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Chair's Column
August 31, 2023. As we are in the second half of 2023, the Mathe-
matical Optimization Society (MOS) is looking forward to returning
to our traditional triennial in-person International Mathematical
Programming Symposium (ISMP) to be held in Montréal, Québec,
Canada, July 21–26, 2024. While we were hopeful to have been able
to assemble in person in Beijing in August 2022, travel restrictions
at the time made such an in-person gathering in Beijing infeasible,
leading to the online collection of superb plenary speakers who
filled us in on the latest discoveries in our constantly evolving field
last year. I thank all the speakers for providing such a rich and
dynamic set of talks, Katya Scheinberg, chair of the Program Com-
mittee, and the other Program Committee members for putting
together such an excellent lineup, and all of you for attending and
helping to continue the ISMP tradition of celebrating our field.

At the conclusion of the ISMP in 2022, we welcomed new MOS
Council Members, Fatma Kılınç Karzan, Andreas Wächter, Angelike
Wiegele, and Wolfram Wiesemann, as well as Chair-elect, Miguel
Anjos, and Treasurer-elect, Sam Burer. Next month, Miguel will
assume the role of Chair (as I transition to Vice-Chair) and Sam will
take on the role of Treasurer from Marina Epelman in ensuring the
good financial health of the Society despite the challenging times
that we have faced over the past years.

In addition to last year’s on-line version of the ISMP, we have
had multiple MOS-organized meetings in person, such as ICCOPT
2022 at Lehigh University in July 2022, IPCO 2023 at University of
Wisconsin-Madison in July 2023, and ICSP 2023 at University of

California, Davis, in July 2023. We also look forward to IPCO 2024 to
be held in Wroclaw, Poland, in early July 2024, and ICCOPT 2025 to
be held in July 2025. The next ISCP site will be announced shortly
as well.

MOS’s publications have continued to showcase the most im-
portant research on mathematical optimization under the direction
of editors-in-chief, Daniel Kuhn, for Mathematical Programming,
and Jonathan Eckstein for Mathematical Programming Computation
(MPC). Of special note, is that, while MPC has only a short history of
being included in the Journal Impact Factor reports from Clarivate
Analytics, it received the highest such rating out of 267 journals
classified as Applied Mathematics. That is great testimony to the
excellence that you and MOS have fostered for our field.

Through these meetings and publications, MOS strives to serve
you as you work to extend the reach and influence of our field. I
thank you for this and your support of all that is mathematical opti-
mization and look forward to seeing you at the ISMP in Montréal
next August.

John R. Birge, The University of Chicago
john.birge@chicagobooth.edu

Note from the Editors
Algorithms shape almost all aspects of modern life – e.g., search,
social media, e-commerce, supply chains, power system opera-
tions, and urban transportation, to name a few. They process data
generated by complex socio-economic systems and find decisions
largely driven by speed and efficiency. However, in this pursuit,
there is an increasingly disparate impact and frequent unintended
consequences of algorithmic decision-making on heterogenous
populations. In this issue, we present you with two articles: in the
first article, Mohit Singh and Santosh Vempala highlight how group-
fairness may be achieved in clustering and PCA, by solving chal-
lenging optimization problems. The second article is contributed
by our co-editor Swati Gupta, and collaborators Vijay Kamble and
Jad Salem, on the computational challenges that arise in online
optimization due to ensuring fairness at the time at which these
decisions were taken. We sincerely hope that you will enjoy reading
these articles, and welcome suggestions and ideas for topics for
the future.

Sebastian Pokutta, Editor
Swati Gupta, Co-Editor

Omid Nohadani, Co-Editor

mailto:john.birge@chicagobooth.edu
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Group Fairness in Optimization and Clustering
Mohit Singh and Santosh S. Vempala

Fairness in decisionmaking, including allocation of resources, plan-
ning and prediction, is of critical importance. In common situations
where optimizing a single objective function is the goal of an al-
gorithm, the outcome can be tangibly unfair for subsets of the
data set. Taking this into consideration leads to a new generation
of optimization problems, whose study has already offered rich,
new perspectives and novel techniques. We survey results in this
burgeoning area, focusing on their structural insights.

1 Introduction
Optimization is the basis of modern decision making. The choice
of model, objective and constraints varies according to the domain
and application. With steady progress over many decades, algo-
rithms for optimization are able to handle very large real-world
data sets efficiently in many cases. Optimization is also the back-
bone of machine learning algorithms, where a typical approach
is to optimize a loss function over a given set of labeled data, in
order to later make predictions based on the “learned” (i.e., opti-
mized) model. The widespread use of these methods, increasingly
in situations that have direct impact on society and humans, has
led to important considerations beyond the optimization objective.
The most important of these is fairness. When the choice of the
optimization algorithm affects a population non-uniformly, could
it be tangibly unfair to some individuals or subgroups? Unfortu-
nately, this turns out to be the situation across many application
areas, as demonstrated multiple times in recent years, from image
classification/recognition to bank loans and mortgages to facility
allocation. Thus, the following is an important and time-critical
goal: To understand the inherent (un)fairness of existing algorithms
for optimization, and to design algorithms that are fair, and whose
fairness is analyzed along with their efficiency and optimality.

Real-world machine learning and optimization algorithms have
been shown to produce unfair outcomes in many domains. For ex-
ample, Google Photos labeled African Americans as gorillas [32,35],
image queries for CEOs returned overwhelmingly male and white
images [23], searches for African American names caused the dis-
play of arrest record advertisements with higher frequency than
searches for white names [33], facial recognition has starkly differ-
ent accuracy for white men compared to dark-skinned women [10],

and recidivism prediction software has labeled low-risk African
Americans as high-risk at significantly higher rates than low-risk
white people [3]. These results can be unfair to individuals (e.g., in
loan or mortgage decision) or to subgroups, e.g., racial or ethnic
groups.

While a single global objective function is the typical choice in
optimization and clustering algorithms, the outcome can be un-
fair to individuals or subgroups. There are many possible ways to
model and address such unfairness. We mention the most gen-
eral ones. The first in individual fairness, where in the maximum
cost (in a minimization problem) to any single individual (i.e., data
point) should be minimized; the second, which we focus on here
is group fairness, where there exist subgroups (or more generally
weightings of the data) and the goal is to minimize the maximum
cost to any single subgroup; and the last is to enforce fairness as a
constraint in a clustering problem, by requiring that each cluster
satisfy prescribed proportionality constraints. In this survey we
focus on group fairness. We note that while the maximum cost over
all groups (for a minimization problem) could be a good measure
of fairness, many other functions of the cost or value to each group
are possible and the methods we discuss will in fact apply to more
general fairness evaluations.

