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Over the past ten years, online algorithms have received considerable research

interest. Online problems had been investigated already in the seventies and

early eighties but an extensive, systematic study only started when Sleator

and Tarjan (1985) suggested comparing an online algorithm to an optimal

offline algorithm and Karlin, Manasse, Rudolph and Sleator (1988) coined

the term competitive analysis. In this article we give an introduction to the

theory of online algorithms and survey interesting application areas. We

present important results and outline directions for future research.
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Introduction
The traditional design and analysis of algorithms

assumes that an algorithm, which generates an

output, has complete knowledge of the entire in-

put. However, this assumption is often unrealistic

in practical applications. Many of the algorithmic

problems that arise in practice are online. In these

problems the input is only partially available be-

cause some relevant input data will arrive in the

future and is not accessible at present. An online

algorithm must generate an output without

knowledge of the entire input. Online problems

arise in areas such as resource allocation in oper-

ating systems, data-structuring, distributed com-

puting, scheduling, and robotics. We give some

illustrative examples.

PAGING: In a two-level memory system, consist-

ing of a small fast memory and a large slow

memory, a paging algorithm has to keep actively

referenced pages in fast memory without know-

ing which pages will be requested in the future.

DISTRIBUTED DATA MANAGEMENT: A set of files has

to be distributed in a network of processors, each

of which has its own local memory. The goal is to

dynamically re-allocate files in the system so that

a sequence of read and write requests can be pro-

cessed with low communication cost. It is un-

known which files a processor will access in the

future.

MULTIPROCESSOR SCHEDULING: A sequence of jobs

must be scheduled on a given set of machines.

Jobs arrive one by one and must be scheduled im-

mediately without knowledge of future jobs.

NAVIGATION PROBLEMS IN ROBOTICS: A robot is

placed in an unknown environment and has to

find a short path from a point s to a point t. The

robot learns about the environment as it travels

through the scene.

We will address these problems in more detail in

the following sections.

In recent years, it has been shown that competitive

analysis is a powerful tool to analyze the perfor-

mance of online algorithms. The idea of competi-

tiveness is to compare the output generated by an

online algorithm to the output produced by an

offline algorithm. An offline algorithm is an om-

niscient algorithm that knows the entire input

data and can compute an optimal output. The

better an online algorithm approximates the opti-

mal solution, the more competitive this algo-

rithm is.

Basic concepts
Formally, many online problems can be de-

scribed as follows. An online algorithm A is pre-

sented with a request sequence σ = σ(1), σ(2), …,

σ(m). The requests σ(t), 1≤ t ≤ m, must be

served in their order of occurrence. More specifi-

cally, when serving request σ(t), algorithm A does

not know any request σ(t') with t' > t. Serving re-

quests incurs cost, and the goal is to minimize the

total cost paid on the entire request sequence.

This setting can also be regarded as a request-an-

swer game: An adversary generates requests, and

an online algorithm has to serve them one at a

time.

To illustrate this formal model we reconsider the

paging problem, which is one of the most funda-

mental online problems and start with a precise

definition.

THE PAGING PROBLEM: Consider a two-level

memory system that consists of a small fast

memory and a large slow memory. Each request

specifies a page in the memory system. A request

is served if the corresponding page is in fast

memory. If a requested page is not in fast

memory, a page fault occurs. Then a page must

be moved from fast memory to slow memory so

that the requested page can be loaded into the va-

cated location. A paging algorithm specifies

which page to evict on a fault. If the algorithm is

online, then the decision of which page to evict

must be made without knowledge of any future

requests. The cost to be minimized is the total

number of page faults incurred on the request se-

quence.

Sleator and Tarjan [64] suggested evaluating the

performance on an online algorithm using com-

petitive analysis. In a competitive analysis, an

online algorithm A is compared to an optimal

offline algorithm. An optimal offline algorithm

knows the entire request sequence in advance and

can serve it with minimum cost. Given a request

sequence σ, let C
A
(σ) denote the cost incurred by

A and let C
OPT

(σ) denote the cost incurred by an

optimal offline algorithm OPT. The algorithm A

is called c-competitive if there exists a constant a

such that

C
A
(σ) ≤ c • C

OPT
(σ) +a

for all request sequences σ. Here we assume that

A is a deterministic online algorithm. The factor

c is also called the competitive ratio of A.

With respect to the paging problem, there are

three well-known deterministic online algo-

rithms.

LRU (Least Recently Used): On a fault, evict

the page in fast memory that was requested least

recently.

FIFO (First-In First-Out): Evict the page that

has been in fast memory longest.

LFU (Least Frequently Used): Evict the page

that has been requested least frequently.

Let k be the number of memory pages that can

simultaneously reside in fast memory. Sleator

and Tarjan [64] showed that the algorithms

LRU and FIFO are k-competitive. Thus, for any

sequence of requests, these algorithms incur at

most k times the optimum number of page

faults. Sleator and Tarjan also proved that no

deterministic online paging algorithm can

achieve a competitive ratio smaller than k.

Hence, both LRU and FIFO achieve the best

possible competitive ratio. It it easy to prove that

LFU is not competitive for any constant c.

An optimal offline algorithm for the paging

problem was presented by Belady [19]. The al-

gorithm is called MIN and works as follows.

MIN: On a fault, evict the page whose next re-

quest occurs furthest in the future.

Belady showed that on any sequence of requests,

MIN achieves the minimum number of page

faults.

It is worth noting that the competitive ratios

shown for deterministic paging algorithms are

not very meaningful from a practical point of

view. The performance ratios of LRU and FIFO

become worse as the size of the fast memory in-

creases. However, in practice, these  algorithms

perform better the larger the fast memory is.

Furthermore, the competitive ratios of LRU and

FIFO are the same, whereas in practice LRU

performs much better. For these reasons, there

has been a study of competitive paging algo-

rithms with locality of reference. We discuss this

issue in the last section.
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A natural question is: Can an online algorithm

achieve a better competitive ratio if it is allowed

to use randomization?

The competitive ratio of a randomized online al-

gorithm A is defined with respect to an adversary.

The adversary generates a request sequence σ and

it also has to serve σ. When constructing σ, the

adversary always knows the description of A. The

crucial question is: When generating requests, is

the adversary allowed to see the outcome of the

random choices made by A on previous requests?

Ben-David et al. [20] introduced three kinds of

adversaries.

OBLIVIOUS ADVERSARY: The oblivious adversary

has to generate a complete request sequence in

advance, before any requests are served by the

online algorithm. The adversary is charged the

cost of the optimum offline algorithm for that se-

quence.

ADAPTIVE ONLINE ADVERSARY: This adversary may

observe the online algorithm and generate the

next request based on the algorithm’s (random-

ized) answers to all previous requests. The adver-

sary must serve each request online, i.e., without

knowing the random choices made by the online

algorithm on the present or any future request.

ADAPTIVE OFFLINE ADVERSARY: This adversary also

generates a request sequence adaptively. How-

ever, it is charged the optimum offline cost for

that sequence.

A randomized online algorithm A is called c-com-

petitive against any oblivious adversary if there is

a constant a such for all request sequences σ gen-

erated by an oblivious adversary, E[C
A
(σ)] ≤ c •

C
OPT

(σ) + a. The expectation is taken over the

random choices made by A.

Given a randomized online algorithm A and an

adaptive online (adaptive offline) adversary ADV,

let E[C
A
] and E[C

ADV
] denote the expected costs

incurred by A and ADV in serving a request se-

quence generated by ADV. A randomized online

algorithm A is called c-competitive against any

adaptive online (adaptive off-line) adversary if

there is a constant a such that for all adaptive

online (adaptive offline) adversaries ADV, E[C
A
]

≤ c • E[C
ADV

] + a, where the expectation is taken

over the random choices made by A.

