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1. Introduction

A submodular function f is a set function

defined on all subsets of a discrete set V (denot-

ed 2
V
) that satisfies the following inequality for

every pair of subsets A, B Õ V:

f (A)+f (B)≥f (A U B)+f (A I B). (1)

Lovász showed that every submodular function

has a natural extension to the nonnegative reals

that is convex [35]. As with convexity, submod-

ularity is a property of many naturally occurring

functions in engineering and economics, and it

is preserved under many natural transforma-

tions. Submodular functions arise as cut func-

tions in a graph (see Figure 1), as matroid rank

functions, and have applications in areas includ-

ing game theory, information theory, and graph

theory. An in-depth treatment of submodular

functions and applications can be found in sur-

veys of Lovász [35], Fujishige [20], Topkis [45],

and Frank and Tardos [17].

Figure 1.

Given submodular function f on V, a 

minimizer of f is a subset A Õ V such that 

f (A) ≤ f (B) for all other subsets B Õ V.

Submodular function minimization (SFM) is the

problem of finding a a minimizer of f. As with

convex functions, it is possible to find a mini-

mizer of a submodular function by starting from

an arbitrary suboptimal point and following any

sequence of feasible steps in improving direc-

tions. In addition, for a submodular function f

with f (Ø) = 0, a minimizer of Lovász’s convex

extension of f restricted to the 0-1 cube corre-

sponds to a minimizer of f of the same value

[35].

The classic problem of finding a minimum 

{s, t}-cut in a graph is a special case of submodu-

lar function minimization. The minimum {s, t}-

cut problem is efficiently solved via combinator-

ial algorithms invoking the strong duality rela-

tion of minimum cut equals maximum flow. For

the minimum cut problem, all efficient algo-

rithms use the structure of the graph. Imagine

now having only an oracle that, given a set of

vertices, returns the value of the associated cut.

How could you use this oracle to find the mini-

mum cut? While this problem is easier than gen-

eral submodular function minimization because

it is possible to recover the graph [4], it gives the

essence of the problem: given an oracle that

returns the value on any subset of V, find the

minimizing subset.

Another special case of submodular function

minimization arises in the field of matroids: find

the maximum cardinality independent set of two

matroids defined on the same ground set. This is

the matroid intersection problem of which maxi-

mum bipartite matching is a special case. Let 

M
1

= (I
1
,V) and M

2
= (I

2
,V) be two matroids

where I
1

and I
2

are the set of independent sets

of M
1

and M
2

respectively. Denote the rank

function of M
i
by r

i
. The matroid intersection

theorem of Edmonds says that 

max{|J| | JŒI
1
II

2
} =

min{r
1
(A) + r

2
(V\A) | A Õ V} (2)

Since r
1

+ r'
2

defined by (r
1

+ r'
2
)(A) := r

1
(A) +

r
2
(V \A) is submodular, the cardinality of the

maximum sized independent set can be deter-

mined by submodular function minimization.

While the minimum {s, t}-cut problem and

matroid intersection problem both have combi-

natorial polynomial-time algorithms [15, 3],

until recently, general submodular function min-

imization did not. In 1981, Grötschel, Lovász,

and Schrijver established the polynomial time

equivalence of separation and optimization for

combinatorial problems via the ellipsoid method

[26]. One of the major implications of this

Examples of Submodular Functions.

The cut function in a graph: Given an undi-

rected graph G on vertex set V, define D on a

subset of vertices A Õ V by D(A) :=number of

edges with exactly one endpoint in A. Then D
is a submodular function on 2

V
. Similarly, if

G is a directed graph, then the function DÆ

defined by DÆ(A) := number of arcs leaving A,

is a submodular function.

The {s; t}-cut function in a graph: Given

graph G on vertex set V U {s, t}, define Ds

t
on

a subset A Õ V by Ds

t
(A) := the number of

edges with exactly one endpoint in A U {s}.

Then Ds

t
is a submodular function on 2

V
. The

appropriately defined directed version, DÆs

t
, is

also submodular.

The rank function of a matroid: A matroid

is defined by a ground set M and set of inde-

pendent subsets I that satisfy Ø Œ I; I Õ J Œ
I implies I Œ I; and I, J Œ I, |I| < |J| implies

I U {e} ŒI for some e Œ J\I. Then the rank

function r, defined on a subset A to be the size

of the largest independent set contained in A,

is a submodular function. 

Recent 
Progress in
Submodular
Function
Minimization
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result was the first polynomial time algorithm

for submodular function minimization. Their

algorithm for SFM uses the fact that the greedy

algorithm (described in Figure 2) maximizes c
T
x

over all vectors x contained in the submodular

polyhedron P(f ) defined below. In this definition

and elsewhere, a vector x Œ R
V

determines a

function on 2
V

by x(A):= ∑
vŒA

x(v) for A Õ V. 

P(f ) :={x Œ R
V
|x(A) ≤ f (A),"  A Õ V}.

(Note that P(f ) is nonempty only if f (Ø) ≥ 0.

Since the function obtained by adding the same

constant to every value of a submodular func-

tion is submodular, we will assume without loss

of generality that f (Ø) = 0 for the remainder of

this article.)

The greedy algorithm establishes that the

optimization problem for submodular polyhedra

is polynomial time solvable [8, 42]. Thus,

Grötschel, Lovász, and Schrijver’s work implies

the separation problem for P(f ) is polynomial

time solvable. The separation problem is to

determine if x Œ  P(f ) for a given x and if not

return a set A for which f (A) – x(A) < 0. If 

0 Œ P(f –µ) for (f –µ)(A):= f (A) –µ, then the

minimum value of f is at least µ. With simple

bounds on a minimizer, obtainable using the

greedy algorithm and another max-min relation

of Edmonds given later in (3)
1

binary search can

be used to find the minimizing set A in polyno-

mial time.

The ellipsoid algorithm is not combinatorial.

It relies heavily on linear algebra, and does not

use the combinatorial structure of the problem

except in a very abstract way. It provides a proof

of the polynomial time solvability of SFM, but

does not give any new understanding of how

and why. This leaves a natural open problem to

develop combinatorial algorithms for SFM.