We note up front that if the problem being addressed is a convex
optimization problem in the form min f(x), x ∈ K for some convex
set K, then considering the maximum ofm objectives fi(x) remains
a convex problem. However, if the original (single-objective) prob-
lem happens to have structure that implies an integral solution,
this might not be preserved in the multi-objective version. Thus, in
general, the complexity of fair combinatorial optimization can vary
from problem to problem, even if the single-objective version is
polynomial time solvable. This will become apparent in forthcoming
examples.

1.1 Fair Dimensionality Reduction and Fair PCA
Dimensionality reduction is a classical technique widely used for
data analysis. It is a core primitive for modern machine learning
and is being used in image processing, biomedical research, time
series analysis, etc. Among the most widely used dimensionality
reduction method is the Principal Component Analysis (PCA). The
attractive nature of PCA relies from efficient computation as well
as the guarantee that it minimizes the average reconstruction er-
ror over the whole data set. Unfortunately, when we consider data
based on subpopulations partitioned by sensitive attributes, such
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Figure 1. The standard Lloyd’s algorithm results in a significant gap in the average clustering costs of different subgroups of the data. The data sets used are the Adult
census data set (for gender and race) and the Credit data set (for education level).
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Figure 2. Loss of PCA and Fair PCA on the LFW (left) and Default Credit (right) data sets

as gender, race, and education level, similar guarantee do not hold
(see Figure 2).

We begin by describing a framework for accounting for group
fairness in dimensionality reduction problems generally. For sim-
plicity of explanation, we first describe our framework for PCA.
Consider the data points as rows of anm × nmatrix A. For PCA, the
objective is to find an n × d projection matrix P that maximizes the
Frobenius norm ‖AP‖2F (this is equivalent to minimizing the recon-
struction error ‖A − APPT‖2F). Suppose that the rows of A belong to
different groups based on demographics or some other semanti-
cally meaningful clustering. One way to balance multiple objectives
is to find a projection P that maximizes the minimum objective
value over each of the groups (weightings) as defined in Samadi et
al. [31]:

max
P ∈ℝn×d ∶ P⊤P= Id

min
1≤ i≤ k

‖AiP‖2F = ⟨ATi Ai, PPT⟩. (Fair-PCA)

More generally, let 𝒫d denote the set of all n×d projection matrices
P, i.e., matrices with d orthonormal columns. For each group Ai, we
associate a function fi ∶ 𝒫d → ℝ that denotes the group’s objective
value for a particular projection. We are also given an accumulation
function g ∶ ℝk → ℝ. We define the (f, g)-multi-criteria dimen-
sionality reduction problem as finding a d-dimensional projection
P which optimizes

max
P ∈𝒫d

g(f1(P), f2(P),…, fk(P)).

(Multi-Criteria-Dimension-Reduction)
While these definitions give a natural way to extend dimensionality
reduction that optimizes for the whole data set to incorporating
the utilities for each of the subgroups. Moreover the generality in
picking functions f, g allows one to balance the utilities of various
subgroups in rich ways. The main computational challenge of un-
derstanding the complexity of the problems remains that we now
discuss.

The first result states the conditions when these problems can
be solved exactly in polynomial time.

Theorem 1.1 ([34]). There is a polynomial time algorithm that solves
the Fair-PCAproblem with 2 groups. More generally, there is a
polynomial-time algorithm for 2-group Multi-Criteria-Dimension-
Reduction problem when g is concave and monotone non-decreasing
for at least one of its two arguments and each fi is linear in PP

T, i.e.,
fi(P) = ⟨Bi, PPT⟩ for some matrix Bi(A).

These results rely on exactness of the SDP relaxation for the
corresponding problem building on results of Barvinok [4] and

Pataki [29] on existence of low rank SDP solutions. For more gen-
eral groups, the following result shows a bi-criteria approximation
algorithm.

Theorem 1.2 ([34]). There is a polynomial time algorithm that given an
instance ofMulti-Criteria-Dimension-Reduction problem with a con-
cave g that ismonotone non-decreasing in at least one of its arguments

and fi that is linear in PPT for each i, returns a d + ⌊√2k + 1

4
− 3

2
⌋-

dimensional embedding whose objective value is at least that of the
optimal d-dimensional embedding.

1.2 Clustering Problems
Clustering, or partitioning data into dissimilar groups of similar
items, is a core technique for data analysis and used widely in vari-
ous application including genetics, image segmentation, grouping
search results and news aggregation, crime-hot-spot detection,
crime pattern analysis, profiling road accident hot spots, and mar-
ket segmentation. In many human-centric applications, the output
of the clustering algorithms can easily lead to harmful results
unless such affects are accounted for. For example, consider the
results of widely used Lloyd’s algorithm for k-means clustering as
shown in Figure 1 which shows that different demographics pay
different cost in the output clustering. Due to its wide-applicability
and use, various notions fair clustering have been defined in litera-
ture[1,2,5,6,11,12,14,20,22,24,25,27].

Group fair clustering introduced by [1,14] offers a model to ac-
count for such discrepancies across demographic groups. Formally,
consider any clustering problem such as k-means, k-median, k-
center where the goal is to cluster the given set of points. In an
instance, we are given a set of points U ⊆ ℝn and goal is to find k
centers C = {c1,…ck} ⊂ ℝn that minimizes the total ℓp distance of
the points to the nearest center. For example, in the k-means prob-

lem where p = 2, the goal is to optimize √∑u ∈Uminki= 1 ||ci − u||2.
In the group fair variant of the clustering problem, the points to

be clustered belong to ℓ distinct groups G1,…,Gr, the goal is again
to find k centers c1,…, ck ∈ ℝn where the cost paid by any group Gi

for k-means clustering is exactly, Δi ∶= √∑u ∈Gi
minni= 1 ||ci − u||2.

More generally, for any p ≥ 1, the cost of the group is defined by ℓp
norm of the distances of the points in the group to their nearest cen-
ter. The objective of the group fair k-means problem is then defined
as f(Δ1,…,Δr) where f ∶ ℝr → ℝ is a function that tradeoffs the
cost for each of the social group. Natural choices considered are
f(x) = max xi which leads to min-max fair k-means or f(x) = ‖x‖q
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for some q ≥ 1 where q = ∞ reduces to the min-max fair k-means.
Let us denote (p, q)-fair clustering problem[13] defined with pa-
rameters p and q in the definitions above.

We state the following two results regarding the (p, q)-fair clus-
tering problem.

Theorem 1.3 ([13, 28]). For any p, q ≥ 1, there exists an O(k
p−q
2pq )-

approximation algorithm and when q = ∞, there exists an ( logn

loglogn
)
1

p -

approximation algorithm for the (p, q)-fair clustering problem.