Ben-David et al. [20] investigated the relative

strength of the adversaries and showed the follow-

ing statements.

1. If there is a randomized online algorithm that

is c-competitive against any adaptive offline ad-

versary, then there also exists a c-competitive de-

terministic online algorithm.

2. If A is a c-competitive randomized algorithm

against any adaptive online adversary and if there

is a d-competitive algorithm against any oblivious

adversary, then A is (c • d)-competitive against

any adaptive offline adversary.

Statement 1 implies that randomization does not

help against the adaptive offline adversary. An im-

mediate consequence of the two statements above

is:

3. If there exists a c-competitive randomized algo-

rithm against any adaptive online adversary, then

there is a c2-competitive deterministic algorithm.

Against oblivious adversaries, randomized online

paging algorithms can considerably improve the

ratio of k shown for deterministic paging. The

following algorithm was proposed by Fiat et al.

[39].

MARKING: The algorithm processes a request se-

quence in phases. At the beginning of each phase,

all pages in the memory system are unmarked.

Whenever a page is requested, it is marked. On a

fault, a page is chosen uniformly at random from

among the unmarked pages in fast memory, and

that page is evicted. A phase ends when all pages

in fast memory are marked and a page fault oc-

curs. Then, all marks are erased and a new phase

is started.

Fiat et al. [39] analyzed the performance of the

MARKING algorithm and showed that it is 2H
k
-

competitive against any oblivious adversary,

where H
k
 = ∑k

i=1
 1/i is the k-th Harmonic num-

ber. Note that H
k
 is roughly ln k.

Fiat et al. [39] also proved that no randomized

online paging algorithm against any oblivious ad-

versary can be better than H
k
-competitive. Thus

the MARKING algorithm is optimal, up to a con-

stant factor. More complicated paging algorithms

achieving an optimal competitive ratio of H
k
 were

given in [57,1].

Self-organizing data structures
The list update problem is one of the first online

problems that were studied with respect to com-

petitiveness. The problem is to maintain a set of

items as an unsorted linear list. We are given a

linear linked list of items.  As input we receive a

request sequence σ, where each request specifies

one of the items in the list. To serve a request a

list update algorithm must access the requested

item, i.e., it has to start at the front of the list and

search linearly through the items until the desired

item is found. Serving a request to the item that is

stored at position i in the list incurs a cost of i.

While processing a request sequence, a list update

algorithm may rearrange the list. Immediately af-

ter an access, the requested item may be moved at

no extra cost to any position closer to the front of

the list. These exchanges are called free exchanges.

Using free exchanges, the algorithm can lower the

cost on subsequent requests. At any time two ad-

jacent items in the list may be exchanged at a cost

of 1. These exchanges are called paid exchanges.

With respect to the list update problem, we re-

quire that a c-competitive online algorithm has a

performance ratio of c for all size lists. More pre-

cisely, a deterministic online algorithm for list up-

date is called c-competitive if there is a constant a

such that for all size lists and all request sequences

σ, C
A
(σ) ≤ c • C

OPT
(σ) +a.

Linear lists are one possibility of representing a set

of items. Certainly, there are other data structures

such as balanced search trees or hash tables that,

depending on the given application, can maintain

a set in a more efficient way. In general, linear

lists are useful when the set is small and consists

of only a few dozen items. Recently, list update

techniques have been applied very successfully in

the development of data compression algorithms

[21,28].

There are three well-known deterministic online

algorithms for the list update problem.

MOVE-TO-FRONT: Move the requested item to the

front of the list.

TRANSPOSE: Exchange the requested item with the

immediately preceding item in the list.
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FREQUENCY-COUNT: Maintain a frequency count

for each item in the list. Whenever an item is re-

quested, increase its count by 1. Maintain the list

so that the items always occur in nonincreasing

order of frequency count.

Sleator and Tarjan [64] proved that Move-To-

Front is 2-competitive. Karp and Raghavan [48]

observed that no deterministic online algorithm

for list update can have a competitive ratio

smaller than 2. This implies that Move-To-Front

achieves the best possible competitive ratio.

Sleator and Tarjan also showed that Transpose

and Frequency-Count are not c-competitive for

any constant c independent of the list length.

Thus, in terms of competitiveness, Move-To-

Front is superior to Transpose and Frequency-

Count.

Next we address the problem of randomization in

the list update problem. Against adaptive adver-

saries, no randomized online algorithm for list

update can be better than 2-competitive, see

[20,62]. Thus we concentrate on algorithms

against oblivious adversaries.

We present the two most important algorithms.

Reingold et al. [62] gave a very simple algorithm,

called  BIT.

BIT: Each item in the list maintains a bit that is

complemented whenever the item is accessed. If

an access causes a bit to change to 1, then the re-

quested item is moved to the front of the list.

Otherwise the list remains unchanged. The bits

of the items are initialized independently and

uniformly at random.

Reingold it et al. [62] proved that BIT is 1.75-

competitive against oblivious adversaries. The

best randomized algorithm currently known is a

combination of the BIT algorithm and a deter-

ministic 2-competitive online algorithm called

TIMESTAMP proposed in [2].

TIMESTAMP (TS): Insert the requested item, say x,

in front of the first item in the list that precedes x

and that has been requested at most once since

the last request to x. If there is no such item or if

x has not been requested so far, then leave the po-

sition of x unchanged.

As an example, consider a list of six items being

in the order L : x
1
 → x

2
 → x

3
 → x

4
 → x

5
 → x

6
.

Suppose that algorithm TS has to serve the sec-

ond request to x
5
 in the request sequence σ = …

x
5
, x

2
, x

2
, x

3
, x

1
, x

1
, x

5
. Items x

3
 and x

4
 were re-

quested at most once since the last request to x
5
,

whereas x
1
 and x

2
 were both requested twice.

Thus, TS will insert x
5
 immediately in front of x

3

in the list.

A combination of BIT and TS was proposed by

[5].

COMBINATION: With probability 4/5 the algo-

rithm serves a request sequence using BIT, and

with probability 1/5 it serves a request sequence

using TS.

This algorithm is 1.6-competitive against oblivi-

ous adversaries [5]. The best lower bound cur-

rently known is due to Teia [67]. He showed that

if a randomized list update algorithm is c-com-

petitive against oblivious adversaries, then c ≥ 1.5.

An interesting open problem is to give tight

bounds on the competitive ratio that can be

achieved by randomized online algorithms against

oblivious adversaries.

Many of the concepts shown for self-organizing

linear lists can be extended to binary search trees.

The most popular version of self-organizing bi-

nary search trees are the  splay trees presented by

Sleator and Tarjan [65]. In a splay tree, after each

access to an element x in the tree, the node stor-

ing x is moved to the root of the tree using a spe-

cial sequence of rotations that depends on the

structure of the access path. This reorganization

of the tree is called splaying.

Sleator and Tarjan [65] analyzed splay trees and

proved a series of interesting results. They showed

that the amortized asymptotic time of access and

update operations is as good as the corresponding

time of balanced trees. More formally, in an n-

node splay tree, the amortized time of each opera-

tion is O(log n). It was also shown [65] that on

any sequence of accesses, a splay tree is as efficient

as the optimum static search tree. Moreover,

Sleator and Tarjan [65] presented a series of con-

jectures, some of which have been resolved or

partially resolved [31,32,33,66]. On the other

hand, the famous splay tree conjecture is still

open: It is conjectured that on any sequence of

accesses splay trees are as efficient as any dynamic

binary search tree.

