contents of the data section

can be stored in a separate file or pulled from a database.

There are a number of commercial and open-source solver-inde-

pendent AMLs, which can interact with a variety of commercial

and open-source solver libraries. Among the most widely known of

these are the commercial products GAMS, AMPL, AIMMS, LINGO,

and Maximal MPL.

All of these AMLs support mixed-integer linear programs (MILP).

Most also support some or all of quadratic, quadratically con-

strained, second-order conic, general nonlinear, and constraint pro-

grams, as well as access to spreadsheets or databases to acquire

instance data.

As an example of the capabilities of these languages, Figure 2 dis-

plays a simple transportation model in AMPL from [1]. Other AMLs

support similar capabilities and syntax.

Graphical user interfaces

The language itself is the main focus of AML technology, but a num-

ber of AML projects include graphical interfaces to help make the

development process more friendly to users, especially less techni-

cally experienced ones. For most projects, these “integrated devel-

opment environments” (IDEs) simply collect pieces of the develop-

ment environment in one convenient window. Typically, there are

panels for browsing directories and files, for editing files, and for a

“console window” where the user can enter commands to run the

compiler and solver and view the results of a run. Some IDEs also

offer object browsers that display properties of the modeling ob-

jects, such as a variable’s domain, a constraint’s sense, a coefficient’s

value, etc and matrix viewers that display the nonzero structure of

a system of linear constraints. Many of these environments are built

on the Eclipse open-source IDE construction system, although some

are custom built.

CPLEX’s OPL Studio, AMPL, GAMS, LINGO, and MPL all provide

this sort of IDE. The AIMMS IDE is a powerful, object-oriented GUI

construction tool that supports building production environments

for creating and deploying model instances, including structured win-

dows for inputting instance data and generating reports in a form

directly usable by the decision maker. FICO’s Optimization Work-

bench is also designed for building and deploying production GUI

tools. SAS/OR supports formatted reporting and access to simula-

tion and project scheduling tools.

4 Object-oriented language extensions

Object-oriented programming languages such as C++, Java, and

Python support the creation of language extensions through cre-

ation of new object types (called “classes”). A number of optimiza-

tion modeling tools exploit this capability to add modeling objects

(variables, objective functions, constraints) to these languages. The

relationship is symbiotic: the language gains these new object types

and the modeling system uses the language to dynamically build and

operate on problem instances, similar to the scripting capabilities in

some standalone modeling languages. Having these tools integrated

directly with powerful programming languages means that they can

be used to deploy complex optimization-based systems efficiently

and robustly, but they do require significant levels of skill to work

with the underlying languages.

Several object-oreinted tools are described in the other essays

in this newsletter. Some optimization engine vendors support pro-

prietary object-based tools. CPLEX’s Concert Technology supports

C++, Microsoft’s .NET, and Java. Gurobi supports objects in C++,

Java, .NET, and Python. Other open-source tools in this class avail-

able from COIN-OR include Pyomo (for Python), Rehearse (for

C++), FLOPC++ (for C++) and jORLib (for Java).

5 Conclusion

Managing optimization models and instances is a challenging task for

practitioners and researchers alike. Also, it is desirable to teach stu-

dents about optimization without them getting hung up on writing

computer programs to generate instances. A wide variety of soft-

ware tools is available to support these efforts in a number of differ-

ent ways, including spreadsheet tools, algebraic modeling languages

and development environments, and embedded enhancements for

object-oriented programming languages.

Matthew J. Saltzman, Dept. of Mathematical Sciences, Clemson University,
Clemson SC, USA. mjs@clemson.edu

References
[1] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for

Mathematical Programming, 2/e, Duxbury/Thomson, 2003.

[2] A. Hoffman, M. Mannos, D. Solokowsky, and N. Weigmann, “Computational
experience in solving linear programs,” SIAM Journal 1, 1953, 1–33.

Iain Dunning, Joey Huchette, and Miles Lubin

JuMP: An algebraic modeling language

in Julia

JuMP (github.com/JuliaOpt/JuMP.jl) is an algebraic modeling language

(AML), written and embedded in the Julia programming language.

JuMP, a relatively new addition to the AML landscape, has seen

rapidly growing usage in research, teaching, and industry over its

five-year history. JuMP’s impact was recently recognized by the 2016

INFORMS Computing Society Prize. In this article, we provide a

mailto:mjs@clemson.edu
https://github.com/JuliaOpt/JuMP.jl

4 OPTIMA 103

brief overview of JuMP, its history, and our current efforts to release

JuMP 1.0.

1 Origins and motivations

Work on the project that would become JuMP started in Octo-

ber 2012 as an experiment by Miles and Iain to test out the newly

announced Julia programming language for tasks important to the

practice of operations research. Julia claimed to offer both the per-

formance of low-level languages like C++ and the ease-of-use of

high-level languages like Python and MATLAB, a very powerful com-

bination. Miles and Iain’s initial experiments [1] provided strong evi-

dence that Julia could indeed be a suitable programming language for

both modeling optimization problems and developing solvers. The

prototype of JuMP was able to generate linear programming (LP)

models in times competitive with commercial AMLs. Julia’s suitabil-

ity for writing solvers was evaluated by comparing Julia with C++,

MATLAB, Python, PyPy (a Python accelerator), and Java on key sub-

routines of the simplex method for LP. At that time, Julia claimed to

perform within a factor of 2 of C++, and that claim was verified in

these experiments. Compiler enhancements since then have made

it possible more generally to match or outperform C++ on certain

tasks. This early success, combined with Miles and Iain’s dissatisfac-

tion with the trade-offs presented by existing AMLs [2], motivated

continued development.

Joey joined the JuMP team before its first public release in Oc-

tober 2013, and JuMP quickly grew to support the wide range

of problem classes and solvers which it does today: quadratically

constrained quadratic optimization, semidefinite optimization, and

derivative-based constrained nonlinear optimization.

2 Characteristics of JuMP

We briefly list some of the defining design decisions and character-

istics of JuMP that, taken as a whole, distinguish it both from tradi-

tional commercial AMLs and from other open-source tools. These

are described in much more elaborate detail in both [2] and the

JuMP documentation. JuMP:

⊲ is embedded in a programming language, which naturally provides

facilities for modular problem generation, data input and output,

interactivity, and visualization (e.g., Jupyter notebooks).

⊲ is solver-independent, with support for over a dozen mainstream

solvers.

⊲ offers very expressive and compact syntax for an embedded AML

by using Julia’s macro functionality to capture expressions.

⊲ lets users index variables and constraints with arbitrary sets.

⊲ generally does not, however, allow parametric modification of in-

dex sets or data after a model has been constructed.

⊲ avoids transformations and presolve reductions.

⊲ enables efficient, direct, in-memory modification of models for

hot-starts during iterative algorithms.

⊲ is readily extensible to nontraditional problem classes like robust

optimization and sum-of-squares optimization.

⊲ has native support for automatic differentiation, including user-

defined functions.

⊲ has connections to best-of-breed commercial and open-source

optimization solvers, including: Artelys Knitro, BARON, Clp, Cbc,

CPLEX, ECOS, GLPK, Gurobi, Ipopt, Mosek, SCIP, Xpress, and

more.

⊲ is available on any platform with Julia support, from a Windows

or Mac personal computer to a supercomputer running Linux on

thousands of cores.

JuMP offers a number of important features that were typically only

accessible in solver-specific APIs in C or C++, making it an ideal

platform for developing new models and algorithmic methods with

much less effort than before. JuMP is simple enough to use in a

classroom environment, even though it was not designed primarily

for education.