Work toward this goal led to demonstrating that

some special subclasses are solvable directly:

Cunningham gives a pseudopolynomial time

algorithm for submodular function minimiza-

tion that generalizes his strongly polynomial

time
2

algorithm for the special case of testing

membership of a vector x Œ R
V

in a matroid

polyhedron [3, 5]. Queyranne describes a

strongly polynomial time algorithm for minimiz-

ing symmetric
3

submodular functions [39],

building on the overall minimum cut algorithm

of Nagamochi and Ibaraki [38]. Both of the new

combinatorial, polynomial-time algorithms for

general submodular function minimization [31,

41] build on Cunningham’s work. Despite this

common starting point, these new algorithms

are very different from each other. These combi-

natorial algorithms not only yield deeper under-

standing of submodular functions, but also, due

to their combinatorial nature, lend themselves

more easily to modification to special cases or

extension to more general problems.

The next section contains a review of

Cunningham’s algorithm and a high level sum-

mary of the new algorithms. Figure 5 provides

an explanation of some of the general ideas

applied to the special case of the minimum 

{s, t}-cut problem. In Section 3, the new ideas

and algorithms are described in more detail.

Section 4 discusses some extensions of these

combinatorial algorithms. Section 5 concludes

with some open problems.

2. Combinatorial Algorithms

In this section, we describe the basic ingredients

used in combinatorial algorithms for submodu-

lar function minimization, and explain the diffi-

culties encountered in using them to obtain a

polynomial time algorithm. Figure 5 describes

some of these ingredients in the context of the

minimum {s, t}-cut problem.

Cunningham describes the first combinatorial,

pseudopolynomial time algorithm for submodu-

lar function minimization [5]. His algorithm is

motivated by the min-max relation given in (3)

below. This relation is implied by a theorem of

Edmonds [8] that generalizes the matroid inter-

section theorem (2). First, a little notation. The

base polytope of a submodular function, denoted

B(f ), is the face of the submodular polyhedron

P(f ) that satisfies x(V) = f (V). Note that the

greedy algorithm described in Figure 2 always

returns an element in B( f ). An element of the

base polytope is called a base and extreme points

of B( f ) are extreme bases. For a vector x Œ R
V
, let

x
–
(v):=min{x(v),0}. Edmonds theorem implies: 

max{x
–
(V)| Œ B(f )} = min{f (A)|A Õ V} (3)  

This equality is a form of strong duality. The

weak duality direction is easy to see: x
–
(V) ≤

x(A) ≤ f(A) for all A Õ V since at worst, A

contains all elements of V that have negative 

x-value, and does not contain any element with

positive x-value.

The Greedy Algorithm and Matroids

The greedy algorithm for submodular func-

tions is a natural extension of the greedy algo-

rithm for matroids. Given a vector c Œ R
V
,

index the elements of V by decreasing c-value,

so that c(v
1
) ≥ c(v

2
) ≥ … ≥ c(v

n
). This defines

a total order < of V by v
i
< v

i+1
. Iteratively set

x(v
i
) to be the maximum possible amount,

subject to having maximized the first i –1

components of x. Mathematically, define 

<
vi := {v

1
, …, v

i
}. Then the greedy algorithm

sets x(v
i
) = f(<

vi) – f(<
vi–1) = f(<

vi) – .

In other words, greedy sets x(<
vi) =

f(<
vi) for each set <

vi. Any set with this proper-

ty is called x-tight. The submodularity of f

implies that the x determined in this manner

is an element in P(f ). Since these equations

are linearly independent, it follows that the

greedy algorithm finds an extreme point of

P(f ). This extreme point x maximizes c
T
x over

all points in P(f ). Each extreme point of P(f )

is obtained by applying the greedy algorithm

to some order < of V [8, 42]. The greedy algo-

rithm for matroids is the special case of this

algorithm when f is the rank function of a

matroid.

The submodular polyhedron P(f ) is a natu-

ral extension of the matroid polyhedron, which

is the convex hull of incidence vectors of inde-

pendent sets of a matroid. (The incidence vec-

tor c
A

of a set A is defined by c
A
(v) = 1 if v Œ

A and c
A
(v) = 0 if v œ A.) While the matroid

polyhedron is restricted to the nonnegative

orthant and all vertices of the matroid polyhe-

dron are {0,1} vectors, the submodular poly-

hedron contains the negative orthant in its

extreme cone, and has vertex coordinates that

depend on the values taken by the submodu-

lar function. Figure 3 contains an example of

a submodular polyhedron on a two element

ground set. 

x v jj

i ( )=
−∑ 1

1

1
The greedy algorithm produces a vector x Œ P(f ) satisfying x(V) = f (V). By (3), x

–
(V) gives a lower bound on a

minimum value of f. This does not exceed the maximum absolute value of f by more than a linear factor. A
simple upper bound may be taken as f(Ø), f(V), or any other function value.
2
A function is pseudopolynomial if for an input Q it is a polynomial in length(Q) and max(Q), where length(Q)

is the number of bits needed to describe Q and max(Q) is the magnitude of the largest number in Q. This dif-
fers from a polynomial function which needs to be a polynomial in length(Q) and can only depend logarithmi-
cally on max(Q). A function is strongly polynomial if for an input Q, it is polynomial in the number of items in
Q and does not depend at all on the size of the numbers in Q.
3
A symmetric set function f satisfies f(A) = f(V \ A) for all A Õ V.

Figure 2.



O P T I M A 6 4 SEPTEMBER2000 PAGE 4

Relation (3) can be used as the motivation for

a combinatorial algorithm to find a minimizer of

f : Starting with an arbitrary base x Œ B(f )

obtained using the greedy algorithm, try to

“move towards” the base x* that maximizes the

left hand side of (3). An optimal base x* can

then be used to determine the minimizing set A.

This is the idea underlying Cunningham’s algo-

rithm; we give details below.

The maximizer of the left hand side of (3)

may not be an extreme point of B(f ). An exam-

ple of a base polytope with this property is given

in Figure 3. This raises the following issue:

Given the pair (x,A) as a candidate pair of opti-

mal solutions for (3), how is it possible to verify

their optimality, short of calling a subroutine for

submodular function minimization? It is easy to

check if x
–
(V) = f (A), but what proof is there

that x Œ B(f )? To confirm that x is an extreme

base, it is sufficient to provide a total order that

generates x via the greedy algorithm. This can be

done efficiently, e.g. [2]. For x Œ B(f ) not

extreme, a proof of membership may be given

by expressing x as a convex combination of

affinely independent extreme bases y
i
, i Œ I: 

x = ∑
iŒI

l
i
y

i
. (Affine independence is used to

ensure that I is not too large.) Cunningham

introduced this idea first as a way to verify mem-

bership of x in a matroid polyhedron [3].