The k-server problem
The k-server problem is one of the most funda-

mental and extensively studied online problems.

In the k-server problem we are given a metric

space S and k mobile servers that reside on

points in S. Each request specifies a point x ∈S.

To serve a request, one of the k servers must be

moved to the requested point unless a server is

already present. Moving a server from point x to

point y incurs a cost equal to the distance be-

tween x and y. The goal is to serve a sequence of

requests so that the total distance traveled by all

servers is as small as possible.

The k-server problem contains paging as a spe-

cial case. Consider a metric space in which the

distance between any two points in 1; each point

in the metric space represents a page in the

memory system and the pages covered by servers

are those that reside in fast memory. The k-

server problem also models more general cach-

ing problems, where the cost of loading an item

into fast memory depends on the size of the

item. Such a situation occurs, for instance, when

font files are loaded into the cache of a printer.

More generally, the k-server problem can also be

regarded as a vehicle routing problem.

The k-server problem was introduced by

Manasse et al. [56] in 1988 who also showed a

lower bound for deterministic k-server algo-

rithms: Let A be a deterministic online k-server

algorithm in an arbitrary metric space. If A is c-

competitive, then c ≥ k.

Manasse et al. also conjectured that there exists a

deterministic k-competitive online k-server algo-

rithm. Only recently, Koutsoupias and

Papadimitriou [52] showed that there is a (2k-

1)-competitive algorithm. Before, k-competitive

algorithms were known for special metric spaces

(e.g. trees [30] and resistive spaces [34] and spe-

cial values of k (k=2 and k = n-1, where n is the

number of points in the metric space [56]. It is

worthwhile to note that the greedy algorithm,

which always moves the closest server to the re-

quested point, is not competitive.

The algorithm analyzed by Koutsoupias and

Papadimitriou is the WORK FUNCTION algo-

rithm. Let X be a configuration of the servers.

Given a request sequence σ = σ(1), …, σ(t), the

work function w (X) is the minimal cost of serv-

ing σ and ending in configuration X.
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WORK FUNCTION: Suppose that the algorithm has

served σ = σ(1), …, σ(t-1)  and that a new re-

quest r = σ(t) arrives. Let X be the current con-

figuration of the servers and let x
i
 be the point

where server s
i
, 1≤ i ≤ k, is located. Serve the re-

quest by moving the server s
i
 that minimizes

w(X
i
) + dist(x

i
,r), where X

i
 = X -{x

i
}+ {r}.

Koutsoupias and Papadimitriou [52] proved that

the WORK FUNCTION algorithm is (2k-1)-com-

petitive in an arbitrary metric space. An interest-

ing open problem is to show that the WORK

FUNCTION algorithm is indeed k-competitive or

to develop another deterministic online k-server

algorithm that achieves a competitive ratio of k.

An elegant randomized rule for moving servers

was proposed by Raghavan and Snir [61].

HARMONIC: Suppose that there is a new request at

point r and that server s
i
, 1≤ i ≤ k, is currently at

point x
i
. Move server s

i
 with probability

1/dist(x
i
,r)

p
i
 =

 ∑k
j=1 

1/dist(x
j
,r)

to the request.

Intuitively, the closer a server is to the request,

the higher the probability that it will be moved.

Grove [42] proved that the HARMONIC algorithm

has a competitive ratio of c ≤ 5
4
k • 2k - 2k. The

competitiveness of HARMONIC is not better than

k(k+1)/2, see [58]. An open problem is to de-

velop tight bounds on the competitive ratio

achieved by HARMONIC.

Recently Bartal et al. [14] presented a random-

ized online algorithm that achieves a competitive

ratio of O(c6 log6 k) on metric spaces consisting of

k+c points. The main open problem in the area of

the k-server problem is to develop randomized

online algorithms that have a competitive ratio of

c < k in an arbitrary metric space.

Distributed data management
In distributed data management the goal is to dy-

namically re-allocate memory pages in a network

of processors, each of which has its own local

memory, so that a sequence of read and write re-

quests to memory pages can be served with low

total communication cost. The configuration of

the system can be changed by migrating and repli-

cating a memory page, i.e., a page is moved or

copied from one local memory to another.

More formally, page allocation problems can be

described as follows. We are given a weighted un-

directed graph G. Each node in G corresponds to

a processor and the edges represent the intercon-

nection network. We generally concentrate on

one particular page in the system. We say that a

node v has the page if the page is contained in v’s

local memory. A request at a node v occurs if v

wants to read or write an address from the page.

Immediately after a request, the page may be mi-

grated or replicated from a node holding the page

to another node in the network. We use the cost

model introduced by Bartal et al. [18] and

Awerbuch et al. [8]. (1) If there is a read request

at v and v does not have the page, then the in-

curred cost is dist(u,v), where u is the closest

node with the page. (2) The cost of a write re-

quest at node v is equal to the cost of communi-

cating from v to all other nodes with a page rep-

lica. (3) Migrating or replicating a page from

node u to node v incurs a cost of d • dist(u,v),

where d is the page size factor. (4) A page replica

may be erased at 0 cost. In the following we only

consider centralized page allocation algorithms,

i.e., each node always knows where the closest

node holding the page is located in the network.

Bartal et al. [18] and Awerbuch et al. [8] pre-

sented deterministic and randomized online algo-

rithms achieving an optimal competitive ratio of

O(log n), where n is the number of nodes in the

graph. We describe the randomized solution [18].

COINFLIP: If there is a read request at node v and

v does not have the page, then with probability 1_
d
,

replicate the page to v. If there is a write request

at node v, then with probability  1_
√3d

, migrate the

page to v and erase all other page replicas.

The page migration problem is a restricted prob-

lem where we keep only one copy of each page in

the entire system. If a page is writable, this avoids

the problem of keeping multiple copies of a page

consistent. For this problem, constant competi-

tive algorithms are known. More specifically,

there are deterministic online migration algo-

rithms that achieve competitive ratios of 7 and

4.1, respectively, see [8,16]. We describe an el-

egant randomized algorithm due to Westbrook

[69].

COUNTER: The algorithm maintains a global

counter C that takes integer values in [0,k], for

some positive integer k. Counter C is initialized

uniformly at random to an integer in [1,k]. On

each request, C is decremented by 1. If C =0 after

the service of the request, then the page is moved

to the requesting node and C is reset to k.

Westbrook showed that the COUNTER algorithm

is c-competitive, where c =max {2 + 2d_
k
, 1 + _k_+_1_

2d
}.

He also determined the best value of k and

showed that, as d increases, the best competitive

ratio decreases and tends to 1+ Φ, where Φ =

(1+√5)/2 ≈ 1.62 is the Golden Ratio.

All of the above solutions assume that the local

memories of the processors have infinite capacity.

Bartal et al. [18] showed that if the local memo-

ries have finite capacity, then no online algorithm

for page allocation can be better than Ω(m)-com-

petitive, where m is the total number of pages

that can be accommodated in the system.

Scheduling and load balancing
The general situation in online scheduling is as

follows. We are given a set of m machines. A se-

quence of jobs σ = J
1
, J

2
,…, J

n
 arrives online.

Each job J
k
 has a processing p

k
 time that may or

may not be known in advance. As each job ar-

rives, it has to be scheduled immediately on one

of the m machines. The goal is to optimize a

given objective function. There are many prob-

lem variants, e.g., we can study various machine

types and various objective functions.

We consider one of the most basic settings intro-

duced by Graham [41] in 1966. Suppose that we

are given m identical machines. As each job ar-

rives, its processing time is known in advance.