We provide a basic integer programming formulation for Sudoku

to illustrate JuMP’s syntax.

m = Model()

x[i,j,k] = 1 <-> cell (i,j) has value k

@variable(m, x[1:9, 1:9, 1:9], Bin)

@constraints(m, begin

Only one value appears in each cell

cell[i=1:9, j=1:9], sum(x[i,j,:]) == 1

Each value appears in each row once only

row[i=1:9, k=1:9], sum(x[i,:,k]) == 1

Each value appears in each column once only

col[j=1:9, k=1:9], sum(x[:,j,k]) == 1

Each value appears in each 3x3 subgrid once only

subgrid[i=1:3:7,j=1:3:7,val=1:9], sum(x[i:i+2,j:j+2,val])

→֒ == 1

end)

3 What’s happening now

In June of this year we held our first “Developers Meetup/Work-

shop” (www.juliaopt.org/developersmeetup/) at MIT’s Sloan School

of Business. The 5-day event had 14 half-hour-or-longer talks, in ad-

dition to which we had plenty of time for informal discussions and

brainstorming. During the meetup, the developer community came

to a consensus on replacing our solver-independent abstraction layer

MathProgBase with a new second-generation abstraction layer to be

called MathOptInterface (MOI). MOI will provide a solid founda-

tion for the JuMP ecosystem to grow and support more problem

classes and functionality than before. JuMP 0.19, to be released this

fall, will be the first to support the new abstraction layer.

JuMP 1.0 is planned for 2018. Until then, we advise users to con-

tinue viewing JuMP and Julia itself from the perspective of early

adopters. Things may break along the way, but you might just get

where you want faster than with other tools!

Iain Dunning, Research Engineer, DeepMind, London, UK.

Joey Huchette, Operations Research Center, MIT, Cambridge, MA, USA

huchette@mit.edu

Miles Lubin, Operations Research Center, MIT, Cambridge, MA, USA

miles.lubin@gmail.com

References
[1] M. Lubin and I. Dunning. Computing in Operations Research using Julia.

INFORMS J Comput, 27(2):238–248, 2015.

[2] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for math-
ematical optimization. SIAM Rev, 59(2):295–320, 2017.

Stuart Mitchell

PuLP

PuLP [1] is a library for Python [2] that enables users to describe

mathematical programs. PuLP works entirely within the syntax and

natural idioms of Python by providing objects that represent opti-

mization problems and decision variables, and allowing constraints

to be expressed in a way that is very similar to the original math-

ematical expression. To keep the syntax as simple and intuitive as

possible, PuLP has focused on supporting linear and mixed-integer

models.

PuLP can easily be deployed on any system that has a Python inter-

preter, as it has no dependencies on any other software packages. It

http://www.juliaopt.org/developersmeetup/
mailto:huchette@mit.edu
mailto:miles.lubin@gmail.com

September 2017 5

supports a wide range of both commercial and open-source solvers,

and can be easily extended to support additional solvers. Finally, it

is available under a permissive open-source license that encourages

and facilitates the use of PuLP inside other projects that need linear

optimization capabilities.

1 History

PuLP was originally written by Jean-Sebastien Roy [3]. Unfortunately,

Jean-Sebastien Roy passed away in 2008 and Stuart Mitchell took

over the development and maintenance of the project. Documen-

tation for PuLP [4] was developed within the Department of En-

gineering Science at the University of Auckland between 2008 and

2011.

PuLP is part of Coin-or [5]; development and issues are tracked

on github [6]; it is distributed on pypi [7]; discussions and comments

are recieved via the mailing list [8] and stackoverflow [9].

2 Installation

PuLP is very easy to install. The provision of a setup.py file

and registration on pipy, allows the user to use the command

$easy_install pulp-or to download and install the latest version

of PuLP on their system. For Windows, Linux and OSX users this

package also includes the coin-or [5] solver so PuLP will be imme-

diately functional. For users on other platforms a compatible solver

must be installed for a PuLP model to be solved.

3 Design and features of PuLP

Several factors were considered in the design of PuLP and in the

selection of Python as the language to use.

3.1 Free, open source, portable

It was desirable that PuLP be usable anywhere, whether it was as

a straight forward modelling and experimentation tool, or as part

of a larger industrial application. This required that PuLP be eas-

ily licensed, and adaptable to different hardware and software en-

vironments. Python itself more than meets these requirements: it

has a permissive open-source license and has implementations avail-

able at no cost for a wide variety of platforms, both conventional

and exotic. PuLP builds on these strengths by also being free and

licensed under the very permissive MIT License[11]. It is written in

pure Python code, creating no new dependencies that may inhibit

distribution or implementation.

3.2 Interfacing with solvers

Many mixed-integer linear programming (MILP) solvers are available,

both commercial (e.g., CPLEX [10], Gurobi [11]) and open-source

(e.g., CBC [5]). PuLP takes a modular approach to solvers by han-

dling the conversion of Python-PuLP expressions into sparse matrix

and vector representations of the model internally, and then expos-

ing this data to a solver interface class. As the interface to many

solvers is similar, or can be handled by writing the model to the

standard ‘LP’ or ‘MPS’ file formats, base generic solver classes are

included with PuLP in addition to specific interfaces to the currently

popular solvers. These generic solver classes can then be extended

by users or the developers of new solvers with minimal effort.

3.3 Syntax, simplicity, style

A formalised style of writing Python code [12], that is referred to

as “Pythonic” code, has developed over the past 20 years of Python

development. This style is well established and focuses on readabil-

ity and maintainability of code over “clever” manipulations that are

more terse but are considered harmful to the maintainability of soft-

ware projects.

PuLP builds on this style by using the natural idioms of Python

programming wherever possible. It does this by having very few spe-

cial functions or “keywords”, to avoid polluting the namespace of

the language. Instead it provides two main objects (for a problem

and for a variable) and then uses Python’s control structures and

arithmetic operators.

In contrast to Pyomo [13], another Python-based modelling lan-

guage, PuLP does not allow users to create purely abstract mod-

els. While in a theoretical sense this restricts the user, we believe

that abstract model construction is not needed for a large number

of approaches in dynamic, flexible modern languages like Python.

These languages do not distinguish between data or functions until

the code is run, allowing users to still construct complex models in

a pseudo-abstract fashion.

4 Sudoku example

A sudoku problem is solved by the following file [14] please read the

code comments for further explanation.

Import PuLP module functions

from pulp import *

A list of strings from "1" to "9" is created

This allows us to represent the value of each

sudoku square with a binary variable

Sequence = ["1", "2", "3", "4", "5", "6", "7",

"8", "9"]

The Vals, Rows and Cols lists all follow this form

Vals = Sequence

Rows = Sequence

Cols = Sequence

The prob variable is created to contain all the

problem data

prob = LpProblem("Sudoku Problem",LpMinimize)

The problem variables are created

as a python dictionary defining the position

and the value of each sudoku square

as a binary variable

choices = LpVariable.dicts(

"Choice",(Vals,Rows,Cols),0,1,LpInteger)

The arbitrary objective function is added

prob += 0, "Arbitrary Objective Function"

A constraint ensuring that only one value 1-9

can be in each square

PuLP expresses constraints with the use of

python list comprehensions

for r in Rows:

for c in Cols:

prob += lpSum([choices[v][r][c]

for v in Vals]) == 1

The row, column constraints are added for each value

for v in Vals:

for r in Rows:

prob += lpSum([choices[v][r][c] for c in Cols]

) == 1

for c in Cols:

prob += lpSum([choices[v][r][c] for r in Rows]

) == 1

create the 3x3 boxes constraint

The boxes list is created, with the row and

column index of each square in each box

Boxes =[]

for i in range(3):

6 OPTIMA 103

for j in range(3):

this constraint creates 9 3x3 boxes

Boxes += [[(Rows[3*i+k],Cols[3*j+l])

for k in range(3)

for l in range(3)]]

Then a constraint is created that only allows a

value to exist once in each 3x3 box

for v in Vals:

for b in Boxes:

prob += lpSum([choices[v][r][c] for (r,c) in b]

) == 1

after this formulation the initial numbers can be

entered as constraints e.g.

prob += choices["5"]["1"]["1"] == 1

Then the problem is solved using the default solver

prob.solve()

details on how to print out the solution can be found

the original file

Stuart Mitchell, Stuart Mitchell Consulting, Auckland, New Zealand

pulp@stuartmitchell.com

References
[1] S. Mitchell, M. O’Sullivan, and I. Dunning, “Pulp: A linear programming

toolkit for python,” 2011. [Online].
www.optimization-online.org/DB_FILE/2011/09/3178.pdf

[2] P. S. Foundation. Python programming language. [Online]. www.python.org

[3] Contributions of jean-sébastien roy. [Online]. js2007.free.fr

[4] S. Mitchell, A. Kean, A. Mason, M. O’Sullivan, and A. Phillips. Pulp
documentation. [Online]. pythonhosted.org/PuLP/

[5] R. Lougee-Heimer, “The common optimization interface for operations re-
search,” IBM Journal of Research and Development, vol. 47, no. 1, pp. 57–66,
January 2003.