More generally, these results are nearly tight based on hard-
ness results. For the case when the number of groups r is constant
one can achieve improved algorithms (see also [17] for results for
algorithm that run in time exponential in k and r).

Theorem 1.4 ([15]). For any p, q ≥ 1, there existsO(1)-approximation
algorithm (p, q)-fair clustering problem that runs in time O(nr) where
n is the size of the instance and r is the number of groups.

We close this section by discussing a fair version of one of the
most popular algorithms for clustering, namely Lloyd’s heuristic
for k-means. This algorithm starts with some set of candidate cen-
ters, uses them to partition the data acccording to which center
is closest to each point, and then recomputes the center of each
cluster as simply the mean of the cluster. This iterative procedure
is efficient to implement and widely used in practice, even though
it does not have strong worst-case guarantees. [14] considers the
fair version of this problem, where the data has two (or more) sub-
groups. Let the k-means cost of a set of points U with respect to a
set of centers C = {c1,…, ck} and a partition 𝒰 = {U1,…,Uk} of U
be

Δ(C,𝒰) ∶=
k

∑
i= 1

∑
p ∈Ui

||p − ci||2.

Then the fair k-means objective for two groups A,B such that
U = A ∪ B is the larger average cost:

Φ(C,𝒰) ∶= max{
Δ(C,𝒰 ∩ A)

|A|
,
Δ(C,𝒰 ∩ B)

|B| },

where 𝒰 ∩ A = {U1 ∩ A,…,Uk ∩ A}. The heuristic proposed, Fair
Lloyd, is very similar to Lloyds, with the only change being that in
place of the center of a cluster being its mean, the algorithm uses a
fair center, that minimizes the above for a single cluster. As shown
in [14], the fair center for each cluster lies in the convex hulls of the
means of the subgroups, and is the solution of a quadratic convex
program. In the case of two groups, the fair center can be computed
very quickly via a line search.

1.3 Network Design Problems
We now consider network design problems via the lens of group
fairness constraints. Consider the general survivable network de-
sign problem where we are given a graph G = (V, E) and pair-wise
requirements rij for each pair of vertices i and j. The goal is to find
to a subgraph H = (V, F) of G that has at least rij-edge disjoint
paths between every pair of nodes i, j. The objective is to typically
minimize the total cost of the edges chosen where we are given
one cost function c ∶ E → ℝ+. The above problem generalizes
many classical network design problems such as minimum span-
ning tree, minimum Steiner tree, minimum Steiner forest etc. A

seminal result by Jain [21] gives a 2-approximation for the general
problem. In the group fair survivable network design problem, we
aim to find a single network where multiple players have different
or competing valuations and must agree on a common network
(e.g., infrastructure design). Formally, we are given multiple cost
functions ci ∶ E → ℝ+ for 1 ≤ i ≤ k, one for each of the subgroups.
Our goal is still to select a single subgraph (V, F) where F ⊆ E that
satisfies the connectivity requirements. The objective that we aim
to optimize is appropriate function of the different costs paid by the
groups such as minimizing the maximum cost over the k groups
minmaxi ∈ {1,…,k} ci(F).

Classically, these problems have been studied for the special
cases of spanning trees [18, 30] and other graph structures [18]
as multi-criteria network design problems. We state the following
two results: for the group fair spanning tree problem as well as
the group fair survivable network design problem. The first results
shows that for the spanning tree problem, there is an polynomial
time approximation scheme (PTAS) when the number of groups is
constant.

Theorem 1.5 ([18,30]). For any fixed 𝜖, k > 0, there is a polynomial
time algorithm for the group fair spanning tree problem with k groups

that returns a (1 + 𝜖)-approximation and runs in time O(n
k2

𝜖 ).

For the fair survivable network design problem with the min-
max objective.

Theorem 1.6 ([26]). For any k ≥ 2, there is a polynomial time k-
approximation algorithm for the group fair survivable network design
problem with k groups.

We remark that for k = 1, the problem is the classical survivable
network design problem where Jain [21] gives a 2-approximation.
Interestingly, the above result shows that we obtain a 2-approxi-
mation when considering the fair version with two groups.

2 Open Problems and Future Directions
We conclude with a discussion of some open problems. For the
group fair-PCA problem, the problem is polynomial time solvable
for k = 2 groups and has an approximation algorithm for larger k.
While the problem is NP-hard for general k, it is open whether the
problem is polynomial-time solvable for fixed k. We do remark that
the problem is polynomial time solvable when both d and k are
fixed [34], via representation results that use solutions of quadratic
maps [19].

For the fair survivable network design problem, there is a k-
approximation for k groups. The integrality gap of the linear pro-
gramming relaxation is k [26] which implies that new ideas are
needed to obtain any improvement. A natural question is whether
there is a o(k)-approximation as is shown for the case of spanning
trees.

The classical Max-cut problem has also been studied in this
vein: we have multiple graphs G1,G2,…,Gk over the same vertex
set. The goal is find a single cut that maximizes the minimum value
of the cut in any of the graph. This problem has been called the
simultaneous max-cut problem [9]. The problem generalizes the
max-cut problem and a natural question is how close is the ap-
proximability to the Goemans–Williamson bound 𝛼GW = 0.87856…
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for the standard setting of a single group [16]. The current best
approximation is 0.8780 for any fixed k [8] while [7] show that best
approximation algorithmcannot achieve a𝛼GW−10−5-approximation
assuming the Unique Games Conjecture. Identifying the precise
approximation threshold is still an open problem.

For dimensionality reduction and the clustering problem, we
considered a wide variety of objectives to balance the competing
objectives of different groups while considering the fair variants. A
similar detailed analysis for other problems is a potentially fruitful
future research direction. More generally, it would be interesting to
obtain a characterization of functions that can be efficiently used
to combine the utility/cost of each of the groups.

Mohit Singh, Algorithms and Randomness Center
Georgia Institute of Technology, Atlanta, GA 30332, USA
mohit.singh@isye.gatech.edu

Santosh S. Vempala, College of Computing
Georgia Institute of Technology, Atlanta, GA 30332, USA
vempala@gatech.edu
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Comment by Sam Burer
Algorithmic fairness is a critical issue facing the closely aligned
fields of optimization and machine learning. Indeed, society’s ac-
ceptance of computer-generated decisions requires that those
decisions treat different subgroups of people – whether organized,
for example, by race, gender, or age – in a fair manner.

Of course, this naturally leads tomany important research ques-
tions. What does “fair” mean exactly? How should existing models
and algorithms be adjusted to ensure fairness? Or do we need
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wholly new ideas? And what is the computational complexity of
ensuring fairness?