The goal is to minimize the makespan, i.e., the

completion time of the last job that finishes.

Graham [41] proposed the GREEDY algorithm and

showed that it is (2 – 1-
m
)-competitive.

GREEDY: Always assign a new job to the least

loaded machine.

In recent years, research has focused on finding

algorithms that achieve a competitive ratio c, c <

2, for all values of m. In 1992, Bartal et al. [17]

gave an algorithm that is 1.986-competitive.

Karger et al. [46] generalized the algorithm and

proved an upper bound of 1.945. The best algo-

rithm known so far achieves a competitive ratio

of 1.923, see [3].
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Next we discuss some extensions of the schedul-

ing problem mentioned above.

IDENTICAL MACHINES, RESTRICTED ASSIGNMENT:

We have a set of m identical machines, but each

job can only be assigned to one of a subset of ad-

missible machines. Azar et al. [12] showed that

the GREEDY algorithm, which always assigns a

new job to the least loaded machine among the

admissible machines, is O(log m)-competitive.

RELATED MACHINES: Each machine i has a speed s
i
,

1≤ i ≤ m. The processing time of job J
k
 on ma-

chine i is equal to p
k
/s

i
. Aspnes et al. [6] showed

that the GREEDY algorithm, that always assigns a

new job to a machine so that the load after the as-

signment is minimized, is O(log m)-competitive.

They also presented an algorithm that is 8-com-

petitive.

UNRELATED MACHINES: The processing time of job

J
k 
on machine i is p

k,i
, 1≤ k ≤ n, 1 ≤ i ≤ m. Aspnes

et al. [6] showed that GREEDY is only m-competi-

tive. However, they also gave an algorithm that is

O(log m)-competitive.

In online load balancing we have again a set of m

machines and a sequence of jobs σ = J
1
, J

2
, …, J

n

that arrive online. However, each job J
k
 has a

weight w(k) and an unknown duration. For any

time t, let l
i
(t) denote the load of machine i, 1 ≤ i

≤ m, at time t, which is the sum of the weights of

the jobs present on machine i at time t. The goal

is to minimize the maximum load that occurs

during the processing of σ.

We refer the reader to [9] for an excellent survey

on online load balancing and briefly mention a

few basic results. We concentrate again on set-

tings with m identical machines. Azar and

Epstein [9] showed that the GREEDY algorithm is

(2 – 1-
m
)-competitive. The load balancing problem

becomes more complicated with restricted assign-

ments, i.e., each job can only be assigned to a sub-

set of admissible machines. Azar et al. [10] proved

that GREEDY achieves a competitive ratio of

m2/3 (1+ o(1)). They also proved that no online

algorithm can be better than Ω(√m)-competitive.

In a subsequent paper, Azar et al. [11] gave a

matching upper bound of O(√m).

Robotics
There are three fundamental online problems in

the area of robotics.

NAVIGATION: A robot is placed in an unknown

environment and has to find a short path from a

source point s to a target t.

EXPLORATION: A robot is placed in an unknown

environment and has to construct a complete

map of that environment using a short path.

LOCALIZATION: The robot has a map of the envi-

ronment. It “wakes up” at a position s and has to

uniquely determine its initial position using a

short path.

In the following we concentrate on the robot

navigation problem. We refer the reader to

[4,35,36,44] for literature on the exploration

problem, and to [37,43,51,63] for literature on

the localization problem.

Many robot navigation problems were intro-

duced by Baeza-Yates et al. [13] and

Papadimitriou and Yannakakis [59]. We call a ro-

bot navigation strategy A c-competitive, if the

length of the path used by A is at most c times

the length of the shortest possible path.

First we study a simple setting introduced by

Baeza-Yates et al. [13]. Assume that the robot is

placed on a line. It starts at some point s and has

to find a point t on the line that is a distance of n

away. The robot is tactile, i.e., it only knows that

it has reached the target when it is located on t.

Since the robot does not know whether t is lo-

cated to the left or to the right of s, it should not

move a long distance in one direction. After hav-

ing traveled a certain distance in one direction,

the robot should return to s and move in the

other direction. For i =1,2, …, let f(i) be the dis-

tance walked by the robot before the i-th turn

since its last visit to s. Baeza-Yates et al. [13]

proved that the “doubling” strategy f(i) = 2i is 9-

competitive and that this is the best possible.

A more complex navigation problem is as follows.

A robot is placed in a 2-dimensional scene with

obstacles. As usual, it starts at some point s and

has to find a short path to a target t. When travel-

ing through the scene of obstacles, the robot al-

ways knows its current position and the position

of t. However, the robot does not know the posi-

tions and extents of the obstacles in advance. It

learns about the obstacles as it walks through the

scene.

Most previous work on this problem  has focused

on the case that the obstacles are axis-parallel

rectangles. Papadimitriou and Yannakakis [59]

gave a lower bound. They showed that no deter-

ministic online navigation algorithm in a general

scene with n rectangular, axis parallel obstacles

can have a competitive ratio smaller than Ω(√n).

(In fact, the lower bound also holds for a relaxed

problem where the robot only has to reach some

point on a vertical wall.)

Blum et al. [25] developed a deterministic online

navigation algorithm that achieves a tight upper

bound of O(√n), where n is again the number of

obstacles. Recently, Berman et al. [22] gave a ran-

domized algorithm that is O(n4/9 log n)-competi-

tive against any oblivious adversary. An interest-

ing open problem is to develop improved ran-

domized online algorithms.

Better competitive ratios can be achieved if the

rectangles lie in an n x n square room and the ro-

bot has to reach the center of the room. For this

problem, Bar-Eli et al. [15] gave tight upper and

lower bounds of Θ(n log n).

Further work on navigation has concentrated, for

instance, on extending results to scenes with con-

vex obstacles or to three-dimensional scenes

[24,25].

Further online problems
There are many online problems that we have not

addressed in this survey. Metrical task systems, in-

troduced by Borodin et al. [27], can model a

wide class of online problems. A metrical task sys-

tem consists of a pair (S,d), where S is a set of n

states and d is a cost matrix satisfying the triangle

inequality. Entry d(i,j) is the cost of changing

from state i to state j. A task system must serve a

sequence of tasks with low total cost. The cost of

serving a task depends on the state of the system.

Borodin et al. [27] gave a deterministic (2n-1)-

competitive online algorithm. Recently, Bartal et

al. [14] gave randomized algorithms achieving a

polylogarithmic competitive ratio.
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WHEN YOU USE THE COLORSYNC 2.0 CMS,
YOU CANNOT SEPARATE BITMAPED IMAGES
INTO PANTONE HEXACHROME COLORS.
(APPLE COLORSYNC 2.0 DOES NOT
SUPPORT HIGH-FIDELITY COLOR.) THE
COLORSYNC 2.0 CONTROL PANEL DEVICE,
EXTENSION, AND MONITOR PROFILES ARE
AVAILABLE FROM APPLE COMPUTER AND
ON THE WORLD WIDE WEB AT THE
FOLLOWING LOCATION: FTP://
FTP.INFO.APPLE.COM/ YOU CAN OBTAIN
ADDITIONAL PROFILES FROM APPLE OR
THE MANUFACTURER, OR YOU CAN CREATE
CUSTOM PROFILES USING THIRD-PARTY
TOOLS. PS FILES USING TIFF IMAGES
EMBEDDED WITH OPI COMMENTS ARE NOW
IMPORTED WITH CORRECT BOUNDING BOX
INFORMATION AND PRINT CORRECTLY TO
POSTSCRIPT DEVICES. RGB-TO-CMYK
CONVERSIONS NOW CLOSELY MATCH THOSE
OF ADOBE ILLUSTRATOR 6.0. THE CREATE