[6] Github. [Online]. http://github.com

[7] Pypi – the python package index. [Online]. pypi.python.org/pypi

[8] Pulp – email discussion group. [Online].
https://groups.google.com/forum/#!forum/pulp-or-discuss

[9] Stack overflow – items tagged pulp. [Online].
https://stackoverflow.com/questions/tagged/pulp

[10] Cplex website. [Online]. www.ilog.com/products/cplex/

[11] Gurobi website. [Online]. www.gurobi.com

[12] G. van Rossum, B. Warsaw, and N. Coghlan. Pep 8 – style guide for python
code. [Online]. www.python.org/dev/peps/pep-0008/

[13] W. Hart, “Python optimization modeling objects (pyomo),” in Proc INFORMS

Computing Society Conference, 2009. [Online].
www.optimization-online.org/DB_HTML/2008/09/2095.html

[14] Pulp sudoku example. [Online].
github.com/coin-or/pulp/blob/master/examples/Sudoku1.py

Steven Diamond and Stephen Boyd

Convex Optimization in Python with

CVXPY

CVXPY [1] began in 2013 as a Python implementation of CVX [2], a

widely used modeling language in MATLAB for convex optimization.

The original motivation for a Python implementation was to drop

the dependence on MATLAB in order to have an entirely open-

source framework and to make convex optimization accessible in

an increasingly popular language for numerical and scientific com-

puting. Since its development CVXPY has seen extensive adoption,

being used in university classes, in dozens of research projects, and

at major companies in a variety of industries. CVXPY is available

for Python 2 and 3 on all platforms at www.cvxpy.org. It supports

the solvers ECOS [3], SCS [4], CVXOPT [5], GLPK [6], Cbc [7],

Elemental [8], GUROBI [9], MOSEK [10], and Xpress [11].

The high-level, object-oriented features available in Python have

made it easy to build packages that extend CVXPY. Several exten-

sions add functionality for modeling and (heuristically) solving special

classes of nonconvex optimization problems, such as difference-of-

convex [12], multi-convex [13], and others [14]. Another set of ex-

tensions specialize CVXPY’s optimization modeling framework to

a particular field, such as finance [15], computational imaging [16],

and dynamic energy management [17]. The two types of extensions

complement each other, as new support for nonconvex problems

enables applications from new domains.

The functionality of CVXPY is based on CVX, but the implemen-

tation follows a different philosophy that emphasizes the symbolic

representation of a problem via expression trees over a conven-

tional sparse matrix representation. The conversion of the problem

into standard form is entirely symbolic, with an explicit sparse ma-

trix representation of the standard form only constructed as the last

step before calling the solver. Our focus on symbolic problem rep-

resentations when implementing CVXPY led to research on matrix-

free convex modeling and optimization [18] and integrating convex

solvers and modeling languages with modern deep learning frame-

works [19].

CVXPY’s symbolic processing of problems made it easy to add

support for parameters, or constants with fixed symbolic attributes

but numeric value unknown until solve time. Parameters are useful

for simplifying code and caching work when solving a series of similar

problems. Another feature CVXPY added to those existing in CVX

was incorporating sign information into disciplined convex program-

ming (DCP) [20], a system for analyzing the convexity properties of

user defined problems. Sign-aware DCP was the first of many vari-

ants of DCP developed for CVXPY and its extensions.

As a concrete example of CVXPY syntax and features, consider

the Lasso problem

minimize ‖Ax − b‖2 + γ‖x‖1

with optimization variable x ∈ Rn, problem data A ∈ Rm×n and

b ∈ Rm, and parameter γ > 0. We express the Lasso problem in

CVXPY as follows:

x = Variable(n)

fit = sum_squares(A*x - b)

prob = Problem(Minimize(fit + gamma*norm(x, 1)))

The optimal objective is returned by prob.solve().

result = prob.solve()

The optimal value for x is stored in x.value.

print x.value

Here A and b are NumPy ndarrays, the primary matrix representa-

tion in Python, while gamma is a Python float.

If we instead define gamma as a parameter, we can vary the value

of gamma to efficiently construct a trade-off curve, warm-starting

with the previous solution. We specify the sign of gamma as positive

so that CVXPY can verify the problem is convex.

gamma = Parameter(sign=’positive’)

...

Iterate over values in [10^-2, 10^2].

for val in logspace(-2, 2):

gamma.value = val

prob.solve(warm_start=True)

Save the solution x.value.

...

CVXPY has evolved from its initial conception as an implementa-

tion of CVX in Python to become the center of a diverse ecosys-

tem of optimization packages, which treat CVXPY as a black box

mailto:pulp@stuartmitchell.com
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
https://www.python.org
http://js2007.free.fr/index.html
https://pythonhosted.org/PuLP/
http://github.com
https://pypi.python.org/pypi
https://groups.google.com/forum/#!forum/pulp-or-discuss
https://stackoverflow.com/questions/tagged/pulp
http://www.ilog.com/products/cplex/
http://www.gurobi.com
https://www.python.org/dev/peps/pep-0008/
http://www.optimization-online.org/DB_HTML/2008/09/2095.html
https://github.com/coin-or/pulp/blob/master/examples/Sudoku1.py
http://www.cvxpy.org

September 2017 7

for modeling and solving convex problems. The vision for CVXPY

going forward is to open the black box and expose the process of

converting problems into standard form to new contributions. We

will express the conversion into standard form as a series of reduc-

tions, each taking a CVXPY problem as input and giving as output an

equivalent (but transformed) CVXPY problem. Adding new reduc-

tions and other modules that process transformed problems, such as

presolvers and code generation, will be as easy as writing a CVXPY

extension. We also envision more solvers that take a CVXPY prob-

lem object as canonical input (e.g., [19, 21]).

Steven Diamond, Department of Computer Science, Stanford University,

Stanford, CA, USA. diamond@cs.stanford.edu

Stephen Boyd, Department of Electrical Engineering, Stanford University,

Stanford, CA, USA. boyd@stanford.edu

References
[1] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language

for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83,
pp. 1–5, 2016.

[2] M. Grant and S. Boyd, “CVX: MATLAB software for disciplined convex pro-
gramming, version 2.1.” http://cvxr.com/cvx, Mar. 2014.

[3] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embedded
systems,” in Proceedings of the European Control Conference, pp. 3071–3076,
2013.

[4] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization via
operator splitting and homogeneous self-dual embedding,” Journal of Opti-

mization Theory and Applications, vol. 169, no. 3, pp. 1042–1068, 2016.

[5] M. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: Python software for
convex optimization.” http://cvxopt.org/.

[6] A. Makhorin, “GLPK – GNU linear programming kit.”
www.gnu.org/software/glpk/.