While it is possible to move from any base to

any other base in B(f ) by the addition of the

appropriate vector x Œ R
V

with x(V) = 0, it is

simpler to consider a restricted set of moves. The

simplest move is to increase one component of x

and decrease another component of x by the

same amount. Mathematically, we can represent

such a move from x using the incidence vector

c
v

where c
v
(v) = 1 and c

v
(w) = 0 for all w ≠ v.

This move from x may be represented as 

x' = x + a(c
w
–c

v
). This move is called an

exchange operation or simply an exchange.

To fully describe the set of allowable

exchanges, it is necessary to specify how large a
may be for a given triple (x,v,w) Œ B(f ) x V x V.

The constraint is that x' be a base, i.e. that it sat-

isfies f(A) – x'(A) ≥ 0 for all A Õ V. To ensure

this, it is necessary to consider those sets A for

which x'(A) > x(A). These are precisely the sets

that contain w and don’t contain v. The amount

of allowable exchange is determined by that set

A which minimizes f(A)–x(A). Thus the exchange

capacity of (x,v,w), denoted a(x,v,w), is 

a(x,v,w) := min{f (A) – x(A)|w Œ A Õ V \{v}}. (4)

Exchange operations that increase a negative

component of x and decrease a positive compo-

nent of x improve x
–
(V). The following theorem,

which is implicit in the proof of correctness of

Cunningham’s algorithm for SFM, implies it is

possible to reach a maximizer by performing

improving exchange operations only.

Theorem 2.1 A base x Œ B(f ) maximizes x
–
(V)

over all bases in B(f ) if and only if for all elements

v with x(v) > 0 and all elements w with x(w) < 0,

the exchange capacity a(x,v,w) = 0.

Theorem 2.1 implies a deceptively simple algo-

rithm for submodular function minimization:

Define S
+

x 
:= {v|x(v) > 0} and S

–

x 
:= {v|x(v) < 0}.

Next, find a maximizer of the left side of (3) by

repeatedly finding a pair of elements in S
+

x 
x S

–

x

and performing the appropriate exchange opera-

tion. When the conditions of Theorem 2.1 are

satisfied, then find a minimizer of f by taking

the complement of the set of elements W that

have strictly positive exchange capacity with an

element in {w Œ V |x*(w) <0}. (It is not hard to

show that V \W is x*-tight. Thus x*
–
(V) = 

x*(V \W ) = f(V \W ).)

The problem with this algorithm is that per-

forming exchange operations relies on comput-

ing exchange capacities for x. Our expression for

exchange capacity for x Œ B(f ) requires finding a

minimizer of the function f –x defined by 

(f –x)(A) := f (A)–x(A). This is again submodular

since the function x satisfies (1) at equality. In

general, there is nothing special about the sub-

modular function f –x that would enable us to

compute it faster than general submodular func-

tion minimization. In fact, even in the special

case of finding a minimum s, t-cut, determining

the exchange capacity requires a minimum cut

computation. (See Figure 5.) Thus we have

reduced our original problem to a problem that

is just as hard.

Note that in the above discussion, we have

ignored the representation of x as a convex com-

bination of extreme bases, x =∑
iŒI

l
i
y

i
, that we

need to maintain as proof that x Œ B(f ). In

order to maintain this, Cunningham restricts

exchange operations to extreme bases y
i
in this

convex representation. Thus, performing an

exchange operation of size a(y
i
,v,w) on y

i

changes x(v) and x(w) by only l
i

a(y
i
,v,w).

The fact that computing exchange capacities

in general is as difficult as SFM is an important

obstacle that algorithms for submodular func-

tion minimization must overcome. In his

pseudopolynomial time algorithm, Cunningham

Accessible Pairs

For an extreme base, it is possible to compute

the exchange capacities of some pairs of ele-

ments efficiently. The following lemma illus-

trates this. 

Lemma 2.2 Suppose y is an extreme base of

B(f ) generated by a total order L = {v
1
, …, v

i-1
,

v
i
, v

i+1
, …, v

n
}. Then 

a(y,v
i
,v

i+1
) = f(L(v

i+1
)\ {v

i
}) – y(L(v

i+1
)\ {v

i
}) 

and y' = y+a(y,v
i
,v

i+1
)(cvi+1

– cvi
) is generated

by L' = {v
1
, …, v

i-1
, v

i+1
, v

i
, …, v

n
}.

There may be several different total orders

that generate an extreme base y. For each of

these orders, Lemma 2.2 applies. Bixby,

Cunningham, and Topkis [2] describe an

O(n
2
) algorithm to calculate the exchange

capacities of all adjacent pairs (v
i
,v

i+1
) over all

total orders generating extreme base y. It is

this extended set of pairs that we call accessi-

ble pairs for y.

Figure 4.

P(f )

B(f )

x(v)

x(v) = f(v)

maximizers

x(w)

x(w) = f(w)

Figure 3. The submodular polyhedron and base

polytope of a submodular function defined on a

two-element ground set. The intersection of the

base polytope with the negative orthant is the

set of bases that maximize x
–
({v,w}). 
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[5] uses an idea first proposed in Bixby,

Cunningham, and Topkis [2] to restrict

exchange operations to a subset of directed pairs

for which the exchange capacities can be com-

puted efficiently. For x =∑
iŒI

l
i
y

i
with y

i
an

extreme base for all i, each y
i
determines a set of

special directed pairs with easily computed

exchange capacities. (See Figure 4 for more

explanation.) Call the union of these directed

pairs over all i Œ I accessible pairs. Bixby et al. [2]

define a graph with vertex set equal to V and a

directed arc for each accessible pair (called an

accessible arc). (For a(y
i
,v,w)>0 with (y

i
,v,w)

accessible, the arc is directed from v to w.)

Cunningham proves that it is always possible to

reach the optimal x* by repeating the following

operation a pseudopolynomial number of times:

Find a path in the union of accessible arcs from

S
+

x
to S

–

x
and perform exchange operations for

each arc along the path so that the x-value of an

element in S
+

x
decreases, the x-value of an ele-

ment in S
–

x
increases, and all other x-values

remain the same. Such a path is called an 

augmenting path.