ADOBE PDF PREFERENCES FILE STORES

PREFERENCES FOR THE LAST FOUR

PUBLICATIONS YOU PROCESSED, AS WELL

AS GLOBAL SETTINGS FOR ANY OTHER

PUBLICATIONS. TO CHANGE THE DEFAULT

GLOBAL SETTINGS, FOLLOW THESE STEPS:

THE MICROSOFT OLE FILES INSTALLED

WITH PAGEMAKER 6.0 ARE NO LONGER

REQUIRED TO START PAGEMAKER ON A

POWER MACINTOSH. HOWEVER, THE OLE

FILES ARE NECESSARY IF YOU DO THE

FOLLOWING: IF YOU ENCOUNTER A

MACINTOSH SYSTEM ERROR TYPE 1 OR 11,

THERE ARE SEVERAL POTENTIAL CAUSES,

INCLUDING: \— “POWER MACINTOSH:

TYPE 11 & NO FPU ERRORS TECHNOTE (2/

96)” AVAILABLE AT: HTTP://

CGI.INFO.APPLE.COM/CGI-BIN/

READ.WAIS.DOC.PL? “TECHNOTE :

UNDERSTANDING TYPE 11 & NO FPU

INSTALLED ERRORS ON THE POWER

MACINTOSH” AVAILABLE WE HAVE

RESEARCHED THIS PROBLEM EXTENSIVELY

AND HAVE NOT FOUND ANY SOURCE OF

SYSTEM ERRORS IN PAGEMAKER ITSELF.

THE UPDATED TAGGED TEXT IMPORT

FILTER REPAIRS A NUMBER OF PROBLEMS

WITH MISHANDLED FORMATTING AND A

PROBLEM WITH TEXT BEING LOST ON

IMPORT IN CERTAIN CASES. THE TAGGED

TEXT EXPORT FILTER FIXES A PROBLEM IN

WHICH THE ORIGINAL FILTER REPLACED

SECOND AND SUBSEQUENT PICT DATA

WITH FIRST INLINE PICT DATA. THE NOTE

ON PAGE 399 INCORRECTLY DESCRIBES

THE TAGS REQUIRED AT THE TOP OF TEXT

FILES. THE TAGS SHOULD BE <PMTAGS 1.0

MAC> (FOR FILES CREATED ON THE

MACINTOSH PLATFORM) OR <PMTAGS 1.0

WIN> (FOR FILES CREATED ON THE

WINDOWS PLATFORM.) IN THE

DESCRIPTION OF IMPORTING INLINE

GRAPHICS ON PAGE 408, THE TAG SHOULD

BE <& “PATHNAME INCLUDING

FILENAME”> NOTE THE ADDITION OF A

SPACE AFTER THE FIELDS AND THE USE OF

QUOTATION MARKS, NOT BRACKETS. FOR

EXAMPLE: <&200 200 0

“FRESHAIR:BOATFPO.GIF”> FOR COATED

STOCK AND UNCOATED STOCK

RESPECTIVELY, REPLACE THE PREVIOUS

VERSIONS OF THE IDENTICALLY-NAMED

FOR COATED STOCK AND UNCOATED STOCK

RESPECTIVELY, REPLACE THE PREVIOUS

VERSIONS OF THE IDENTICALLY-NAMED FILES

INCLUDED WITH PAGEMAKER 6.0; EACH

LIBRARY INCLUDES SIX COLORS UNDEFINED

IN THE PREVIOUS VERSION. TWO NEW

HEXACHROME PRECISION TRANSFORMS (PTS)

OFFER IMPROVED HIGH-FIDELITY

SEPARATIONS COMPARED TO THOSE SUPPLIED

WITH PAGEMAKER 6.0. THESE NEW PTS (FOUR

DIFFERENT FILES) DO NOT REPLACE THE

PREVIOUS VERSIONS. ALTHOUGH WE

RECOMMEND THAT YOU DELETE THE

PREVIOUS VERSIONS, FIRST COMPLETE ANY

HIGH-FIDELITY COLOR PROJECTS YOU ARE

WORKING ON; IF YOU REMOVE THE OLD PTS

AND OPEN A PUBLICATION THAT USED THEM,

YOUR OUTPUT WILL CHANGE. NORMAL SID

(SOLID INK DENSITY) PRODUCES THE

CLEAREST, SHARPEST IMAGES AND CLOSELY

MATCHES THE SID AND DOT-GAIN

CHARACTERISTICS OF THE INKS AS PRINTED

IN THE PANTONE HEXACHROME COLOR

SELECTOR. CONSULT WITH YOUR PRINTER OR

PREPRESS PROFESSIONAL REGARDING THE

DENSITY AND DOT GAIN INFORMATION

BELOW. ALL VALUES WERE MEASURED ON AN

X-RITE MODEL 418. IF YOUR MEASUREMENTS

OF THE PANTONE COLOR SELECTOR DIFFER

FROM THESE, DETERMINE THE PERCENTAGE

OF DIFFERENCE AND ADJUST THE OTHER

VALUES ACCORDINGLY. FOR EXAMPLE, IF

YOUR BLACK (K) MEASURES 1.57, THAT IS A

10% REDUCTION FROM THE PANTONE COLOR

SELECTOR SID IN THE TABLE BELOW (1.74).

SUBTRACT 10% FROM THE HIGH AND NORMAL

VALUES TO GET THE SID YOU MUST MATCH

ON YOUR PRESS. GLOBAL LINK OPTIONS:

THIS PLUG-IN LETS YOU QUICKLY APPLY NEW

LINK OPTIONS SETTINGS TO ALL LINKED TEXT

AND GRAPHICS IN THE CURRENT

PUBLICATION. FOR EXAMPLE, YOU CAN

SPECIFY WHETHER TO STORE EPLUG-IN LETS

YOU QUICKLY FIND ALL PAGEMAKER 4 AND 5

PUBLICATIONS ON YOUR HARD DRIVE (OR A

MOUNTED NETWORK VOLUME) AND CONVERT

THEM INTO PAGEMAKER 6 PUBLICATIONS.

THE CONVERTED PUBLICATIONS ARE STORED

IN THE SAME FOLDER AS THE ORIGINAL

PUBLICATION. OPTIONALLY, YOU CAN

SPECIFY A PAGEMAKER SCRIPT THAT THE

PLUG-IN SHOULD RUN ON EACH

PUBLICATION AFTER IT IS CONVERTED. YOU

CAN ALSO FIND TEXT FILES WITH A

SPECIFIED EXTENSION, SO, FOR EXAMPLE,

YOU CAN LOCATE AND TRANSLATE

PUBLICATIONS CREATED IN PAGEMAKER 6.0

FOR WINDOWS. THIS PLUG-IN CHANGES THE

WAY THE SELECTED TEXT IS CAPITALIZED.

FOR EXAMPLE, YOU CAN USE THIS PLUG-IN

TO DO THE FOLLOWING: CALCULATES THE

NUMBER OF CHARACTERS, WORDS,

SENTENCES, AND PARAGRAPHS IN THE

PUBLICATION OR CURRENTLY HIGHLIGHTED

TEXT. FOR AN ACCURATE COUNT: THE SCRIPT

PALETTE NO LONGER PRODUCES SPURIOUS

ERRORS WHEN RUNNING CORRECTLY-WRITTEN

SCRIPTS, AND NOW SUPPORTS ERROR-FREE

COPYING AND PASTING TO AND FROM

SCRIPTS AND OTHER IN THE HTML AUTHOR

DIALOG BOX UNTIL YOU SPECIFY A NEW

BROWSER.