[7] J. Forrest, “Cbc – COIN-OR branch and cut.”
https://projects.coin-or.org/Cbc.

[8] J. Poulson, “Elemental.” http://libelemental.org/.

[9] I. Gurobi Optimization, “Gurobi Optimizer Reference Manual.”
www.gurobi.com, 2016.

[10] “MOSEK optimization software.” https://mosek.com/.

[11] “FICO Xpress optimization.”
www.fico.com/en/products/fico-xpress-optimization.

[12] X. Shen, S. Diamond, Y. Gu, and S. Boyd, “Disciplined convex-concave pro-
gramming,” in Proceedings of the IEEE Conference on Decision and Control, 2016.

[13] X. Shen, S. Diamond, M. Udell, Y. Gu, and S. Boyd, “Disciplined multi-convex
programming,” in Proceedings of the Chinese Conference on Decision and Control,
2016.

[14] S. Diamond, R. Takapoui, and S. Boyd, “A general system for heuristic mini-
mization of convex objectives over nonconvex sets,” To appear, Optimization

Methods and Software, 2017.

[15] S. Boyd, E. Busseti, S. Diamond, R. Kahn, K. Koh, P. Nystrup, and J. Speth,
“Multi-period trading via convex optimization,” To appear, Foundations and

Trends in Optimization, 2017.

[16] F. Heide, S. Diamond, M. Niessner, J. Ragan-Kelley, W. Heidrich, and G. Wet-
zstein, “ProxImaL: Efficient image optimization using proximal algorithms,”
in Proceedings of ACM SIGGRAPH, vol. 35, pp. 1–15, 2016.

[17] M. Wytock, N. Moehle, and S. Boyd, “Dynamic energy management with
scenario-based robust MPC,” in Proceedings of the American Control Confer-

ence, pp. 2042–2047, 2017.

[18] S. Diamond and S. Boyd, “Matrix-free convex optimization modeling,” in
Optimization and Its Applications in Control and Data Sciences (B. Golden-
gorin, ed.), vol. 115 of Springer Optimization and Its Applications, pp. 221–264,
Springer, 2016.

[19] M. Wytock, S. Diamond, F. Heide, and S. Boyd, “A new architecture for op-
timization modeling frameworks,” in Proceedings of the Workshop on Python

for High-Performance and Scientific Computing, pp. 36–44, 2016.

[20] M. Grant, Disciplined Convex Programming. PhD thesis, Stanford University,
2004.

[21] P.-W. Wang, M. Wytock, and Z. Kolter, “Epigraph projections for fast gen-
eral convex programming,” in Proceedings of the International Conference on

Machine Learning, pp. 2868–2877, 2016.

Dirk Schumacher

Mixed integer linear programming in R

with ompr

R [2] is a popular language and computational environment among

statisticians. In recent years R has gained a lot of popularity in other

disciplines as well. With over 11,000 packages on CRAN [4], the

R package repository, there is a package for almost every problem.

And of course, packages for solving mixed integer linear programs

are also available. R as a language makes it easy to create domain

specific languages through metaprogramming using so-called non-

standard evaluation [1].

ompr (the optimization modelling package) [3] is an attempt to de-

velop an algebraic modelling language within R. The goal is to create

a modelling API that uses idiomatic R and integrates well with other

popular packages, such as dplyr for data processing. ompr models

are solver-independent and currently support mixed integer linear

programming problems. It works on all platforms supported by R

(Linux, MacOS and Windows). Compared to other modelling lan-

guages it comes closest to JuMP [6] for julia but is currently more

limited in terms of features and scope. In fact JuMP inspired me to

build ompr.

The features of ompr are best described by modelling a mixed in-

teger linear program in R. As an example for this article we model

a warehouse location problem where we would like to find the cost

optimal location and number of warehouses and the assignment of

customers to those hubs.

min

n∑

i=1

m∑

j=1

tci ,j ·xi ,j +
m∑
j=1

fcj ·yj

subject to

m∑

j=1

xi ,j = 1 ∀ i = 1, ... , n

xi ,j ≤ yj , ∀ i = 1, ... , n, j = 1, ... ,m

xi ,j ∈ {0, 1} ∀ i = 1, ... , n, j = 1, ... ,m

yj ∈ {0, 1} ∀ j = 1, ... ,m

Figure 1. A warehouse location problem as an illustrative example. n customers

need to be assigned to exactly one of at most m warehouses. Setting up a

warehouse yj = 1 has a fixed cost of fcj > 0 and assigning a customer to a

warehouse xi ,j = 1 leads to travel cost of tci ,j > 0.

Every ompr model starts with an empty model to which neces-

sary elements (like variables, constraints and an objective function)

are added. Expressions can be mixed with variables defined in the

general environment. For example in the model below the functions

tc and fc are not part of the optimization problem, but are regular

R functions defined in the environment. Like other algebraic domain

specific languages, equations can be written down directly and the

package takes care of transforming these to the required format for

the API of the solver.

library(ompr)

model <- MIPModel() %>%

add_variable(x[i, j], i=1:n, j=1:m, type="binary") %>%

add_variable(y[j], j=1:m, type="binary") %>%

set_objective(

sum_expr(tc(i, j) * x[i, j], i=1:n, j=1:m) +

sum_expr(fc(j) * y[j], j=1:m),

sense = "min") %>%

add_constraint(sum_expr(x[i, j], j=1:m) == 1, i=1:n) %>%

add_constraint(x[i, j] <= y[j], i=1:n, j=1:m)

Figure 2. The warehouse location problem modeled with ompr using so called

pipes to chain together successive functions

mailto:diamond@cs.stanford.edu
mailto:boyd@stanford.edu
http://cvxr.com/cvx
http://cvxopt.org/
http://www.gnu.org/software/glpk/
https://projects.coin-or.org/Cbc
http://libelemental.org/
http://www.gurobi.com
https://mosek.com/
http://www.fico.com/en/products/fico-xpress-optimization

8 OPTIMA 103

library(ompr.roi)

library(ROI.plugin.glpk)

result <- solve_model(model, with_ROI(solver = "glpk"))

assignment <- get_solution(result, x[i, j])

warehouses <- get_solution(result, y[i])

Figure 3. The model defined earlier is solved with the GNU Linear Programming

Kit using the solver package ompr.roi which offers access to a variety of open

source and commercial solvers

fixed costs:6843; customers: 32

fixed costs:2434; customers: 29

fixed costs:1749; customers: 20

fixed costs:259; customers: 19

Figure 4. A solution to the warehouse location problem generated by ggplot2 and

ompr

After an ompr model is built, it can be passed to a solver. Within

ompr a solver is simply a function mapping a model to a solution. In

this case the GNU Linear Programming Kit [7] is used to find an op-

timal solution. To support most popular solvers out of the box, the

package ompr.roi can be used. It makes it possible to use any solver

supported by the R optimization infrastructure (ROI) packages [5]. ROI

gives access to many open source (CLP, GLPK, lpsolve, Symphony) and

commercial solvers (CPLEX, Gurobi) through a standardized inter-

face.

The result can then be further processed within the R ecosystem.

For example, using R’s plotting facilities, we can plot the assignment

(Figure 4).

Currently ompr’s cost of abstraction can be rather high for larger

models, but this is something I plan to work on in the future. Up to

now the focus has been on creating an idiomatic API for modelling

mixed integer linear programs directly in R. ompr as well as ompr.roi

are published on CRAN and developed on GitHub. The packages

are open source and I encourage anyone to send feedback, ideas

or code contributions. On the project’s website [3] I have compiled

some articles showcasing the modelling features of the package and

tutorials on how to model selected optimization problems in R with

ompr.