In this timely survey, Singh and Vempala outline an important
stream of research, especially active in the past five years, which is
helping our community address these questions. The authors intro-
duce the exension of several important algorithms – for dimension
reduction, clustering, and network design – to incorporate fairness
with respect to subgroups, and they discuss known polynomial-time
and approximation results. They also highlight for the reader some
of the optimization techniques involved, including SDP, convex QP,
and graph approximation algorithms.

Sam Burer, Tippie College of Business
The University of Iowa, Iowa City, IA 52242-1994, USA
samuel-burer@uiowa.edu

Comment by David B. Shmoys
The advent of machine learning as a central tool in modern data-
driven decision-making has opened up new avenues for the appli-
cation of optimization models and algorithms. The authors present
a number of ways in which issues of fairness have been exposed
by these recent developments, starting with questions that are
directly linked to some of the most salient domains – dimension
reduction (or feature identification) and classification procedures
based on notions of clustering. Fairness issues are by no means
new to the optimization community – one need only think of an
example such as bandwidth allocation in routing to see that there
is a long tradition of augmenting optimization models with fairness
considerations. What is profoundly new is the extent to which al-
gorithmic decision-making has a day-to-day impact on all aspects
of society. The authors focus primarily on group fairness, which is
indeed an extremely important issue. One significant implication of
the article is to show the extent to which the examples addressed
are just starting points – the mainstay of the optimization com-
munity is the efficient allocation of scarce resources, and hence,
there is the accompanying question of fairness in the resulting al-
location, in a host of application domains. Furthermore, the article
points to the rich vein of research to be explored to investigate a
breadth of notions of fairness as they might apply to a wide variety
of decision-making settings.

David B. Shmoys, Operations Research and Information Engineering
Cornell University, Ithaca, NY 14853, USA
david.shmoys@cornell.edu

Algorithmic Challenges in Ensuring Temporal
Fairness in Online Decision-Making
Swati Gupta, Vijay Kamble and Jad Salem

1 Introduction
In recent years, a wide range of organizations has deployed sophis-
ticated data-driven algorithms that repeatedly output decisions
having a serious impact on human lives. For example, a recommen-

dation engine shows job advertisements to a stream of arriving
customers to maximize their click-through-rates and platform en-
gagement [3]; a retail pricing algorithm repeatedly offers a good at
different prices over time to arriving customers to learn the most
profitable price [25]; a resume screening algorithm screens out un-
qualified candidates to provide the most lucrative subset to hiring
managers [30]. This widespread pursuit of efficiency and optimality
has largely ignored a long-standing issue with decision-making
with partial information: the perceptions of unfairness that may
arise as a result of experimenting with decisions for the purpose
of information-gathering in an online optimization and learning
framework. The goal of this article is to highlight the rich interplay
between fairness desiderata and temporal decision-making that re-
sults in new and exciting research challenges in online and iterative
optimization, following a recent stream of works [8,17,20,22–24,28].

As a running example throughout this article, consider a de-
mand learning algorithm that may experiment with different prices
over time to determine the optimal price for a good. While such
experimentation is necessary to learn the optimal price, arbitrarily
changing prices may create a sense of unfairness amongst cus-
tomers, e.g., a customer may receive a price much higher than
a previous customer who arrived before her for no apparent rea-
son. Indeed, there has been extensive research in behavioral sci-
ences investigating consumer perception of price fairness, which
has concluded that notions of price fairness essentially stem from
comparison: without explicit explanations, customers think they
are similar to other customers buying the same item, and thus
should pay equal prices [5, 11, 18, 21, 32]. In the above scenario,
there is likely no palatable explanation that the firm can provide
to justify the temporal disparities that arise in the search for the
profit-maximizing price.

Such issues with increased experimentation are further com-
plicated by the growing litigation and policymaking surrounding
algorithmic decisions; e.g., Amazon was recently sued for allegedly
price-gouging during the pandemic, as they increased the price of
essential goods bymore than 450% (e.g., see Figure 1) compared to
previously seen prices (McQueen and Ballinger v. Amazon.com, Inc.,
422 U.S. Case 4:20-cv-02782 (2020).). Such misalignment of busi-
ness practices geared towards profitability, and evolving consumer
protection laws (e.g., [6]) raises a natural question for various op-
erational tasks: can firms enforce appropriate fairness desiderata
in their online decision-making systems while still achieving good
operational performance? These questions about attaining “good”
performance while adhering to certain constraints enforced due
to fairness generate a class of novel and interesting optimization
problems.

We will illustrate these challenges by mainly focusing on a re-
cently proposed temporal fairness objective of ensuring fairness at
the time of decision (FTD) [17,28], to mitigate perceptions of unfair-
ness when an entity receives a decision. In particular, FTD requires
that when a person A receives a decision that affects them at time t,
comparing this decision to the available data on decisions received
by other entities at or before time tmust not reveal any problematic
disparity in the treatment of entity A. This requirement amounts to
a basic prerogative from the perspective of any decision-maker who
is interested in guaranteeing immunity to legal claims of discrimi-
nation at the time of the decision [17]. The notion of “problematic
disparity” can be modeled by any task-specific notion of fairness

mailto:samuel-burer@uiowa.edu
mailto:david.shmoys@cornell.edu
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Figure 1. The price path of PURELL Advanced Hand Sanitizer Soothing Gel, Fresh cent, with Aloe and Vitamin E, 8 Fl Oz Pump Bottle (Pack of 4) on Amazon from
March 2015 to March 2021 (from camelcamelcamel.com/product/B00U2KYUAY)

for static decision-making, generally requiring that each entity gets
a decision that is (approximately) as conducive as that received by
others. Thus, FTD adapts to the growing literature on task-specific
variants of comparative fairness across a variety of operational
applications such as demand learning [10], assortment optimiza-
tion [8], kidney exchange [13], etc. Importantly, since fairness is
not required to be guaranteed from the perspective of an entity
after the entity receives the decision, FTD generally allows deci-
sions to become more conducive over time, thus allowing room for
(constrained) experimentation and learning.

We will first introduce a general setup to motivate and define
the notion of fairness at the time of decision. We will then illustrate
the new challenges it introduces in a specific context of dynamic
pricing. We finally discuss related problems and extensions that
contribute to this growing interface between online optimization
and fairness.