FILES INCLUDED WITH PAGEMAKER 6.0; EACH

LIBRARY INCLUDES SIX COLORS UNDEFINED IN

THE PREVIOUS VERSION. TWO NEW

HEXACHROME PRECISION TRANSFORMS (PTS)

OFFER IMPROVED HIGH-FIDELITY

SEPARATIONS COMPARED TO THOSE SUPPLIED

WITH PAGEMAKER 6.0. THESE NEW PTS (FOUR

DIFFERENT FILES) DO NOT REPLACE THE

PREVIOUS VERSIONS. ALTHOUGH WE

RECOMMEND THAT YOU DELETE THE PREVIOUS

VERSIONS, FIRST COMPLETE ANY HIGH-

FIDELITY COLOR PROJECTS YOU ARE WORKING

ON; IF YOU REMOVE THE OLD PTS AND OPEN A

PUBLICATION THAT USED THEM, YOUR OUTPUT

WILL CHANGE. NORMAL SID (SOLID INK

DENSITY) PRODUCES THE CLEAREST, SHARPEST

IMAGES AND CLOSELY MATCHES THE SID AND

DOT-GAIN CHARACTERISTICS OF THE INKS AS

PRINTED IN THE PANTONE HEXACHROME

COLOR SELECTOR. CONSULT WITH YOUR

PRINTER OR PREPRESS PROFESSIONAL

REGARDING THE DENSITY AND DOT GAIN

INFORMATION BELOW. ALL VALUES WERE

MEASURED ON AN X-RITE MODEL 418. IF YOUR

MEASUREMENTS OF THE PANTONE COLOR

SELECTOR DIFFER FROM THESE, DETERMINE

THE PERCENTAGE OF DIFFERENCE AND ADJUST

THE OTHER VALUES ACCORDINGLY. FOR

EXAMPLE, IF YOUR BLACK (K) MEASURES 1.57,

THAT IS A 10% REDUCTION FROM THE

PANTONE COLOR SELECTOR SID IN THE TABLE

BELOW (1.74). SUBTRACT 10% FROM THE

HIGH AND NORMAL VALUES TO GET THE SID

YOU MUST MATCH ON YOUR PRESS. GLOBAL

LINK OPTIONS: THIS PLUG-IN LETS YOU

QUICKLY APPLY NEW LINK OPTIONS SETTINGS

TO ALL LINKED TEXT AND GRAPHICS IN THE

CURRENT PUBLICATION. FOR EXAMPLE, YO

þ HPSNO 97 High Performance
Software for Nonlinear
Optimization: Status and
Perspectives
Ischia, Italy
June 4-6, 1997

þ MPS at EURO/INFORMS
Barcelona, Spain
July 14-17, 1997

þ NOAS ’97  Nordic Operations
Research Conference
Copenhagen, Denmark
Aug. 15-16, 1997

þ XVI International
Symposium on Mathematical
Programming
Lausanne, Switzerland
Aug. 24-29 1997

þ Algorithms and Experiments
(ALEX98) Building Bridges
Between Theory and Applications
Trento, Italy
Feb. 9-11, 1998

þ ICM98
Berlin, Germany
Aug. 18-27, 1998
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NOAS ’97

Nordic Operations Research Conference
University of Copenhagen
Denmark
August 15-16, 1997

NOAS is a biennial conference organized by the
Nordic Operations Research Societies (Nordisk
Operations Analyse Symposium). In 1997 the con-
ference is hosted by the Danish Operations Re-
search Society, DORS. The aim is to bring together
researchers and practitioners to present and discuss
operations research themes and to strengthen the
contacts between people in the Nordic countries
working in OR and related fields.

The conference is open to everyone interested in
operations research and related subjects and is not
restricted to participants from the Nordic countries.

The conference will be held at the University of
Copenhagen (Campus of Natural Sciences),
Copenhagen, Denmark, and will be preceeded by
an informal get-together reception on the 14th of
August. The campus of Natural Sciences is located
centrally in Copenhagen, about a 15- to 20-minute
walk from the medieval city centre.

The conference language is English.

All authors are requested to submit a paper/ex-
tended abstract of their talk. Papers should be type-
set on one side of the paper only with wide margins
and preferably not longer than 15 pages. The title
page should give the following information: Title of
paper, author(s), affiliation(s), and keywords. The
papers will not be refereed and may subsequently
be submitted for publication in appropriate jour-
nals.

Program:

Session I stream 1: Energy
Session I stream 2: Models and Solution techniques
Session II: Telecommunication/Energy
Session III stream 1: Linear Programming
Session III stream 2: Modelling
Session IV stream 1: Transportation
Session IV stream 2: Heuristics
Session V: Transportation
Session VI: Solution Techniques

Algorithms and Experiments (ALEX98)

Building Bridges Between Theory
and Applications
Trento, Italy
February 9-11, 1998

The aim of this workshop is to provide a
discussion forum for researchers and prac-
titioners interested in the design, analysis
and experimental testing of exact and
heuristic algorithms.

In particular, the workshop will address
methodological issues and significant case
studies in the area of experimental analy-
sis and tuning of algorithms, a subject
whose importance is being recognized by
a growing number of researchers in the
CS community, both to assess the rel-
evance or limitations of theoretical mod-
els and to create bridges toward applica-
tions in different domains.

The scientific program  will include the
presentation of invited talks and contrib-
uted research papers. We are interested in
general experimentation methods, new
algorithms developed through focussed
experiments, and theoretical results moti-
vated by experimental studies. More
practical issues like standards of software
development/documentation aimed at
scientific research, procedures for testing
algorithms via the web, and significant
applications will also be considered.

We are aiming at a limited attendance,
in order to have better contacts and ex-
change of ideas among the participants,
both through the formal presentations
and through discussions and brainstorm-
ing sessions in the relaxed environment
offered by the local winter season.

The workshop is organized by the
Computer Science Laboratory at the
Department of Mathematics,
University of Trento, Italy.

For more information contact:

http://rtm.science.unitn.it/alex98

email: alex98@rtm.science.unitn

Program Committee:

Jens Clausen, DORS (Chair); Snjolfur Olafsson,
ICORS; Anders Eriksson, SORA; Margareta
Soismaa, FORS; Arne Lokketangen, Norway

Organization Committee:

Claus C. Caroe, David Pisinger,
Jens Moberg Rygaard

Registration:

The registration fee includes conference proceedings,
lunches, refreshments, get-together reception, confer-
ence dinner and evening meal on the 16th of August.

The general conference fee is 1900 DKR. Payment
must be remitted in Danish Kroner - DKR. Checks
should be made payable to NOAS’97, c/o DIKU,
and sent to the address below together with the regis-
tration form. Payment by bank transfer should be
made to NOAS’97, bank account no. 1521-260-01
in UNIbank, Lyngbyvej 20, DK-2100 Copenhagen,
reg. no. 2113, SWIFT address UNIBDKKK, free
from all bank charges. Please mark all payments
clearly with the name of the participant.

Please use the information below or contact the con-
ference secretariat for information on availability of
hotel rooms.