In my opinion a big advantage of modelling optimization problems

in R is the ability to easily utilize other packages within the R ecosys-

tem for data wrangling, statistics, (interactive) visualizations and re-

producible research. For example, this article was generated in a

completely reproducible manner with knitr [8] and the code shown

here is the actual code that led to the output in Figure 4; it is pub-

lished on GitHub (https://github.com/dirkschumacher/ompr-optima)

as well.

Dirk Schumacher, Berlin, Germany. mail@dirk-schumacher.net

References
[1] H. Wickham. Advanced R. CRC Press, 2014.

[2] R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0, URL https://www.R-project.org, 2008.

[3] D. Schumacher. ompr: Optimization modelling package. R package version
0.6, https://cran.r-project.org/package=ompr, 2017.

[4] CRAN: The Comprehensive R Archive Network. https://cran.r-project.org/,
2017-07-16.

[5] K. Hornik, D. Meyer, F. Schwendinger, and S. Theussl. ROI: R Optimiza-
tion Infrastructure. R package version 0.2-1, https://cran.r-project.org/
package=ROI, 2016.

[6] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for math-
ematical optimization. SIAM Rev, 59(2): 295–320, 2017.

[7] GNU Linear Programming Kit. http://www.gnu.org/software/glpk/glpk.html,
2017.

[8] Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation
in R. R package version 1.1, 2017.

Thorsten Koch

The ZIMPL modeling language

The Zuse Institute Mathematical Programming Language (ZIMPL) [8]

is a small tool to describe optimization problems and then trans-

late these descriptions into files that solvers can read and process.

ZIMPL generates LP and MPS files that can be read directly by all

major LP and MIP solvers.

Its development started in 1999 when we failed to purchase a

commercial modeling language from a then well-known vendor of

optimization software. At that point, it became obvious that there

was no really useable open-source modeling language available. Af-

ter reading the inspiring AMPL book [4] what we envisioned was

a modeling language that is solver independent, is quick and easy

to learn, can be used for lectures as well as for industry projects,

is freely available with source code, and is highly portable between

computer systems.

What makes ZIMPL special is the use of rational arithmetic. With

a few noted exceptions, all computations in ZIMPL are done with

infinite precision rational arithmetic, ensuring that no rounding er-

rors can occur during modeling. This is achieved by employing the

GNU Multi Precision Library [18]. One reason for this is our ongoing

interest in exact solvers [1, 5, 7]. There is little point in having an

exact LP or MIP solver if the rounding errors are already introduced

when generating the instance.

Another special feature is an automatic conversion of functions

with decision variables as arguments into a system of inequalities.

The arguments of these functions have to be linear terms consisting

of bounded integer or binary variables. For example, it is possible to

have constraints dependent on the value of a variable or compute

the absolute value of a variable automatically.

ZIMPL also supports polynomial terms, but of course, the solver

used has to support this. In connection with SCIP, it is now possible

to solve non-convex MINLPs [6].

There are in general two trends in modeling languages: One di-

rection is to further integrate features like database query tools,

solvers, report generators, and graphical user interfaces, see, e.g.,

[12, 20]. This sometimes even allows to build complete graphical

(business) applications around the mathematical model. The other

direction is to use a general programming language, e.g., Python

[19, 24] and the the previous articles, and extend it with special

commands for generating models and executing solvers.

https://github.com/dirkschumacher/ompr-optima
mail@dirk-schumacher.net
mailto:mail@dirk-schumacher.net
https://www.R-project.org
https://cran.r-project.org/package=ompr
https://cran.r-project.org/
https://cran.r-project.org/package=ROI
https://cran.r-project.org/package=ROI
http://www.gnu.org/software/glpk/glpk.html

September 2017 9

ZIMPL is purposely not intended to go either way. As the user

manual is just about 25 pages, you can learn ZIMPL within a few

hours, and the models are still very near to the mathematical no-

tation. However, as the source is available, adding for example a

database connection if needed, is reasonably easy to do.

According to [2], modeling languages can be separated into two

classes, namely the independent modeling languages, like, e.g., [13, 23],

which do not rely on a specific solver, and the solver modeling lan-

guages, like, e.g., [21, 22], which are deeply integrated with a specific

solver. In exchange for having a better integration with the solvers, it

is no longer possible to easily switch between solvers as with inde-

pendent languages. Given that the performance of a particular solver

varies highly with the particular model used, see, e.g. [10], we be-

lieve that the ability to switch between different solvers is one of the

more useful features of a modeling language.

During the development of ZIMPL special focus has been placed

on software engineering. ZIMPL comes together with a test suite

that when executed covers more than 80 % of the program code.

This assures that changes and new features do not break existing

functionality. Assert statements are used extensively in the code to

test preconditions and invariants. The code is regularly run through

a suite of dynamic and static program checkers, like Valgrind [25],

Flexelint [17], CPP-check [16], Clang-Analyzer [14].

Each ZIMPL model consists of six types of statements: Sets,

Parameters, Variables, Objective, Constraints, and Function defini-

tions. Below you can see the ZIMPL code for a model that will check

whether a given solution of a Sudoku puzzle [9] is unique. In gen-

eral, Sudokus are supposed to have only one solution. The model

will take a file with the prefixed numbers of the Sudoku and a file

with the known solution. If the generated instance is run through

a solver it should come out integer infeasible – otherwise there is

another solution.

Model to check for uniqueness of Sudoku solution.

#

param p := 3;

set K := { 1 .. p*p };

set M := { 1 .. p};

var x[K * K * K] binary;

File format: row col value

set F := { read "prefixed.dat" as "<1n,2n,3n>" };

set S := { read "solution.dat" as "<1n,2n,3n>" };

subto per_field:

forall <i,j> in K*K do sum <k> in K : x[i,j,k] == 1;

subto per_column:

forall <j,k> in K*K do sum <i> in K : x[i,j,k] == 1;

subto per_row:

forall <i,k> in K*K do sum <j> in K : x[i,j,k] == 1;

subto subsquare: forall <m,n,k> in M*M*K do

sum <i,j> in M*M : x[(m-1)*p+i,(n-1)*p+j,k] == 1;

Fix the prefixed entries in the puzzle

subto prefixed:

forall <i,j,k> in F do x[i,j,k] == 1;

Forbid the existing solution

subto forbid_old:

sum <i,j,k> in S : x[i,j,k] <= card(K*K) - 1;

It is important to note that ZIMPL statements never change the

already existing part of the model but only add to it. This makes

it easier to understand ZIMPL models. ZIMPL has been (and is be-

ing) used to model many real-world [3] and educational questions,

as diverse as location planning in telecommunications, 3D-Steiner

tree packing for chip design, track auctioning, protein folding, to give

hands-on lectures at many universities, and courses like Combinato-

rial Optimization at Work [15].

In the future we plan to explore the following topics:

⊲ Parallel execution. As it is straightforward to compute the depen-

dency of the individual lines of ZIMPL programs between each

other, we want to exploit the availability of multiple cores.

⊲ Having more general constraint types, e.g., an all-different con-

straint, which allow modeling on a higher level. ZIMPL should then

transform this differently depending on the model size or target

solver.

⊲ Allow supplying extra information to the model, e.g., about sym-

metry or implicit integer variables.

ZIMPL can be downloaded as source code or pre-compiled binary

at http://zimpl.zib.de and as part of the SCIP Optimization Suite [11]

at http://scip.zib.de. Enjoy!

Thorsten Koch, Zuse Institute Berlin (ZIB) and TU Berlin, Germany.

koch@zib.de

References
[1] W. Cook, T. Koch, D.E. Steffy, K. Wolter A hybrid branch-and-bound approach

for exact rational mixed-integer programming. Mathematical Programming Com-

putation, 5(3):305–344, 2013.

[2] K. Cunningham, L. Schrage. The LINGO Algebraic Modeling Language. Modeling

Languages in Mathematical Optimization, Kluwer, 2004.