2 Fairness in Static Decision-Making
Consider first static decision-making scenario, where there is a
finite set ℐ = {1,⋯, n} of entities representing the stakeholders
receiving scalar decisions. For example, an entity could represent
a customer segment (such as “youth”) in a pricing scenario or a
job applicant in an applicant-screening scenario. The decisions
over the set of entities lie in the set 𝒳 ⊆ ℝn (e.g., the range of
prices that can be offered to a customer, or accept/reject decisions
for screening). The decision-maker needs to select x ∈ 𝒳, which
minimizes some cost function f(x) representing some operational
performance measure such as negative social welfare [9] or net
cost of operations [2]. If one wants to enforce some notion of com-
parative fairness, then the space of feasible decisions 𝒳 can be
intersected with fairness-induced constraints ℱ. Let’s consider
two examples:
1. Individual Fairness. Dwork et al. [12] proposed in 2012 a general

notion of comparative fairness, called individual fairness, where
they asked that each entity i ∈ [n] represented by a context
ci ∈ ℝd receive decisions that are “similar” to the decisions
received by other “similar” entities. This can be modeled using

a Lipchitz constraint using given contexts for the entities:

|x(i) − x(j)| ≤ L|c(i) − c(j)|, ∀i, j ∈ [n]. (1)

These constraints can be easily separated over and also lin-
earized, since the number of contexts is fixed to be n. There
has been a stream of papers in the fair ML community since
then to understand the construction of the contexts, how such
constrained might be separated over using auditors [4,15].

2. Fair pricing. Consider a product pricing scenario with n customer
segments. Let x(i) be the price offered to segment i. To ensure
comparative fairness from the perspective of segment i, we may
require certain upper bounds on the price offered to i depending
on the prices offered to the other segments. For instance, we
may require that x(i) ≤ x(i′) + s(i, i′), where s(i, i′) ∈ ℝ repre-
sents a permissible additive slack that depends on the two seg-
ments in comparison; e.g., if the two segments are youth (1) and
adults (2), wemay require that x(1) ≤ x(2), i.e., the price offered
to the youth segment must be at most that offered to the adults.
Similarly, we may require that x(2) ≤ x(1) + 5, i.e., while the
adults can be priced higher than the youth, the difference cannot
be larger than $5. Such a notion of price fairness has been re-
cently proposed by Cohen et al. 2022 [10] under the assumption
that the slacks are non-negative and symmetric (so that the con-
straints amount to requiring that |x(i) − x(i′)| ≤ s(i, i′) = s(i′, i)
for all segments i, i′).

3. Fair assortment planning. Chen et al. (2022) [8] recently consid-
ered the scenario where a platform needs to make assortment
planning decisions over n products/sellers to show to a cus-
tomer. Each product i has some weight wi ≥ 0 that measures
how popular the product is to customers; in particular, upon
offering the customers an assortment 𝒮 of products, the cus-
tomers purchase product i ∈ 𝒮 according to the Multinomial
Logit Choice (MNL) model, with probability wi/(1+w(𝒮)) where
w(𝒮) = ∑j ∈𝒮 wj. Given a probabilistic assortment choice of the
platform, suppose that x(i) is the probability that i is included
in the assortment, referred to as the visibility offered to product
i. [8] propose a notion of fairness that requires that for every
product i and for some 𝛿 > 0,

x(i) ≥
wi′

wi
x(i′) − 𝛿, for all i, i′ ∈ [n].

https://camelcamelcamel.com/product/B00U2KYUAY
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That is, product imust get at least as much visibility (with a 𝛿
slack) as product i′ after adjusting for their relative differences
in popularities.
For each of these scenarios, the feasible decision space 𝒳 can

be intersected with certain fairness constraints ℱ. The static op-
timization problem of minimizing the cost of decisions subject to
fairness constraints can then be expressed as follows:

minimize f(x) (2)

subject to x ∈ 𝒳 ∩ ℱ, (3)

which is easy to optimize as long as the cost function has nice prop-
erties like convexity or unimodality, and 𝒳 ∩ ℱ can be separated
over in polynomial time [16].

3 Ensuring Fairness in Dynamic Settings
The introduction of time in the above setup makes it more interest-
ing. Suppose that one needs to take a decision xt for each time
period t ∈ {1,…, T} = [T]. First, note that if there is no rea-
son to choose different decisions across time periods, e.g., in set-
tings where the cost function f(⋅) is unchanging and known to the
decision-maker, then the introduction of time is redundant since
the decision-maker can simply choose the same static-optimal fair
decision at each time. However, there may be reasons that may
make the decision-maker want to vary decision rules over time.
For example, the cost function f(⋅) itself could be time-dependent
in certain settings. Or f(⋅) could be unknown to the decision maker,
and the optimal fair decision must be learned over time. In our
illustrative dynamic pricing example that we will discuss in Sec-
tion 4, we will focus on this latter case. Thus, a temporal fairness
constraint should ideally allow room for some changes in decisions
over time to allow for learnability. At the same time, it should sat-
isfy a meaningful desideratum of equity and non-discrimination
from the perspective of the entities. Let’s first try to understand the
concerns in defining a temporal fairness constraint that satisfies
these requirements.

Fairness within Each Period. The first and most basic possibility in
this regard is to simply ensure that the static fairness constraints
are satisfied for each group independently in each time period,
i.e., there is no interaction between xt and xt′, except that each
time period the decisions xt must satisfy fairness constraints, i.e.,
xt ∈ 𝒳 ∀t ∈ [T]. Learning unknown cost functions f(⋅) are easy in
this case, using the theory of online convex optimization, as long
as the cost functions are well-behaved. For instance, it may be
acceptable that salaries of women and men are constrained to be
within a factor of each other for equitability, but it does not matter
if they rise or fall together.

Fairness across All Time. The second possibility lies on the oppo-
site end of the spectrum, requiring that the fairness of a decision
must be satisfied with respect to decisions across all times. That is,
each decision xt(i) for an entity i is “fair” with respect to all decisions
across time for every entity, i.e., xt′(j) for all t′ ∈ [T], j ∈ [n]. While
ideal from a fairness perspective, this requirement is too stringent
since it often disallows any change in decisions over time [17]. For
example, individual fairness constraint (1) when imposed for the

same entity across time results in being unable to change decisions
for that entity across time, i.e.,

|xt(i) − xt′(j)| ≤ L|c(i) − c(j)| for all i, j ∈ [n], t, t′ ∈ [T], (4)

⇒ xt(i) = xt′(i) for all t, t′ ∈ [T]. (5)

As noted in (5), this means that learning is not possible, since de-
cisions for entity i cannot change over time. One could consider a
slack to the Lipchitz constraint, but this would still restrict the set
of feasible solutions significantly, unless the slack incorporates the
notion of time.