Turistinformationen: Bernstorffsgade 1
(next to Central Railway Station and Tivoli
1577 Copenhagen V
Tel.: (+45) 33 11 13 25
(24-hour information service)
Information: (+45) 33 11 13 25
(Mon-Fri: 9-14; Sat: 10-14, Sun: Closed)
Hotel booking: (+45) 33 12 28 80 (same hours)

Conference Secretariat:

NOAS’97
c/o DIKU
Universitetsparken 1
DK-2100 Copenhagen
Denmark

E-mail: noas97@math.ku.dk

WWW:http://www.math.ku.dk/or/noas97/
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Reviews

Linear Programming
A Modern Integrated Analysis
R. Saigal
Kluwer Academic Publishers, Dordrecht, 1995
ISBN 0-7923-9622-7

As the research on interior point methods for linear programming has matured, the pedagogy of linear program-
ming has been urged to cover not only the simplex method but also the new methods. However, this is not so
easy in practice since the usual linear programming textbooks (with emphasis on the simplex method) do not
provide the entire mathematical background of the recent advances. To overcome this difficulty, the publishing
of new textbooks has flourished, especially in the last three years. This book of Romesh Saigal, written in a rela-
tively early stage of this trend, will give several hints on introducing interior point methods into a course in linear
programming.

The book consists of six chapters and an appendix. Chapters 1 through 3 present the mathematical tools and the
fundamental results which are used in this book to analyze the simplex method and its variants (the author calls
them boundary methods) and the interior point methods. A remarkable feature is that about 30 percent of this
part is allocated to descriptions of real analysis and theory of nonlinear systems. In contrast to studying the sim-
plex methods, this background is necessary for studying interior point methods, and hence teaching the methods
often looks laborious. The appropriate summary of this book will be helpful to each reader who is interested in
this subject.

Chapters 4 and Chapter 5 deal with the boundary methods and the interior point methods, respectively. The
table in Section 4.1 summarizes the differences among these methods and gives us a glimpse of a goal of this book:
This book presents both the boundary and the interior point methods in a unified manner (quoted from Preface). By
exhibiting a sufficient number of basic results in previous chapters, Saigal succeeds in presenting the boundary
methods (including the primal and the dual simplex methods and the primal and the primal dual method) briefly
but clearly in Chapter 4. On the other hand, the number of pages for describing the interior point methods is
about six times as large as the one for the boundary methods. In particular, Saigal devotes more than 60 percent
of this part to discussing the primal affine scaling method and its variants in detail. The clear explanation of these
methods promotes the understanding of the mechanisms to solve degenerate problems and to attain superlinear
and/or quadratic convergence. Polynomial time methods, i.e., path following methods using the predictor-cor-
rector strategy and the projective transformation method developed by Karmarkar, are presented together with
proofs for their polynomiality. However, reading these chapters may require considerable effort for some readers.
The absence of any figures prevents beginners from having geometric intuition of the methods. Also, the various
entities appearing in Chapter 5, have few descriptions of their meanings or roles in the analyses. Helpful com-
ments from one with knowledge of the methods would be desirable for such readers.

Chapter 6 covers basic techniques for implementing both the boundary and the interior point methods. Several
matrix factorization methods are presented. Among others, Saigal places the emphasis on the sparse and the partial
Cholesky factorizations combined with the conjugate gradient method. Some instructive results on numerical
experimentation of the methods are given in the appendix.

This book offers insight into recent developments in linear programming with a special interest in the study of
affine scaling methods. Reading this book will be more pleasant for readers when comparing it with other books
on interior point methods, some of which focus on the primal-dual interior point methods (based on the path
following strategy) with different intentions.

-AKIKO YOSHSIE



O P T I M A 5 4 PAGE 12JUNE 1997

Nondifferentiable and Two-level Mathematical Programming
K. Shimizu, Y. Ishizuka, and J.F. Bard
Kluwer Academic Publishers, Dordrecht, 1997
ISBN 0-7923-9821-1

As the title suggests, this book is concerned with nondifferentiable mathematical programming and two-level
optimization problems. The emphasis is on presenting basic theoretical principles and on developing optimality
conditions rather than on discussing algorithms, although a few computational approaches are briefly addressed.
The book first discusses nondifferentiable nonlinear programming problems and characterizes directional derivatives
and optimality conditions. This theory is then used to study two-level mathematical programs, where the pres-
ence of optimal value functions within the model renders them nondifferentiable.

The book contains 16 chapters. Chapter 1 introduces the different problems and applications that are discussed
throughout the book, and Chapter 2 provides basic background material for differentiable and nondifferentiable
nonlinear programming problems. Standard supporting and separating hyperplane results, the characterization
of subdifferentials and generalized directional derivatives, and various theorems of the alternative are presented.

Chapter 3 deals with differentiable nonlinear programming problems. The Karush-Kuhn-Tucker (KKT) theory
is developed for unconstrained as well as for constrained problems, along with saddle point duality theorems.
Algorithmic approaches for both unconstrained and constrained problems, including Newton, quasi-Newton,
conjugate gradient, penalty, and feasible directions methods are briefly addressed. A nice addition here is a dis-
cussion on multi-objective programs, including the concept of efficient solutions and related necessary and sufficient
optimality conditions. Chapter 4 then addresses the extension of these concepts to nondifferentiable optimiza-
tion problems. This chapter characterizes directional derivatives and develops KKT-type of optimality condi-
tions for locally Lipschitz and quasi-differentiable cases. A very brief outline of subgradient optimization and bundle
methods is also presented.

Chapter 5 deals with a specialization of these results to linear programming problems, focusing mainly on the
simplex method and duality and sensitivity analysis results.

Chapter 6 begins to lay the groundwork for connecting the two parts of this book. Optimal-value functions that
are parameterized by some variable set are introduced, and for these functions, continuity properties, KKT mul-
tiplier maps under suitable constraint qualifications, directional derivatives and generalized gradients are explored.
A special case in which the constraint map does not depend on the parameters (the nonparametric case) is also
treated.

Chapter 7 provides an introduction to two-level mathematical programming problems and Stackelberg leader-
follower problems. For two-level nonlinear programming problems, optimality conditions are developed for the
nonparametric case where the lower level constraints do not depend on the upper level decisions and for the
parametric case where they do. For Stackelberg problems, optimality conditions are again developed for both cases
where the lower level optimal solution map is differentiable or nondifferentiable. An application of bundle methods
to solve this problem is described, and several applications to other problems such as minmax, satisfaction, two-
level design, resource allocation, and approximation theory, among others, are presented.

Chapter 8 deals with decomposition methods for large-scale nonlinear programming problems that exhibit a block
diagonal structure. Both primal decomposition and Lagrangian duality based decomposition methods are de-
scribed.

Chapters 9 through 14 focus on the aforementioned applications, addressing, in turn, minmax problems, sat-
isfaction optimization problems, two-level design problems, general resource allocation problems for decentral-
ized systems, minmax multiobjective problems, and best approximation methods via Chebyshev norms. In each
case, optimality conditions are developed for both the parametric and nonparametric cases, depending on whether
or not the second level constraints are governed by decisions made in the first stage. Finally, Chapter 15 discusses
the general Stackelberg leader-follower problem, and Chapter 16 specializes this discussion to the case of linear
and convex function structures. For this latter instance, detailed algorithms are developed for linear and convex
bilevel programming problems, including situations where the model incorporates certain discrete decision variables.
The book concludes with a selected set of a few references that highlight the vast breadth of topics addressed in
this book.

Overall, the book presents a nice basic, fundamental introduction to nondifferentiable and two-level optimiza-
tion problems, along with related applications and possible solution approaches. The book is not intended to be
used as a textbook. It contains no exercises and only a few illustrative examples. The audience addressed are mainly
post graduate students and researchers who will find useful information here in beginning to study this vast and
interesting topic.