[3] U. Dorndorf, S. Droste, T. Koch. Using ZIMPL for Modeling Production Planning

Problems. in Algebraic Modeling Systems, Springer, 2012.

[4] R. Fourer, D.M. Gay, B.W. Kernighan. AMPL: A Modelling Language for Mathe-

matical Programming. 2nd edition, Brooks/Cole—Thomson Learning, 2003

[5] A.M. Gleixner, D.E. Steffy, K. Wolter. Iterative Refinement for Linear Program-

ming. INFORMS Journal on Computing, 28(3):449–464, 2016

[6] S. Vigerske, A.M. Gleixner. Global Optimization of Mixed-Integer Nonlinear

Programs in a Branch-and-Cut Framework. Optimization Methods and Software,
2017, doi:10.1080/10556788.2017.1335312

[7] T. Koch The final NETLIB-LP results. Operations Research Letters 32(2):138–

142, 2004, .

[8] T. Koch. Rapid Mathematial Programming. PhD-thesis, TU-Berlin, 2004, http://
nbn-resolving.de/urn:nbn:de:0297-zib-8346

[9] T. Koch Rapid Mathematical Programming or How to Solve Sudoku Puzzles in

a few Seconds . Operations Research Proceedings 2005. Selected papers of
the Annual Int. Conf. of the German Operations Research Society, Bremen,
September 7–9, 2005, pp 21–27, 2006.

[10] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby,
E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, K. Wolter. MIPLIB 2010. Mathematical

Programming Computation 3(2):103–163, 2011.

[11] S.J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald,
G. Hendel, T. Koch, M. E. Lübbecke, M. Miltenberger, B. Müller, M. E.
Pfetsch, C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano, Y.
Shinano, D. Weninger, J. T. Witt, J. Witzig. The SCIP Optimization Suite

4.0. Techical Report ZR-17-12, ZIB, 2017, http://nbn-resolving.de/urn:nbn:
de:0297-zib-62170.

[12] https://aimms.com

[13] http://ampl.com

[14] https://clang-analyzer.llvm.org

[15] http://co-at-work.zib.de

[16] http://cppcheck.sourceforge.net

[17] http://www.gimpel.com

[18] http://gmplib.org

[19] http://www.gurobi.com/resources/seminars-and-videos/
modeling-with-the-gurobi-python-interface

[20] https://litic.com

[21] http://www.fico.com/de/products/fico-xpress-optimization-suite

[22] https://www-01.ibm.com/software/commerce/optimization/modeling

[23] https://www.gams.com

[24] http://www.pyomo.org

[25] http://valgrind.org

http://zimpl.zib.de
http://scip.zib.de
mailto:koch@zib.de
http://nbn-resolving.de/urn:nbn:de:0297-zib-8346
http://nbn-resolving.de/urn:nbn:de:0297-zib-8346
http://nbn-resolving.de/urn:nbn:de:0297-zib-62170
http://nbn-resolving.de/urn:nbn:de:0297-zib-62170
https://aimms.com
http://ampl.com
https://clang-analyzer.llvm.org
http://co-at-work.zib.de
http://cppcheck.sourceforge.net
http://www.gimpel.com
http://gmplib.org
http://www.gurobi.com/resources/seminars-and-videos/modeling-with-the-gurobi-python-interface
http://www.gurobi.com/resources/seminars-and-videos/modeling-with-the-gurobi-python-interface
https://litic.com
http://www.fico.com/de/products/fico-xpress-optimization-suite
https://www-01.ibm.com/software/commerce/optimization/modeling
https://www.gams.com
http://www.pyomo.org
http://valgrind.org

10 OPTIMA 103

Calls for Nominations

The following prizes will be presented or announced at the 23nd

International Symposium on Mathematical Programming (ISMP 2018) to

take place in Bordeaux, France, July 1–6, 2018.

Beale–Orchard-Hays Prize

Nominations are invited for the 2018 Beale–Orchard-Hays Prize for

Excellence in Computational Mathematical Programming.

The Prize is sponsored by the Mathematical Optimization Society,

in memory of Martin Beale and William Orchard-Hays, pioneers in

computational mathematical programming. Nominated works must

have been published between Jan 1, 2012 and Dec 31, 2017, and

demonstrate excellence in any aspect of computational mathemat-

ical programming. “Computational mathematical programming” in-

cludes the development of high-quality mathematical programming

algorithms and software, the experimental evaluation of mathemat-

ical programming algorithms, and the development of new methods

for the empirical testing of mathematical programming techniques.

Full details of prize rules and eligibility requirements can be found

at www.mathopt.org/?nav=boh.

The members of the Prize committee are Michael Grant (Chair)

(CVX Research), Tobias Achterberg (Gurobi Optimization), Jeff Lin-

deroth (University of Wisconsin), Petra Mutzel (University of Dort-

mund), and Ted Ralphs (Lehigh University).

Nominations can be submitted electronically or in writing, and

should include detailed publication details of the nominated work.

Electronic submissions should include an attachment with the final

published version of the nominated work. If done in writing, submis-

sions should include five copies of the nominated work. Supporting

justification and any supplementary material are strongly encouraged

but not mandatory. The prize committee reserves the right to re-

quest further supporting material and justification from the nomi-

nees.

The deadline for nominations is January 15, 2018. Nominations

should be submitted to Dr. Michael Grant, mcg@cvxr.com. If you

wish to submit a nomination in writing, please contact Dr. Grant for

a mailing address.

Dantzig Prize

Nominations are solicited for the 2018 George B. Dantzig Prize, ad-

ministered jointly by the Mathematical Optimization Society (MOS)

and the Society for Industrial and Applied Mathematics (SIAM).

The Dantzig prize is awarded to one or more individuals for orig-

inal research which by its originality, breadth and depth, is having a

major impact on the field of mathematical optimization. The contri-

bution(s) for which the award is made must be publicly available and

may belong to any aspect of mathematical optimization in its broad-

est sense. The award will include a certificate containing the citation

and a cash prize.

The members of the 2018 Dantzig Prize committee are: Gérard

Cornuejols (Carnegie-Mellon University – Chair), Monique Laurent

(CWI Amsterdam and Tilburg University), Jorge Nocedal (North-

western University), and Michael Overton (New York Univerity).

Nominations should consist of a letter describing the nominee’s

qualifications for the prize, and a current curriculum vitae of the

nominee including a list of publications. Nominations and ques-

tions regarding the nomination process should be sent to Professor

Gérard Cornuejols, gc0v@andrew.cmu.edu The deadline for nomi-

nations is November 30, 2017.

More information on the prize, including past winners,

is available at www.siam.org/prizes/sponsored/dantzig.php and

www.mathopt.org/?nav=dantzig.

Fulkerson Prize

The Fulkerson Prize Committee invites nominations for the Del-

bert Ray Fulkerson Prize, sponsored jointly by the Mathematical

Optimization Society (MOS) and the American Mathematical Soci-

ety (AMS). Up to three awards of US$ 1,500 each are presented at

each (triennial) International Symposium of the MOS. The Fulkerson

Prize is for outstanding papers in the area of discrete mathemat-

ics.

Eligible papers should represent the final publication of the main

result(s) and should have been published in a recognized journal or

in a comparable, well-refereed volume intended to publish final pub-

lications only, during the six calendar years preceding the year of the

Symposium (thus, from January 2012 through December 2017). The

prizes will be given for single papers, not series of papers or books,

and in the event of joint authorship the prize will be divided.

The term “discrete mathematics” is interpreted broadly and is

intended to include graph theory, networks, mathematical program-

ming, applied combinatorics, applications of discrete mathematics

to computer science, and related subjects. While research work in

these areas is usually not far removed from practical applications,

the judging of papers will be based only on their mathematical qual-

ity and significance.