Fairness at the Time of Decision. The above discussion brings us
to Fairness at the Time of Decision (FTD) [17, 28] that relaxes the
fairness constraint to incorporate the notion of time: decision re-
ceived by entity i at time t is guaranteed to be “fair” with respect to
all decisions received by any entity before time t. In other words, we
care about the fairness of a decision only with respect to the data
available at the time of the decision. The decision of each entity
must respect the tightest lower bound obtained by considering all
decisions in the past (assuming higher decisions are more con-
ducive). Mathematically, to ensure individual fairness at the time of
decision, as an example, we require that for each i ∈ [n],

xt(i) ≥ xt′(j) − L|c(i) − c(j)|, for all j ∈ [n], t′ ≤ t. (6)

In particular, such a constraint then asks for iterates x1,…, xt to
be monotone in each coordinate, i.e., xt(i) ≥ xt′(i) for all t′ < t.
Such a one-sided notion of fairness has philosophical connections
with stare decisis in law (every case is held to the standard of past
precedents) [27], markdown pricing in retail (prices reduces over
time) [22], and whataboutisms in political science (every opinion is
questioned with respect to opinions in similar past cases) (see [17]).

Fairness at the time of the decision thus occupies a convenient
middle ground that straddles the two extremes of temporal notions
of fairness discussed above. Other ways of incorporating fairness
across time using sliding windows [20] or by including fairness as
one of multiple objectives (not as a constraint) [4] have also been
proposed. Each of these notions lead to technically new challenges
in online optimization. FTD, in particular, offers enough flexibility in
decisions that could potentially allow for some experimentation and
learning, and at the same time these intertemporal constraints are
novel in the context of online optimization and require new design
tools and techniques to assimilate them while ensuring good cost
guarantees. In the next section, we illustrate these design chal-
lenges that arise in the context of multi-group stochastic convex
optimization.

4 Trajectory-Constrained Stochastic Convex Optimization
To illustrate the challenges in designing a FTD algorithm in an on-
line learning setting, we consider the framework of stochastic con-
vex optimization. Consider a simple setting where a decision-maker
chooses decisions in 𝒳 = [xmin, xmax]2 ⊆ ℝ2

≥ 0 for two groups, 1
and 2, repeatedly over T periods. A decision x(i) for group i leads to
a cost fi(x(i)), where fi is assumed to be a 𝛽-smooth and 𝛼-strongly
concave function for each i ∈ {1, 2}. The function fi is not known
a priori to the decision-maker. Upon choosing a decision xt(i) at
time t for group i, the decision-maker observes the noisy function
value fi(xt(i)) + 𝜖i, t, where (𝜖i, t)t is a sequence of independent zero-
mean sub-Gaussian random variables for each i ∈ [n]. There is no
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gradient information readily available, i.e., we consider the bandit
feedback setting.

The notion of fairness we consider is a form of approximate envy
freeness. In particular, we assume without loss of generality that
higher decisions are more conducive for the groups, and we require
that each group shouldn’t envy the other’s decision toomuch, where
the notion of “too much” is captured by certain slacks. In particular,
the static fairness constraint we require that x(i) ≥ x(j) − s(i, j) for
i, j ∈ {1, 2}, where s(i, j) ≥ 0 is the permissible slack representing
how much the decision of i is allowed to be lower than that of j.
We assume that s(i, i) = 0 for each i. For simplicity, we refer to
this notion of fairness as Envy Freeness (EF). Therefore, the set of
feasible decisions 𝒳 ∩ ℱ is:

𝒳 ∩ ℱ = {
x(i) ≥ x(j) − s(i, j) for i, j ∈ {1, 2},
xmin ≤ x(i) ≤ xmax, for i ∈ {1, 2} }. (7)

We now add the temporal constraints to ensure fairness at the time
of decision and constrain the iterates over time as follows:

xt(i) ≥ xt′(j) − s(i, j), ∀t ≥ t′, ∀ i, j ∈ {1, 2}. (8)

We refer to these as EFTD constraints (i.e., envy-freeness at the
time of decision). Assuming that s(i, i) = 0 for all i ∈ {1, 2}, it is
easy to show that (8) is equivalent to:

xt ∈ 𝒳 ∩ ℱ, for all t ∈ [T], (9)

xt(i) ≥ xt′(i) for each i ∈ [n] and t ≥ t′, (10)

which gives us a trajectory-constrained stochastic convex optimiza-
tion over 𝒳 ∩ ℱ. We refer to constraints (9) as cross-coordinate
constraints, and (10) as monotonicity constraints. Our goal is to
minimize the regret for the trajectory-constrained optimization
problem, where regret is simply given by:

T

∑
t= 1

∑
i ∈ {1,2}

𝔼(fi(xt(i))) − T min
x ∈𝒳∩ℱ

∑
i ∈ {1,2}

fi(x(i)), (11)

where the expectation is over the randomness in x1,…, xT, and xt
satisfy the cross-coordinate and monotonicity constraints.

For minimizing unknown and noisy smooth and strongly con-
vex (SSC) functions f(⋅) over convex sets 𝒳, without enforcing
monotonity of iterates, it is well-known that Ω(√T) regret is in-
evitable, due to a result of Shamir (2013) [29]. A near-optimal al-
gorithm for this case was given by Agarwal et al. (2013) [1]. In
the one-dimensional case, their approach is the most related to
the golden-section search procedure of Kiefer (1953) [26]: it iter-
atively uses three-point function evaluations to “zoom in” to the
optimum, by eliminating a point and sampling a new point in each
round. Its mechanics however render it infeasible to implement it
in a fashion that respects the monotonicity of decisions. Another
algorithm that gets the O(√T)-regret in bandit feedback setting
is due to Hazan and Levy (2014) [19]. They use gradient-descent
with a one-point gradient estimate constructed by sampling uni-
formly in a ball around the current point. This key idea repeatedly
appears in several works on convex optimization with bandit feed-
back (e.g., [31], [14], [19]). However, due to the randomness in
the direction chosen to estimate the gradient, such an approach
does not satisfy monotonicity of iterates. It was thus largely un-
clear if the optimal regret rate of 𝒪(√T) can be obtained for SSC
stochastic convex optimization with bandit feedback, while sat-
isfying the EFTD constraint. The result below from Salem et al.

(2022) [28] answers this question in the affirmative for our set-
ting.

Theorem 4.1 ([28]). Suppose that the minimizer x∗ =
argminx ∈ℝ2 ∑i ∈ {1,2} fi(x(i)) is such that x∗(i) > xmin for each i.
Then there exists an algorithm for choosing decisions for two groups
over time that satisfies EFTD and that attains a regret of 𝒪(√T) under
noisy bandit feedback assuming that f(x) = f1(x(1)) + f2(x(2)) is
𝛽-smooth and 𝛼-strongly convex.

We explain the algorithmic ideas to obtain this result next, and
highlight open questions thereafter.

4.1 Key Algorithmic Ideas
There are several algorithmic ideas in achieving the result of Theo-
rem 4.1. Discussing all of them is beyond the scope of this article
and so we focus on the key ones, and defer the details to [28].