This algorithm looks very similar to strongly

polynomial augmenting path algorithms for the

maximum flow problem [15], and to

Cunningham’s strongly polynomial algorithm for

testing membership in matroid polyhedra [3].

However, it is not known to be even weakly

polynomial for general submodular function

minimization. For maximum flow, Edmonds

and Karp [10] propose two heuristics used to

select paths in a way that will lead to a polyno-

mial time algorithm: the shortest path heuristic

and the fattest path heuristic. Why don’t these

heuristics work here?

The shortest path heuristic for maximum flow

selects the path with the least number of arcs.

The proof of polynomiality of this heuristic fol-

lows from showing that the length of the short-

est path never decreases, and after a polynomial

number of iterations, provably increases. This

heuristic does not work for Cunningham’s algo-

rithm because the length of the shortest path

may actually decrease: The set of accessible pairs

considered in finding the augmenting path is

not the complete set of pairs with positive

exchange capacity. After each exchange opera-

tion, the exchange capacities and the set of

accessible pairs change.

The fat path heuristic selects the residual path

with largest capacity. This works for maximum

flow because the path with the largest residual

capacity must carry at least a polynomial frac-

tion of the difference between the maximum

flow value and the current flow value, thus guar-

anteeing sufficiently large progress with each

augmentation. For Cunningham’s algorithm,

there may be no residual path with large capacity

[5]. The problems are two-fold: First, even if

f (A) –x(A) is large, there may not be an accessi-

ble arc with large exchange capacity leaving A.

Second, the amount of exchange that is affected

in x by performing exchanges on y
i
for i Œ I

depends not only on the exchange capacity, but

also on the multiplier l
i
in the convex represen-

tation, which may be exponentially small. (It

could depend inversely on a polynomial in

max
AÕV

|f (A)|.)

For network flow problems, since fat paths

exist, an effective way to ensure large augmenta-

tions is to use scaling. However, it is not clear

how to scale submodular functions. The perhaps

natural idea of using 

defined by (A):= does not work

because it is not submodular, and hence the

structure of submodular polyhedra is lost. For

example, if the function f is not submodular,

then the greedy algorithm no longer optimizes

over P(f ). (An easy way to see is not sub-

modular is to consider the case of d = 2, |A| and

|B| odd for A,B Õ V, |A I B| and |A U B| even,

and f (A) + f (B) = f (A I B)+f (A U B).)

f

δ










f A( )

δ










f

δ










f

δ










An Example of Submodular Function Minimization: Minimum Cuts

Here, we demonstrate some of the concepts introduced in Section 2 by explaining what they mean

for a familiar example of submodular function minimization: the minimum {s, t}-cut problem.

For the minimum {s, t}-cut problem, the submodular function we want to minimize is Ds

t
. We

start by normalizing to create 
~Ds

t
by subtracting Ds

t
(Ø) from each value of Ds

t
. Thus the minimum

function value will be the value of the minimum cut minus Ds

t
(Ø), which will be at most 0. A base

of B(
~Ds

t
) is determined orienting all edges incident to s away from s, all edges incident to t towards

t, and assigning a fractional orientation to all other edges. A fractional orientation of an edge (v,w)

is a replacement of the undirected edge (v,w) with two directed edges (v,w) and (w,v) along with

nonnegative values u so that u(v,w)+u(w,v) =1. The corresponding base x is then defined setting

x(v) equal to the value of arcs leaving v minus the value of arcs entering v.

An extreme base of B(
~Ds

t
) is obtained from order (v

1
, v

2
,…, v

n
) by first orienting all edges inci-

dent to s away from s. The greedy algorithm then visits vertices in order, and iteratively orients all

edges incident to v
i
without previous orientation so that they leave v

i
. (The greedy algorithm

applied to order (v
1
, v

2
,…, v

n
) sets x(v

1
) = Ds

t
(v

1
) if there is no arc from s to v, and otherwise sets

x(v
1
) = Ds

t
(v

1
) –2.) In general, an orientation corresponds to an extreme base if and only if the

resulting graph is acyclic: given an acyclic graph, any topological sort gives the order that generates

the orientation and extreme base via the greedy algorithm.

An exchange operation for (x,v,w) corresponds to decreasing the value of arcs along a path or

set of paths from v to w in the oriented graph G that generates x. This is done so that the net

value of arcs leaving v decreases, net value of arcs leaving w increases, and net value of arcs leaving

all other nodes stays the same. (Net value leaving v is total value of arcs leaving v minus total value

of arcs entering v.) This could be interpreted as sending flow through the oriented graph G from v

to w respecting upper bounds on capacities determined by u, and letting the new G be the residual

graph of this flow. The exchange capacity of (v,w) is twice the value of the maximum flow from v

to w in the oriented graph G with values u interpreted as upper bounds on capacities. (Twice the

value because reversing the direction of (v,w) increases x(w) by two, and decreases x(v) by two.)

So, even in this special case, the problem of computing exact exchange capacities is again a prob-

lem of the same form of the original: here, a minimum cut problem. However, finding a lower

bound on the exchange capacity, using a simple augmenting path, is a much easier computation.

In addition, if x is an extreme base, and v
i
and v

i+1
are adjacent in the order generating x, then

a(x,v
i
,v

i+1
) is either 0 if there is no edge between v

i
and v

i+1
, or 2 if there is such an edge.

The alternative characterization of a maximizer given in Theorem 2.1 for the minimum {s, t}-

cut problem is the assertion that an optimal orientation does not contain a path from any v with

positive value to any w with negative value. This corresponds to the well-known alternative charac-

terization of a maximum flow. The union of s with the set of nodes reachable from S
+

x
in the final

oriented network defines a minimum cut.

Figure 5.
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New Approaches to SFM

The two new algorithms for submodular func-

tion minimization take two different approaches

to extend Cunningham’s algorithm. Iwata,

Fleischer, and Fujishige [31] devise a scaling

scheme and special augmenting paths to employ

a “fat path” approach to SFM: They show that

each of their augmentations is bounded by a

polynomial in the difference between the current

x
–
(V) value and optimal x*

–
(V ) value. Schrijver

[41] designs a different graph and augmentation

step to employ a “short path” approach to SFM:

he shows that the shortest path distances from S
+

x

in his graph are nondecreasing, and that at least

one distance increases after a polynomial num-

ber of augmentations. Both of these approaches

are described further in the next section.