Previous winners of the Fulkerson Prize are listed at http://www.

mathopt.org/?nav=fulkerson#winners. Further information about

the Fulkerson Prize can be found at: tinyurl.com/y7j87okq and

tinyurl.com/yabnp9mb.

The Fulkerson Prize Committee consists of Maria Chudnovsky

(Princeton University, USA), Friedrich Eisenbrand (EPFL, Lausanne,

chair), and Martin Grötschel (Berlin-Brandenburgische Akademie

der Wissenschaften, Berlin, Germany).

Please send your nominations (including reference to the nomi-

nated article and an evaluation of the work) by February 15th, 2018

to the chair of the committee, Professor Friedrich Eisenbrand, EPFL,

Station 8, 1015 Lausanne, Switzerland, friedrich.eisenbrand@epfl.ch.

Electronic submissions are preferred.

Lagrange Prize

Nominations are solicited for the 2018 Lagrange Prize in Contin-

uous Optimization, administered jointly by the Mathematical Opti-

mization Society (MOS) and the Society for Industrial and Applied

Mathematics (SIAM).

The Lagrange Prize, established in 2002, is awarded for an

outstanding contribution in the area of continuous optimization.

The work will be judged on its mathematical quality, significance,

and originality. Clarity of the exposition and the value of the

work in practical applications may be considered as secondary at-

tributes.

The work to be considered should form the final publication of

the main result(s) and should have been published between the years

of 2012 to 2017 as an article in a recognized journal, a comparable,

well-referenced volume intended to publish final publications only,

or a monograph consisting chiefly of original results rather than pre-

viously published material. Extended abstracts and prepublications,

and articles in published journals, journal sections or proceedings

that are intended to publish non-final papers, are not eligible.

The award will include a certificate containing the citation and

a cash prize of US$ 1,500. In the event of joint authorship, the

prize will be divided. More information on the prize, including past

winners, is available at: www.siam.org/prizes/sponsored/lagrange.php

and www.mathopt.org/?nav=lagrange

The members of the 2018 Lagrange Prize committee are Philip E.

Gill (University of California, San Diego), Andreas Griewank (Yachay

University, Ecuador), Etienne de Klerk (Tilburg University and Delft

http://www.mathopt.org/?nav=boh
mailto:mcg@cvxr.com
mailto:gc0v@andrew.cmu.edu
https://www.siam.org/prizes/sponsored/dantzig.php
http://www.mathopt.org/?nav=dantzig
http://www.mathopt.org/?nav=fulkerson#winners
http://www.mathopt.org/?nav=fulkerson#winners
http://www.mathopt.org/?nav=fulkerson
http://www.ams.org/profession/prizes-awards/ams-prizes/fulkerson-prize
mailto:friedrich.eisenbrand@epfl.ch
https://www.siam.org/prizes/sponsored/lagrange.php
http://www.mathopt.org/?nav=lagrange

September 2017 11

University of Technology), and Katya Scheinberg (Chair) (Lehigh

University).

Nominations should include a letter evaluating the contribution(s)

of the work and citing the works to be considered. Nominations and

questions regarding the nomination process should be sent to Pro-

fessor Katya Scheinberg, katyas@lehigh.edu. The deadline for nom-

inations is November 30, 2017.

Tseng Lectureship

The Mathematical Optimization Society invites nominations for the

Paul Y. Tseng Memorial Lectureship in Continuous Optimization.

This prize was established in 2011 and will be presented for the third

time at the International Symposium on Mathematical Programming

2018. The lectureship was established on the initiative of family and

friends of Professor Tseng, with financial contributions to the en-

dowment also from universities and companies in the Asia-Pacific

region. The purposes of the lectureship are to commemorate the

outstanding contributions of Professor Tseng in continuous opti-

mization and to promote the research and applications of contin-

uous optimization in the Asia-Pacific region.

The lectureship is awarded to an individual for outstanding con-

tributions in the area of continuous optimization, consisting of origi-

nal theoretical results, innovative applications, or successful software

development. The primary consideration in the selection process is

the quality and impact of the candidate’s work in continuous opti-

mization. See more details at www.mathopt.org/?nav=tseng.

The members of the 2018 Paul Y. Tseng Memorial Lectureship

committee are Yu-Hong Dai (AMSS, Chinese Academy of Sciences),

Luis Nunes Vicente (University of Coimbra), Ya-xiang Yuan (AMSS,

Chinese Academy of Sciences), and Shuzhong Zhang (Chair) (Uni-

versity of Minnesota).

The nomination must include a nomination letter of no more than

two pages and a short CV of the candidate (no more than two

pages, including selected publications). In addition, the nominator

should also arrange for 1–2 letters of recommendation. All nomina-

tion materials should be sent (preferably in electronic form, as pdf

documents) to Professor Shuzhong Zhang, Department of Industrial

& Systems Engineering, University of Minnesota, 111 Church Street

S.E., Minneapolis, MN 55455, USA, zhangs@umn.edu. All nomina-

tion materials must be received by December 31, 2017.

Tucker Prize

The Mathematical Optimization Society solicits nominations for the

2018 A. W. Tucker Prize, which will be awarded for an outstanding

doctoral thesis in any area of mathematical optimization. The Tucker

Prize Committee will screen the nominations and select at most

three finalists. The finalists will be invited to give oral presentations

of their work at a special session of the International Symposium

on Mathematical Programming 2018. The Tucker Prize Committee

will select the winner before the symposium and present the award

prior to the conclusion of the symposium.

The doctoral thesis must have been approved formally (with sig-

natures) by the nominee’s thesis committee between January 1, 2015

and January 1, 2018.

The winner will receive an award of US$ 1,000 and a certificate.

The other finalists will also receive certificates. The Society will also

pay partial travel expenses for each finalist to attend the Symposium.

Reimbursements will normally be limited to US$ 750. The nominee’s

doctoral institution will be encouraged to assist any nominee se-

lected as a finalist with additional travel expense.

The members of the 2018 Tucker Prize committee are Santanu

Dey (Georgia Institute of Technology), Simge Küçükyavuz (Chair)

(University of Washington), Sven Leyffer (Argonne National Labora-

tory), Britta Peis (RWTH Achen), and Anke van Zuylen (College of

William & Mary).

Nominations must be made by electronic mail to Professor Simge

Küçükyavuz, simge@uw.edu.

The nominator must be a faculty member at the institution that

awards the nominee’s doctoral degree, or a member of the nomi-

nee’s thesis committee. Applications should consist of the following

four pdf files: (a) a letter of nomination; (b) the nominee’s thesis;

(c) a separate summary of the thesis’ contributions, written by the

nominee, no more than eight (8) pages in length; and (d) a brief bio-

graphical sketch of the nominee. Nominations and the accompanying

documentation must be written in English. The Tucker Prize Com-

mittee may request additional information. The deadline for nomi-

nations is January 15, 2018.

Call for papers

Mathematical Programming Series B:

Special Issue on Nonconvex Optimization for

Statistical Learning

Motivation and Timeliness.. For many years now, convex optimization has

been a principal venue for solving many problems in statistical learning and

big-data research. Yet there is increasing evidence supporting the use of

nonconvex formulations to enhance the realism of the models and improve

their generalizations. Superior results and new advances have occurred in

areas such as computational statistics, compressed sensing, imaging science,

machine learning, bio-informatics and portfolio selection with the employ-

ment of nonconvex functionals to express model loss, promote sparsity, and

enhance robustness. In particular, many nonconvex surrogates have been

proposed as approximations of the univariate ell0 function that is key to

sparsity representation in variable selection. Nonconvex loss functions have

also been introduced as minimands in regression and classification. From the

perspective of optimization, the study of nonconvex optimization, particu-

larly in the joint presence of nondifferentiability, leads to many challenging

open problems, such as a better understanding of various kinds of station-

ary points for nondifferentiable objectives and their computation, direct (i.e.,

penalty-free) treatment of nonconvex, nondifferentiable constrained prob-

lems and its connection to a penalty approach, statistical inference of sta-

tionary (instead of optimal) solutions, optimization of multi-step functions

via surrogates with statistical motivations, and applications to problems in

advanced sparsity representation with logical conditions, deep learning, trun-

cated regression and classification, and image reconstruction with partial in-

formation, to name a few topics of interest.