-HANIF D. SHERALI
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Introduction to Linear Optimization
D. Bertsimas and J.N. Tsitsiklis
Athena Scientific, P.O. Box 391, Belmont, MA 02178-9998, 1997
ISBN 1-886529-19-1

This new book on linear programming and closely related areas is published by Athena Scientific, which special-
izes in books written by M.I.T. faculty, based on courses taught there. It treats linear programming both exten-
sively and thoroughly, while the related topics of linear network optimization, large scale optimization and in-
teger programming receive concise treatments. The book is suitable for a first-year graduate course on linear op-
timization, addressing doctoral and more mathematically inclined masters level students in Operations Research,
Computer Science, Applied Mathematics and Management Science. The book certainly deserves to be on the
shelves of all researchers who work directly in mathematical programming and those who apply the techniques.
The true merit of this book, however, lies in its pedagogical quailities which are so impressive that I have decided
to adopt it for a course on linear programming that I am scheduled to teach in the coming fall semester. To follow
is an overview of the material covered in the book.

In the introductory Chapter 1, some variants of LP models are defined and standard reductions are given. The
chapter also contains interesting “real world” examples of LP and other models, the “graphical method” for two-
variable LP problems, the requisite linear algebra background, as well as a quick discussion on arithmetic com-
plexity (complexity issues are given a more thorough treatment in later chapters). Chapter 2 provides some
fundamental geometric insight behind LP. Basic notions concerning polyhedra and convex sets, such as extreme
points and their existence, degeneracy and some underlying geometric insight, certain optimality issues in LP,
and Fourier-Motzkin elimination are discussed.

The simplex method is systematically developed in Chapter 3. After deriving the optimality conditions, the
mechanics of the simplex method are developed, and the revised simplex as well as the tableau form implemen-
tations are discussed. Anti-cycling rules, two-phase (along with an oft ignored aspect of driving the artificial vari-
ables out of the basis) and “Big-M” methods are then presented followed by some geometric insight into the primal
simplex method, using what the authors call “column geometry.” The chapter ends with a discussion of worst
case and average case complexity of the simplex method along with a few words on the diameters of polyhedra.
The only missing aspect in the coverage of the simplex method is the upper bounded simplex method.

LP duality theory is the subject of Chapter 4. The authors first derive the LP dual using the notions of Lagrangian
duality which, in my opinion, is highly pedagogically efficient. Then, the weak and strong duality theorems are
proved using the workings of the simplex method.  And finally, an alternate derivation of duality via convex analysis
is given. The development here is supported with many geometric and intuitive explanations and interpretations.

In Chapter 5, sensitivity analysis is presented. The local sensitivity analysis is fairly standard material with the
exception of sensitivity with respect to a coefficient of the constraint matrix in a basic column. In the latter part,
what the authors call “global sensitivity” is presented which deals with the optimal objective value as a function
of either the right hand side vector or the cost vector of the objective function. The chapter ends with a quick
introduction to parametric optimization. The topics of large-scale optimization such as delayed column genera-
tion, cutting plane methods, Dantzig-Wolfe method and Bender’s decomposition are discussed in Chapter 6.
The coverage here is rather brisk but is sufficient for a good exposure of these useful techniques to the student.

Chapter 7 deals with network flow problems. After introducing some graph theoretic notation, the various types
of network flow models are stated. Then, the network simplex method for the uncapacitated case is presented,
with the capacitated version being specified as an extension. In my opinion, it would have been better to treat
the more general capacitated case first and then specialize it to the transshipment problem. The other topics include
the negative cost cycle algorithm, Ford-Fulkerson algorithm for the maximum flow problem, the max flow-min
cut theorem, dual-ascent methods, auction algorithm for the assignment problem, shortest path and minimum
spanning tree problems. In trying to cover too many topics in one chapter, I feel that the authors have somewhat
compromised the clarity of exposition in this chapter.

In Chapters 8 and 9 polynomial time algorithms for LP are discussed. These two chapters, along with Chapter
12, alone are a good enough reason for one to buy this book. The material here is beautifully written and won-
derfully presented. Chapter 8 deals with the often disregarded ellipsoid method. The important fact that the ellipsoid
method can be used to solve problems with exponentially many constraints (as long as we have an efficient sepa-
ration oracle) is well emphasized. In Chapter 9 on interior point methods, three broad classes of interior point
algorithms, namely, affine scaling, potential reduction, and path following algorithms, are presented and ana-
lyzed. The material in these two chapters is concise yet thorough, involved yet easy to follow, and it leaves the
reader with a clear understanding of the key ideas behind polynomial time algorithms for LP.
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Integer programming formulations and methods are discussed in Chapters 10 and 11. The first of these chapters
has some standard IP models, as well as models with exponentially many constraints. In Chapter 11, the authors
begin by discussing the Gomory cutting plane method (but they omit the rather nice convergence proof, ap-
parently owing to space limitations). Then branch-and-bound as well as branch-and-cut techniques, and the
dynamic programming algorithm for the Knapsack problem are briefly presented. Lagrangian duality as it per-
tains to IP is presented, and assorted topics such as approximation algorithms, local search methods, and simu-
lated annealing are discussed. Then, out of the blue, a section on rigorous notions of complexity classes (P, NP,
NP-Complete etc.) appears, perhaps owing to the lack of a better place within the structure of the book.

The final chapter titled, “The art in linear optimization”, is unique to this book. It is designed to turn the pretty
theory of the first 11 chapters magically into practical problem solving ability. It contains brief discussions of
modeling languages, optimization software libraries, and tricky aspects such as preprocessing, choice of algo-
rithms, effective heuristics, and other practical tidbits which make large-scale real-world problem solving more
effective.

I will now offer some general comments about the book. An innovative technique used by the authors is to pose
as exercise problems, at the end of each chapter, some interesting topics that are vital but can be derived fairly
easily from the tools presented in that chapter. This expands the coverage of the material without making the
book too voluminous. For example, one of the exercises at the end of Chapter 2 is the perennially useful
Caratheodory’s theorem. Another example is the Clark’s theorem (which states that if at least one of the primal
or the dual problems is feasible, then at least one of the two feasible regions is unbounded). Clearly, these ex-
ercises make for challenging homework problems for the ambitious teacher within us.

Throughout the book, the authors make serious efforts to give geometric and intuitive explanations of various
algebraic concepts, and they are widely successful in this effort. An example of this is witnessed in chapter 4, where
the authors provide a visualization tool that helps one picture dual feasible bases and solutions in the primal space.
Many of these explanations and insights are the things that seasoned math programmers grasp over the course
of their research careers. The authors’ quest for completeness of presentation is easily noticed at many places in
the text and is very appreciable.

Although at times the phraseology takes the tone of a research paper and in some places the material feels dense
(mainly because a long list of topics is covered), the overall writing style is pleasant and to-the-point. The chap-
ter-wise organization is nearly ideal, while the arrangement of sections within certain chapters may be reshuffled
by the individual instructor to suit her or his own teaching style.

In conclusion, this is an outstanding textbook that presents linear optimization in a truly modern and up-to-
date light. One reading of this book is sufficient to appreciate the tremendous amount of quality effort that the
authors have put into the writing, and I strongly recommend it to all teachers, researchers and practitioners of
mathematical programming.

-MOTAKURI V. RAMANA
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■OPTIMA now has a web site under construction. The address

is http://www.ise.ufl.edu/~optima. ■Karen Aardal will

assume the role of OPTIMA Editor starting with No. 55. She has

been Features Editor since 1994... Don Hearn, editor since

OPTIMA's inception in 1980, became Chair of the Industrial &

Systems Engineering Department, University of Florida, on May

9 ■A special thanks to Faiz Al-Khayyal and Dolf Talman

for their work as associate editors ■Publication and distribution

will continue from the University of Florida, with Elsa Drake as

designer. ■Deadline for the next issue is Sept 15, 1997.