3. New Combinatorial, Polynomial
Time Algorithms

The two new polynomial time algorithms for

submodular function minimization propose

alternative solutions to the difficulty of establish-

ing a polynomial time, augmenting path algo-

rithm. Iwata, Fleischer, and Fujishige [31] use a

scaling framework to relax the value of the sub-

modular function by an additive function

depending on the scaling parameter. This relax-

ation has the effect of relaxing exchange capaci-

ties by the same scaling parameter, thus allowing

sufficiently large augmentations demonstrated in

a “fat path” analysis. Schrijver [41] instead uses a

“short path” analysis by allowing the use of all

exchange operations for each y
i
in the convex

representation of the current base x. Thus he

works with a graph that contains an exchange arc

for every directed pair (v,w) with positive

exchange capacity for some y
i
, i Œ I. To over-

come the difficulty of computing exact exchange

capacities, he shows how it is possible to com-

pute lower bounds on exchange capacities that

are sufficient for the algorithm to make demon-

strable progress. In addition, he abandons the

direct use of augmenting paths, instead focusing

on removing selected exchange arcs in a way that

ensures shortest path lengths are nondecreasing.

His approach uses a layered network (á la Dinic

[7]). Recently, Fleischer and Iwata [12] have

shown that Schrijver’s idea of removing selected

arcs by successive exchange operations can be

embedded in a push-relabel framework, thus

yielding a faster and more adaptable algorithm.

The push-relabel algorithm of Goldberg and

Tarjan [24] provides a good analogy in maxi-

mum flows for the technique of removing select-

ed arcs from the residual graph to ensure that

shortest path lengths are nondecreasing. A more

detailed description of both approaches follows.

3.1. A Scaling Algorithm

In this section, we describe the scaling algorithm

for SFM introduced in [31]. Most of the new

ideas used to obtain the polynomial time scaling

algorithm for submodular function minimiza-

tion appeared first in recent algorithms for sub-

modular flow. To explain this connection, we

start by defining submodular flow and describ-

ing some relations between submodular flow and

submodular function minimization.

Submodular Flow

Like standard network flows, the submodular

flow problem is defined on a graph G=(V,E)

with vertex set V and arc set E. A flow j is a

function defined on the arcs that obeys capacity

constraints l(v,w) ≤ j(v,w) ≤ u(v,w) for all (v,w)

Œ E. Given a vector b Œ R
V

of supplies and

demands satisfying b(V) = 0, a standard feasible

flow is a flow j that satisfies flow conservation

constraints that say the net flow leaving v, writ-

ten ∑
w

[j(v,w) – j(w,v)], equals b(v) for each

vertex v Œ V.

A feasible submodular flow for submodular

function f relaxes the flow conservation con-

straints in standard network flows and replaces

them by inequalities that require that the net

flow leaving any subset is at most the submodu-

lar function value of the subset. This can be

described as follows. Define the boundary of the

flow at A, denoted ∂j(A), as the net flow leaving

A. Mathematically, ∂j(A) := ∑
vŒA,wœA

[j(v,w) –

j(w,v)]. The submodular constraints can then be

written as ∂j(A) ≤ f (A) for all A Õ V. It is not

hard to show that ∂j(A) = ∑
vŒA

∂j(v). Since

∂j(V) = 0, we assume that f (V) = 0, and thus

this is equivalent to requiring ∂j Œ B(f ). The

submodular flow problem asks for a feasible sub-

modular flow of minimum cost, where cost is

the dot product of c: E Æ R with j. Written as

an exponential size linear program: 

(5)

The minimum cost flow problem is a special

case of submodular flow with f replaced by the

set function defined by supply vector b. (Since

∂j(v) ≤ b(v) and –∂j(v) = ∂j(V \v) ≤ b(V \v) = 

–b(v), feasible j satisfies flow conservation con-

straints.)

The submodular flow problem was intro-

duced by Edmonds and Giles [9] as a framework

that includes as special cases minimum cost

flows, submodular function minimization,

(poly)matroid intersection, and the problem of

contracting a minimum cost subset of arcs to

make a directed graph strongly connected. It

also models other network design problems,

such as finding the least cost subgraph contain-

ing k vertex disjoint paths in a graph from a root

r to all other vertices v Œ V [17, 18]. Edmonds

and Giles show that the set of extreme points of

the submodular flow polytope are integral [9].

The submodular flow problem can be solved in

polynomial time using the ellipsoid algorithm

[27], and via combinatorial algorithms that

depend on an oracle for submodular function

minimization, e.g. [40, 34, 16, 6, 44, 22, 21,

14]. Thus, another application of SFM is in

solving submodular flow problems. Why do all

of these algorithms for submodular flow require

an oracle for SFM?

With maximum flows, to move from one fea-

sible flow to another, it suffices to send flow

around a cycle, or set of cycles, in the residual

graph of the flow. This maintains flow conserva-

tion at all nodes. With submodular flows, it is

permissible to change the net flow in or out of

any vertex, as long as the submodular constraints

are satisfied. Thus, moving from one feasible

flow to another may involve also sending flow

along paths. Suppose one sends flow from s to t

in the residual graph of j. How much flow can

be sent so that the new flow j' is feasible?

Sending flow along an s-to-t path increases the

net flow leaving s and decreases the net flow

leaving t. This increases the net flow leaving any

set A containing s but not t. To stay feasible, the

amount of flow sent along the path must be

bounded by f (A) – ∂j(A) over all sets A that

contain s but not t. This is precisely the

exchange capacity a(∂j,t,s). The combinatorial

algorithms for submodular flow add exchange

min c

u

f

Tϕ
ϕ

ϕ
(SF) l ≤ ≤

∂ ∈ B( )
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arcs for every pair (t, s) with positive exchange

capacity to the set of flow arcs, assign each arc a

capacity equal to the corresponding exchange

capacity, and solve the submodular flow problem

in the resulting graph.

New Ideas for Submodular Functions 

and Flows

While submodular flow algorithms assume an

oracle for SFM to compute exchange capacities,

a capacity (or function) scaling algorithm for

submodular flow would presumably deal with

some of the problems Cunningham faced in try-

ing to obtain a polynomial time algorithm for

SFM. In particular, a capacity or function scal-

ing algorithm would have to address the prob-

lem of finding augmenting paths with sufficient-

ly large capacity. However, the existence of a

polynomial time, function-scaling algorithm for

submodular flow remained an open problem

until only recently. We highlight below the two

main ideas that led to the new scaling algorithm

for SFM.