Let’s first focus on the problem of minimizing a single-
dimensional function f(⋅) over 𝒳 = [xmin, xmax], using bandit feed-
back while ensuring that the decisions xt are monotonically non-
decreasing. In this case, the high-level trade-off between mini-
mizing regret and increasing decisions is the following. Starting
from xmin, the decisions should increase to the unknown optimum
at a sufficient rate to ensure low regret. However, hastiness is as-
sociated with an increased risk of overshooting the optimum due
to lack of confidence in the gradient estimate, which would lead to
high regret since backtracking is not allowed.

The main idea for addressing this trade-off is to tailor the de-
gree of caution (i.e., the speed of approach) to the local gradient.
Indeed, if we had access to gradient feedback, then it is easy to
show that the standard gradient descent dynamics

xt+1 = xt − 𝜂∇f(xt),

beginning with x0 = xmin monotonically converge to the optimum at
an exponential rate while never overshooting the optimum, assuming
that the step-size 𝜂 is chosen appropriately as a function of 𝛽 (the
smoothness parameter). However, to execute such a procedure
with noisy bandit feedback, an estimate of the gradient at xt must
be constructed. We can do so by sampling the function repeatedly
at two points xt and xt − 𝛿 separated by some lag 𝛿 > 0 (we first
sample at xt−𝛿 and then at xt to ensuremonotonicity). Overshooting
can then be avoided by moving from the lagged point, i.e.,

xt+1 = xt − 𝛿 − 𝜂gt,

assuming that gt is a gradient estimate that satisfies ∇f(xt − 𝛿) ≤
gt ≤ ∇f(xt). If xt+1 thus calculated is smaller than xt, then we stop
the procedure to ensure monotonicity. The following lemma char-
acterizes the sample complexity of calculating gt.

Lemma 4.2 (sandwich lemma). [28] Let f ∶ R → R be an 𝛼-strongly
convex function. Let x < y and let 𝛿 = y − x. Fix p ∈ (0, 1). Then one
can define f(x), f(y) to be the averages of

Θ(
log

1

p

𝛼2𝛿4
)

samples at x and y, respectively, so that the estimated secant

g =
f(y)− f(x)+ 𝛼𝛿2

4

𝛿

satisfies ∇f(x) ≤ g ≤ ∇f(y), with probability at least (1 − p)2.
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In other words, to estimate the gradient of a strongly convex
function between two points separated by 𝛿, it is sufficient to sample
these points 𝒪(1/𝛿4) times (we can also argue that this is neces-
sary). This means that 𝛿 cannot be too small, otherwise excessive
regret would be incurred in the gradient estimation process. At
the same time, if 𝛿 is too large in relation to gt then the procedure
may stop prematurely and far from the optimum, resulting in high
regret. We can show that one can choose an appropriate value of 𝛿
that balances the estimation regret and the stopping regret to yield
a 𝒪(T2/3) regret monotone algorithm.

To attain the near-optimal 𝒪(√T) regret, we adaptively tailor
the lag size to the local gradient estimate. In particular, if we find
that the algorithm has stopped moving for a particular lag size 𝛿,
then we halve the value to 𝛿/2 and attempt to keep moving, halv-
ing the value further as necessary. The benefit of this approach is
that smaller values of the lag size 𝛿, which result in high sampling
rate for gradient estimation, are utilized only when the decisions
are close to the optimum where they result in low regret. There is
one remaining issue, which is that the decision of lowering the lag
size 𝛿must be made before sampling at xt to ensure monotonicity.
We tackle this issue by constructing interim gradient estimates
to search for the right lag size before sampling xt. The details of
this design are beyond the scope of this article. Overall, we can
show that this procedure, which is called Adaptive Lagged Gradient
Descent (ADA-LGD) attains the required 𝒪(√T) regret [28].

Now to address the two-group case, we need to additionally ad-
dress the cross-coordinate constraints, i.e., xt(1) ≥ xt′(2) − s(1, 2)
and xt(1) ≥ xt′(2) − s(2, 1) for all 1 ≤ t′ ≤ t ≤ T. Our overall ap-
proach is once again more simply described as a continuous-time
procedure in the case where we have access to perfect gradient
feedback, i.e., ∇fi(xt(i)):
1. Coordinate-descent phase (continuous-time). Starting with

x0(1) = x0(2) = xmin, pick an arbitrary coordinate, say i, and
increase it while keeping the other coordinate j≠ i fixed until ei-
ther (a) ∇fi(xt(i)) = 0, or (b) xt(i) = xt(j≠ i) + s(j≠ i, i). Switch
the coordinate i ← j≠ i and repeat until, for both i = 1, 2, either
xi, t = xt(j≠ i) + s(j≠ i, i) or ∇fi(xt(i)) = 0. Once that happens, go
to step 2.

2. Combined-descent phase (continuous-time). If ∇fi(xt(i)) = 0
for both i = 1, 2, then we are done – the EFTD constraint
doesn’t bind and the unconstrained optimum is the same as
the constrained optimum. Else, there is some i∗ ∈ {1, 2} such
that ∇fi(xt(i∗)) = 0 and xt(j∗≠ i) = xi∗, t + s(i∗, j∗≠ i) (since we as-
sumed at least one slack is non-zero). At that point, we can
deduce that the corresponding EF constraint will be tight at
the optimum (which means we can again reduce to the sin-
gle group case). Then define h(x) = fi∗(x) + fj∗≠ i

(x + s(i∗, j∗≠ i)),
and continue reducing xi∗, t and xj∗≠ i, t = xi∗, t + s(i∗, j∗≠ i) jointly
until ∇h(xi∗, t) = 0.
The challenge then is to convert this process into a practical

discrete-time procedure with only noisy bandit feedback on each
dimension, while ensuring optimal overall regret. One major piece
of the algorithmic approach is to utilize the ADA-LGD procedure
alternatingly on each dimension in the coordinate descent phase
and then jointly in the combined descent phase. However, there are
several design details, such as when to decide to switch between
coordinates, when to enter the combined phase, how to transition
the adaptive lag size schedule into the combined phase, etc., which

are outside the scope of this article. We refer the reader to [28] for
details.