With the above background, a two-day Conference on Nonconvex Statis-

tical Learning (CNSL) was held May 26–27 2017 at the University of South-

ern California in Los Angeles. Along with this conference, a special issue of

the journal Mathematical Programming, Series B, with Jong-Shi Pang, Yufeng,

Liu, and Jack Xin as Guest Editors, aims to publish high-quality papers in this

emergent area of nonconvex optimization for statistical learning. Besides the

invited presentations at CNSL, we encourage researchers in the optimiza-

tion and statistics community to submit papers that are within the broad

domain of topics mentioned above for consideration of publication in this

special issue. Of special interest are papers that develop, employ, analyze,

and extend optimization models and methods to treat challenging classes of

statistical learning problems and their applications.

Paper Submission.. All submissions will be reviewed according to the

high standards of the Mathematical Programming journals. Manuscripts

should be submitted using the Mathematical Programming style files on

ftp.springer.de/pub/tex/latex/svjour3/global.zip for the LaTeX macro pack-

age. Authors are strongly advised to keep their papers to a maximum of 25

pages. The deadline for submission is November 01, 2017 with first-round

reviews expected to be completed by March 15, 2018 and the volume pub-

lished before the end of 2018. Authors should submit their manuscripts via

www.editorialmanager.com/mapr/ and select Jong-Shi Pang as the handling

editor for consideration in this special issue.

mailto:katyas@lehigh.edu
http://www.mathopt.org/?nav=tseng
mailt:zhangs@umn.edu
mailt:simge@uw.edu
ftp://ftp.springer.de/pub/tex/latex/svjour3/global.zip
http://www.editorialmanager.com/mapr/

12 OPTIMA 103

Call for site pre-proposals: ISMP 2021

The Symposium Advisory Committee (SAC) of the Mathematical

Optimization Society issues a call for pre-proposals to organize and

host ISMP 2021, the triennial International Symposium on Mathe-

matical Programming.

ISMP is the flagship event of our society, regularly gathering over

a thousand scientists from around the world. The conference is usu-

ally held in or around the month of August. Hosting ISMP provides

a vital service to the mathematical optimization community and of-

ten has a lasting effect on the visibility of the hosting institution.

It also presents a significant challenge. This call for pre-proposals

is addressed at local groups willing to take up that challenge. The

tradition would be that only sites outside of Europe are eligible to

host ISMP 2021 (because ISMP 2018 is in Europe).

Preliminary bids will be examined by the Symposium Advi-

sory Committee (SAC), which will then issue invitations for de-

tailed bids. The final decision will be made and announced dur-

ing ISMP 2018 in Bordeaux. Members of the SAC are Jon Lee

(Chair, USA), John Birge (USA), Natashia Boland (USA), Jose Cor-

rea (Chile), Satoru Iwata (Japan), Martin Skutella (Germany), Lev-

ent Tuncel (Canada), and Yinyu Ye (USA) as well as Karen Aardal

(Netherlands, ex officio) and Luis Nunes Vicente (Portugal, ex offi-

cio).

Preliminary bids should be brief and contain information pertain-

ing to the location, facilities, logistics: accommodation and trans-

portation, and likely local organizers.

Further information can be obtained from any member of the

advisory committee.

Please address your preliminary bids until October 15, 2017 to

Jon Lee (jonxlee@umich.edu).

Call for papers

Mathematical Programming Series B:

Special Issue on The interface between

optimization and probability

Probability theory and the theory of optimization jointly form the theoret-

ical basis of several other fields of research. Important examples are statis-

tics, stochastic optimization, and the theory of risk measures. Additionally,

optimization as well as probability theory benefit from each other directly.

Examples include the theory of optimal inequalities in probability theory and

randomization approaches in optimization such as stochastic gradient de-

scent and the theory of metaheuristics. This special issue aims at attracting

state-of-the-art contributions that combine optimization and probability the-

ory in an innovative way and transcend narrow disciplinary thinking. Since

the notion of risk is inherently probabilistic and the theory of risk measures

is deeply rooted in optimization, the issue puts an emphasis on the measure-

ment and management of risk in a variety of contexts.

Possible topics include but are not limited to: Risk measures in stochastic

optimization, Risk measures and distributionally robust optimization, Statis-

tical risk and novel applications of optimization in statistics, Randomized op-

timization algorithms, Risk and probabilistic aspects in stochastic control and

stochastic dynamic optimization, and Financial risk and novel applications of

optimization in asset pricing for incomplete markets.

Papers should focus on methodological aspects, although parts of a paper

may contain discussions of applications. Moreover, submitted papers should

fit into the general scope of Mathematical Programming and will be reviewed

according to the standards of of Mathematical Programming, Series A. Due

to page limits of the volume, we are requesting that all papers be submitted

using MP style files, and conform to a maximum of 25 pages. The dead-

line for submission of full papers is the 28. 2. 2018. We aim at completing

a first review of all submissions by the 30. 6. 2018. Authors should submit

their manuscripts via www.editorialmanager.com/mapr/ and select Jong-Shi

Pang as the handling editor for consideration in this special issue. Additional

information about the special issue can be obtained from the guest editors.

Raimund Kovacevic, Institute of Statistics and Mathematical Methods in Eco-

nomics, Vienna University of Technology Vienna, Austria.

raimund.kovacevic@tuwien.ac.atraimund.kovacevic@tuwien.ac.at

Roger Wets, Department of Mathematics, University of California, Davis,

California, USA. rjbwets@ucdavis.edu

David Wozabal, School of Management, Technical University of Munich,

Munich, Germany. david.wozabal@tum.de

Application for Membership

I wish to enroll as a member of the Society. My subscription is for my personal use and not for the
benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.
I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:

Mathematical Optimization Society
3600 Market St, 6th Floor
Philadelphia, PA 19104-2688
USA

Cheques or money orders should be made payable
to The Mathematical Optimization Society, Inc.
Dues for 2017, including subscription to the jour-
nal Mathematical Programming, are US $ 90. Retired
are $ 45. Student applications: Dues are $ 22.50.
Have a faculty member verify your student status
and send application with dues to above address.

Faculty verifying status

Institution

IMPRINT

Editor: Volker Kaibel, Institut für Mathematische Optimierung, Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, 39108 Magdeburg, Germany. kaibel@ovgu.de Co-Editors:
Samuel Burer, Department of Management Sciences, The University of Iowa, Iowa City, IA 52242-1994, USA. samuel-burer@uiowa.edu Jeff Linderoth, Department of Industrial and
Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706-1572, USA. linderoth@wisc.edu Founding Editor: Donald W. Hearn Published by the Mathematical
Optimization Society Design and typesetting by Christoph Eyrich, Berlin, Germany. optima@0x45.de Printed by Oktoberdruck AG, Berlin, Germany.

mailto:jonxlee@umich.edu
http://www.editorialmanager.com/mapr/
mailto:
mailto:rjbwets@ucdavis.edu
mailto:david.wozabal@tum.de
kaibel@ovgu.de
mailto:kaibel@ovgu.de
samuel-burer@uiowa.edu
mailto:samuel-burer@uiowa.edu
linderoth@wisc.edu
mailto:linderoth@wisc.edu
optima@0x45.de
mailto:optima@0x45.de