Approximate Optimality. In the first function-

scaling algorithm for submodular flow, to adjust

for the fact that is not submodular, Iwata

[30] proposes using f d defined by

This extra

term d|A||V-A| is introduced to ensure submodu-

larity. It is the cut function of the complete

directed graph of capacity d, and hence itself

submodular. The submodular function f d, rely-

ing as it does on , which is not sub-

modular, is difficult to deal with, and the result-

ing submodular flow algorithm has a high com-

plexity [30].

A slight modification of this idea is to use the

submodular function fd defined by fd (A) = f(A) +

d|A||V–A|. This function has the advantage that

it is the sum of two submodular functions,

which makes it easier to work with, as detailed

below. This function is first used by Iwata,

McCormick, and Shigeno [32] in a faster func-

tion-scaling algorithm for submodular flow.

The relaxation fd has a natural interpretation

in the setting of network flows. As a counterpart

to Goldberg and Tarjan’s approximate optimality

for conditions for minimum cost flows [25],

Ervolina and McCormick [11] introduce a dual

notion of approximate optimality for minimum

cost flows. They define a relaxation that relaxes

the capacity of each flow arc by the scaling

parameter d. If one includes also 0-capacity arcs,

this is tantamount to adding a complete directed

graph on V of capacity d. For submodular net-

works, the “graph” is the set of possible exchange

arcs, which is really the complete directed graph

on V. Thus, using fd, interpreted as relaxing all

exchange capacities by d, is like solving the origi-

nal problem with the added complete directed

graph of capacity d. This leads to an approxi-

mate optimality for submodular function mini-

mization. Call this added graph H(d), and the

arcs in this added graph by relaxation arcs.

The algorithms that use this relaxed submod-

ular function maintain a base z ŒB(fd) and seek

to maximize z
–
(V) instead of x

–
(V) during a 

d-scaling phase. The base z is represented as a

base x Œ B(f ) and a base ∂y Œ B(D
H(d)

), where

D
H(d)

is the directed cut function of H(d) defined

on a subset A by the capacity of arcs leaving A

minus arcs entering A. This representation of a

base in B(fd) explicitly uses the fact that fd is the

sum of two submodular functions. The latter

term ∂y is equivalently expressed as the bound-

ary of a flow y in the complete directed graph of

capacity d. A bound on z
–
(V) yields an approxi-

mate bound on x
–
(V): x

–
(V) ≥ z

–
(V) – dn

2
/2.

Fat Paths for SFM. How should H(d) be used

to obtain a polynomial time algorithm? With

H(d), it is now possible to augment on paths

consisting of exchange arcs and relaxation arcs.

However, once all paths of relaxation arcs are

saturated, the same problem Cunningham faced

still remains: there may be no fat path among

the easily accessible exchange arcs.

The answer is suggested in a third function-

scaling algorithm for submodular flow by

Fleischer, Iwata, and McCormick [14]. This is

an augmenting path algorithm that augments

only along paths of relaxation arcs (and original

flow arcs for the submodular flow problem). It

avoids exchange arcs on an augmenting path by

trading exchange capacity on an exchange arc for

flow capacity on a parallel relaxation arc.

Whenever an exchange arc (y
i
,s,t) is encountered

in the search for an augmenting path from v

with z(v) ≥ d to w with z(w) ≤ – d, an exchange

for (y
i
,s,t) is performed of value a  ≤ d, and the

flow on relaxation arc (s, t) is reduced by l
i
a.

This enforces that z = x – ∂y remains

unchanged. The flow reduction is an exchange

operation for the triple (∂y,s,t) Œ B(D
H(d)

) x V x
V. Thus this trading of exchange capacity for

flow capacity is called a double-exchange. It can

also be viewed as sending “flow” around a cycle

consisting of an exchange arc, and a residual

relaxation arc. A double-exchange removes an

exchange arc whose behavior is hard to predict

(in terms of being able to compute its capacity

in the future), and replaces it with a parallel

relaxation arc with a known, fixed capacity.

The idea for the double-exchange routine

designed in [14] has roots in a distinctly differ-

ent subroutine used in the submodular flow

algorithm of Iwata, McCormick, Shigeno [32].

In both [14] and the SFM algorithm [31], a

double-exchange is performed for individual

arcs, and for a = min{d,a(y
i
,s,t)}, where d is the

scaling parameter. For SFM, an augmenting

path of relaxation arcs with capacity d is found

after at most n
3

double-exchanges.

A d-scaling phase ends when there are no aug-

menting paths of capacity d. At this point, the

set A of elements that can reach {v| z(v) ≤ –d}

along paths of capacity at least d satisfies x
–
(V) 

> f (A)–n
2d [31].

4
Thus, at the end of the d =

1/n
2

scaling phase, the algorithm finds a set A

and a vector x with x
–
(V) > f (A)–1. If f is inte-

ger, relation (3) implies that A is a minimizer.

The above ideas lead to a straightforward 

scaling algorithm for submodular function mini-

mization that has a weakly polynomial run time,

in that the run time depends on log (max
AÕV

|f(A)|). It is possible to turn this into a strongly

polynomial algorithm replacing this log term

with an n
2

log n term. The main idea is to show

that it is possible, after log n scaling phases to do

one of the following two things: 

i. Identify a new element that is contained in

every minimizer of f. 

ii. Identify a new pair of elements (v,w) such

that w is contained in every minimizer con-

taining v. 

The strongly polynomial time algorithm

maintains pairs satisfying (ii) as directed arcs in a

directed acyclic graph. Whenever a cycle forms

in the graph, the elements in the cycle may be

contracted into a single element, since either

they are all contained in a minimizer, or none of

f A( ) / δ

f A f A A V Aδ δ δ δ( ) = ( )  + −: / | || |.

f

δ










4
In [31], the graph used has the direction of each

accessible arc reversed. This choice of direction is

arbitrary but affects some details in the description of

the algorithm. For example, with this alternate choice,

augmentations are from v with z(v) ≤ – d to w with

z(w) ≥ d, and the corresponding statement about the

set A applies in their setting to the set of elements

reachable from {v|z(v) ≤ – d}.
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them are. Since this directed graph can have at

most n
2

new arcs, after at most n
2

log n phases, a

minimizer of f is found. The basic concept of

fixing a new arc after log n scaling phases was

first used by Tardos [43] in the design of the first

strongly polynomial algorithm for minimum

cost flow.