5 Open Directions
These ideas naturally lead to the following open question: for which
settings can one achieve order-optimal regret or convergence rates
when constraining the trajectory of iterates within iterative decision-
making scenarios? This question is largely open, in terms of types
of decision sets, types of fairness constraints and resultant tra-
jectory constraints, and also the assumptions on the functions to
be optimized. In the current literature, we know very little about
lower bounds for various settings. For example, the assumption of
smoothness (which allowed elimination of overshooting) and strong
convexity (which is crucial for the sandwich lemma) appears to be
crucial for the result of Theorem 4.1 for even single-dimensional
problems. For single-dimensional problems, Jia et al. [22] and Chen
et al. [7] have recently considered bandit stochastic optimization for
general Lipschitz functions. In particular, for unimodal functions,
they show that enforcing monotonicity of decisions results in the
optimal achievable regret of Θ̃(T3/4), which is larger than a regret
of Θ̃(T3/4) under no monotonicity constraints. So it appears that
some form of regularity of the functions is necessary to ensure no
impact of the EFTD constraint on the optimal regret (at least up
to logarithmic terms). In fact, it appears that smoothness is nec-
essary upon considering the worst-case examples of [22] and [7].
For more open problems with respect to interesting settings for
trajectory-constrained optimization, we refer the reader to [28].
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The Evolution of Mathematical Programming
Computation, Currently with the Highest Two-Year
Impact Factor among Applied Mathematics
Journals
Jonathan Eckstein

Impact
Mathematical Programming Computation (MPC) has been a Math-
ematical Optimization Society (MOS) journal for 14 years. Until
recently, the Web of Science organization considered it an “emerg-
ing” journal and did not assign it an official impact factor. That
changed this past June, when Web of Science assigned MPC a two-
year impact factor of 8.059, which ranks first among 267 applied
mathematics journals and sixth among 110 computer science and
software engineering journals. Clearly, MPCmade a dramatic entry
into the ranks of established journals!

Without an impact factor, some authors had a strong incentive
to avoid submitting manuscripts to MPC, because their institu-
tions would award them little or no “credit” for publishing there.
That situation is now over, so if MPC seems like the right fit for a
manuscript, there should now be every reason to submit there.

MPC is a relatively low-volume journal in comparison to other
optimization journals like Mathematical Programming Series A and
B (MPA and MPB). MPC currently publishes about 20 papers per
year. Since a journal’s impact factor is an average computed over all
the items it has published in the preceeding two or five years, MPC’s
impact factor can be expected to exhibit relatively high variance: an
average computed over a sample of 40 will be more variable than
an average computed over a sample 226 (the number of articles
published by MPA in 2020–2021). Due to its high anticipated vari-
ability, it is uncertain whether MPC’s impact factors will rank as
high in future years, but it is clear that MPC is a journal that is well
respected and here to stay.

History
MOS (then called theMathematical Programming Society) launched
MPC in July 2008, based on some discussions initiated by Martin
Grötschel in January 2007. Bill Cook served as initial editor-in-
chief.

From its inception, MPC has had a feature essentially unique not
only among optimization journals, but among applied mathematics
journals in general: authors submit not just a manuscript but also
the computer code and data used to produce their computational
results. Special reviewers called “technical editors” check whether
the results seem reproducible, and evaluate both the quality of the
code and its potential usefulness to others. Technical editors are
listed as editorial board members in recognition of their invaluable
service to the journal, although they function largely like referees.
The only other journal I am aware of that has anything like MPC’s
software review process is the ACM Transactions on Mathematical
Software (ACM TOMS), which has five categories of submissions,
two of which require accompanying software. However, the journal’s
published policies do not specify how such software is reviewed.

The way technical editors have performed their task has evolved
significantly since the formation of MPC. Initially, they downloaded
authors’ software and compiled and tested it on their own com-
puter equipment. This arrangement put considerable burdens on

http://arxiv.org/abs/2102.00311
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authors to develop highly portable code and anticipate what envi-
ronments their code might be tested in, and on technical editors to
successfully compile and use code developed on potentially differ-
ent systems. Any communication about this process generally had
to be through an intermediary, since technical editors are generally
anonymous, like referees.

Dan Bienstock, who served as editor in chief from 2014 to 2018,
changed this system, maintaining a set of server computers on
which gave accounts to both authors and technical editors. This way,
authors had the responsibility for making sure their code would
build and run correctly on a system towhich the technical editor had
anonymous access. Dan also overhauled the internal processes and
workflow of the journal, better coordinating technical editors and
associate editors, as well as changing themanuscript management
system.

Dan’s approach, while a great improvement, had some recurring
difficulties involving software versioning conflicts between different
manuscripts hosted on the same server. One manuscript’s code
might require a compiler, system library, or math library version in-
compatible with another manuscript’s. While in principle one of the
manuscripts involved in such a conflict could use different support
software localized in its own account, such multi-configurations
were time consuming for both Dan and for authors.

To address these issues, the technical review system evolved
again under my leadership as editor-in-chief, which started in Jan-
uary 2019. MOS purchased a 32-core, 64-thread server which was
installed at Rutgers Business School. It runs a virtual-machine
(VM) operating system, within which each submission gets its own
Linux virtual machine, with a unique temporary IP address. Authors
have root-user system privileges on their submission’s VM, and
are free to configure it as they wish, updating or downdating any
support software incompatible with their implementation. Rutgers
Business School’s Office of Technology and Instruction services
(OTIS) provides basic support for the VM system; I would like to
thank Rutgers Business School’s Dean Lei Lei for sponsoring this
valuable support.

Aims and Scope
MPC’s aims and scope are now somewhat broader than the original
conception, with topics including (but not limited to) the following
aspects of optimization and closely relatedmathematical problems:
– New algorithmic techniques, with substantial computational test-
ing

– New applications, with substantial computational testing
– Innovative software
– Comparative tests of algorithms

– Modeling environments
– Libraries of problem instances
– Software applications, frameworks, or libraries.
The journal considers manuscripts related to all kinds of optimiza-
tion, discrete or continuous, linear or nonlinear, and deterministic
or stochastic, as well as on closely related topics.

There are some key differences betweenMPC and other top-tied
optimization journals: most importantly, articles accepted to MPC
are not necessarily expected to contain major theoretical advances
(although they can). However, all accepted articles are expected
to describe new contributions of practical computational value in
optimization or closely related areas. With occasional exceptions
(for some problem instance libraries, for example), articles are ex-
pected to contain rigorous computional testing, which the technical
editors endeavor to (approximately) reproduce using the authors’
submitted code.

Links for Further Information
▷ Springer’s MPC Page: www.springer.com/math/journal/12532
▷ Mathematical Optimization Society: www.mathopt.org
▷ Journal mirror site at Zuse Institute Berlin: mpc.zib.de
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Mixed Integer Programming Society (MIPS):
A New Section of the Mathematical Optimization
Society

The Mixed Integer Programming Society (MIPS) is a newly created
section of the Mathematical Optimization Society (MOS). Its goal
is to serve as a catalyst for the community of researchers working
in Mixed Integer Programming and its applications, both inside
and outside academia, and promote continuity of events of interest
for the community. In particular, it supports the organization of
the annual MIP workshops and of the online Discrete Optimization
Talks, and promotes the dissemination of results in the area.

For more information or to become a member, please visit
mixedinteger.org or write to mail@mixedinteger.org.

Yuri Faenza
Chair, Mixed Integer Programming Society
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