3.2. Schrijver’s Approach

Schrijver [41] takes a completely different

approach to confronting the difficulty of com-

puting general exchange capacities. Instead of

maneuvering with only a subset of the exchange

arcs, Schrijver considers the full set of exchange

arcs for each y
i
, i Œ I. Given a pair (s, t) with

positive exchange capacity for x = ∑
iŒI

l
i
y

i
,

Schrijver shows how it is possible to compute a

lower bound h ≤ a(x,s,t) so that after performing

the exchange x' = x + h(c
t
– c

s
), the pair (s, t)

does not have positive exchange capacity for any

extreme base y'
i
, i Œ I, in the convex representa-

tion of x'. In other words, (s, t) is no longer in

the union of exchange arcs for y'
i
, i Œ I. Applied

to a pair (s, t) for which there originally was such

an arc, this has the effect of increasing the dis-

tance between s and t in the graph of the union

of exchange arcs of y'
i
, i Œ I. Schrijver shows that

by applying this to specially chosen pairs (s, t),

the distance of vertices from the set S
+

x
never

decreases, and after a polynomial number of itera-

tions, the distance label of some vertex increases.

A Useful Subroutine. The key to Schrijver’s

algorithm is a subroutine that after at most n
2

calls, effectively removes an arc from the union

of exchange arcs of extreme bases. To describe

this subroutine, we will need a little notation.

Let the relation s p_
y
t indicate that a(y,s,t) > 0.

(Note that p_
y
is transitive, since if a(y,s,t) = 0,

then there is a set A satisfying s Œ A Õ V\{t} and

y(A) = f(A). For any w Œ V, either w Œ A in

which case a(y,w,t) = 0, or w œ A in which case

a(y,s,w) = 0.) It is possible to compute the rela-

tion p_
y
for extreme base y efficiently, e.g. [2].

Define [s,t]
y
:= {v Œ V |s p_

y
v p_

y
t}.

Given a pair (s, t) with positive exchange

capacity for some extreme base in the convex

representation of x, let y be the extreme base in

this convex representation with maximum |[s,t]
y
|,

and let l be its multiplier in the representation.

Schrijver devises a subroutine that computes a

lower bound µ ≤ a(y,s,t), and extreme bases z
j
, 

j Œ J with multipliers g
j
such that

1. y + µ(c
t 
– c

s
) = ∑

jŒJ
g

j
z

j
, 

2. ∑
jŒJ

g
j
= 1, 

3. |[s,t]zj
| < |[s,t]

y
| for all j Œ J.

Let y' be the extreme base obtained by per-

forming the full exchange operation: y' = y +

a(y,s,t)(c
t 
– c

s
). Let x'= x + lµ(c

t
– c

s
) be the new

base obtained by performing the lower bound

exchange. The first two properties allow us to

replace l(1– µ)y + lµ y' in the convex represen-

tation of x' with l∑
jŒJ

g
j
z

j
. The third property

ensures that this substitution makes some

progress: After one iteration either max
iŒI

|[s,t]yi
|

decreases, or the number of bases in I achieving

this maximum decreases. Call this subroutine

Reduce-Interval(s, t).

If Gaussian elimination is used after each call

to Reduce-Interval to reduce the number of bases

in the convex representation of x', then |I|

remains at most n. Since there are at most n pos-

sible values of |[s,t]
y
|, this implies that Reduce-

Interval(s, t) is called at most n
2

times before

a(y
i
,s,t) = 0 for all i Œ I.

Short Paths for SFM. Schrijver finds a lexico-

graphically shortest augmenting path from S
+

x
to

S
–

x
in the union of exchange capacity arcs for y

i
, 

i Œ I and applies Reduce-Interval to the last arc

(s, t) in this path until either x(t) = 0 or a(y
i
,s,t)

= 0, " i Œ I. He shows that by such application,

the distances of vertices from S
+

x
never decrease,

and that after a polynomial number of steps, the

distance of some vertex increases. This algorith-

mic framework bears resemblance to the layered

network approach for submodular flows

described by Tardos, Tovey, and Trick [44],

which in turn combines ideas from earlier aug-

menting path algorithms for feasible submodular

flow [40, 34, 16] with the maximum flow

framework of Dinic [7].

Instead of detailing the particulars of this

approach, we describe a modification that is

both faster and cleaner. To avoid computing

augmenting paths in each iteration, the push-

relabel framework, introduced for maximum

flows by Goldberg and Tarjan [24], maintains

distance labels in a lazy manner and, like

Schrijver’s algorithm, performs operations on

only one arc at a time. Goldberg and Tarjan

show that this improves on Dinic’s maximum

flow algorithm by a factor of n. This was adapt-

ed to the feasible submodular flow problem by

Fujishige and Zhang [22] to obtain a similar

improvement in run time. It can be adapted to

SFM as well [12] and thus the overhead of com-

puting shortest augmenting paths is avoided. We

outline the main ideas of this push-relabel algo-

rithm for SFM.

For maximum flows, the push-relabel algo-

rithm maintains a flow j that satisfies capacity

constraints and a labeling d of the vertices that

corresponds to a lower bound on the distance of

a vertex from the sink. A valid label d satisfies

d(source) = n, d(sink) = 0, and d(s) ≤ d(t) +1 for

any arc (s, t) with j(s,t) less than the capacity of

(s, t). (In this case, arc (s, t) has residual capacity

equal to the capacity of (s, t) minus j(s,t).) The

algorithm relies on two operations: push and

relabel. A push operation applies to (s, t) if the

net flow leaving s (flow in minus flow out) is less

than 0, arc (s, t) has residual capacity, and d(s) =

d(t) +1. Call excess at s the net flow entering s,

and denote this by e(s). Push applied to (s, t)

increases flow on (s, t) by the minimum of e(s)

and the residual capacity of (s, t). A relabel oper-

ation applies to s if e(s) > 0, and no push opera-

tion applies to s. Relabel applied to s increases

d(s) by one. Goldberg and Tarjan [24] show that

the push and relabel operations maintain valid

labels. In addition, if a push is applied to the

vertex with excess and the highest label, then

they show that the algorithm terminates after at

most n
3

pushes and n
2

relabels.

For submodular function minimization, a

valid label d satisfies d(t) = 0 if x(t) < 0, and d(s)

≤ d(t) +1 if s p_yi
t for some i Œ I. The operation

Push(s, t) repeatedly calls Reduce-Interval(s, t)

until either x(s) = 0 or a(y
i
,s,t) = 0, "i Œ I.

Push(s, t) applies if x(s) > 0, s p_yi
t for some i Œ I

and d(s) = d(t) +1. In effect, Push is applied to

the first arc of an augmenting path, instead of

the last. (Schrijver’s algorithm may be modified

in this way also, yielding the same run time as

his version that works on the last arc.) A relabel

operation applies if x(s) > 0 and no Push opera-

tion applies to s. Relabel(s) increases d(s) by one.

The main complication in extending the push-

relabel framework to submodular function mini-

mization is to show that Push(s, t) maintains

valid labels. All the other analyses in [24] then

follows easily.

The problem that arises is that after applying

an exchange operation to (s, t) to move to y' = y

+ a(c
t
– c

s
), a pair (v,w) that initially had 0

exchange capacity may now have positive capaci-

ty. This can happen if there is a y-tight set A that
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includes w and s and excludes v and t. After the

exchange, this set is no longer tight, since y'(A) =

y(A) – a < y(A) = f(A). If this was the only tight

set separating v and w, then (v,w) has positive

exchange capacity for y'. The following lemma,

which appears in Schönsleben [40] and Lawler

and Martel [34], describes under what circum-

stances this can happen.

Lemma 3.1 If a(y,v,w) = 0 and a(y',v,w) > 0

where y' = y + a(c
t
– c

s
) for y', y Œ B(f ), then

a(y,s,w) > 0 and a(y,v,t) > 0.

One consequence of this lemma is that Push(s, t)

maintains valid labels: if (v,w) satisfies v /p_yi
w for

all i Œ I before Push(s, t) and v p_yi
w for some 

j Œ I after Push(s, t), then by the validity of

labels before Push and Lemma 3.1 we have d(v)

≤ d(t) +1 = d(s) ≤ d(w) +1.

The push-relabel algorithm terminates with

the optimal x* when there are no augmenting

paths from S
+

x
to S

–

x
. By the validity of the dis-

tance label d, this occurs the first time there is a

distance value p such that no vertex has this

label, and all elements in S
+

x
have higher labels.

The set of elements with label lower than p is a

minimizer of f. By applying push or relabel

always to the highest labeled vertex in S
+

x
, the

number of pushes and relabels that can occur

before this condition is met is bounded in the

same way as in the push-relabel algorithm for

maximum flow.

4. Some Consequences of
Combinatorial, Polynomial Time
Algorithms for SFM

We now describe some examples that demon-

strate that these new combinatorial algorithms

lend themselves more easily to modification or

generalization to other problems. Both sets of

examples take advantage of the existing algorith-

mic research literature in network flows and sub-

modular flows.

4.1. Advantages of a Push-Relabel

Algorithm for SFM

The first extensions we describe use the push-

relabel algorithm for submodular function mini-

mization. This algorithm can be extended to

efficiently solve a parametric submodular func-

tion minimization problem. This, in turn, leads

to a combinatorial algorithm to compute a lexi-

cographically optimal base [13].

The push-relabel algorithm for maximum

flow [24] has been used in the design of efficient

algorithms for many more general problems.

Two prominent examples include the parametric

flow problem and the overall minimum cut

problem in a directed graph. In the first

instance, Gallo, Grigoriadis, and Tarjan extend

push-relabel to solve the parametric network

flow problem [23]. This is defined on a network

with arc capacities that are functions of a param-

eter q: increasing in q leaving the source,

decreasing in q entering the sink, and constant

elsewhere. The parametric network flow problem

is to compute a maximum flow for each of an

increasing sequence of parameters q
1

< q
2

< …

< q
n

in the same asymptotic time as one push-

relabel maximum flow computation. This has

applications in scheduling [36]. In the second

instance, Hao and Orlin [28] extend the push-

relabel algorithm to compute an overall mini-

mum cut in a directed graph in the same asymp-

totic time as one run of the push-relabel algo-

rithm.

Both of these ideas can be generalized to sub-

modular function minimization, with some care.

In the first instance, let f '¨ f denote that for all

sets A, B with A Ã B

f (B) – f (A) ≥ f '(B) – f '(A).

The relation f ' ¨ f is called a strong map. Both

the parametric flow problem considered in [23],

and the problem of finding minimizers for a

sequence of parameterized submodular functions

f + qw for a nonnegative vector w Œ R
V

and an

increasing sequence of parameter values of q, are

examples of strong map sequences. Iwata,

Murota, and Shigeno [33] give a generalization

of the algorithm in [23] to polymatroid intersec-

tion for a strong map sequence. Extending the

new push-relabel algorithm for submodular

function minimization, it is possible find the

minimizer of a sequence of submodular func-

tions f
1 

¨ f
2

¨ … ¨ f
n

in the same asymptotic

time as the push-relabel algorithm for SFM [13].

In turn, an efficient algorithm for strong map

submodular function minimization implies a

more efficient algorithm to find a lexicographic

optimal base, a generalization of Megiddo’s lexi-

cographically optimal flow [37] introduced by

Fujishige [19].

4.2. Improved Algorithms for 

Submodular Flow

In Section 3.1, we saw that ideas developed for

submodular flow led to recent progress in algo-

rithms for submodular function minimization.

In this section we explain how these new algo-

rithms for SFM lead to more direct algorithms

for solving submodular flow. In particular, we

briefly outline the first algorithms for submodu-

lar flow that do not rely on an oracle for com-

puting exchange capacities. We start by high-

lighting similarities between network flows,

SFM, and submodular flow.

Algorithmic Relation to Network Flows and

SFM. Generic augmenting path algorithms for

minimum cost flow with supply and demand

vector b start with a flow j and augment along

paths of flow arcs with residual capacity from

{v|b(v) > ∂j(v)} to {v|b(v) < ∂j(v)}. The underly-

ing idea behind the augmenting path algorithms

we have described for submodular function min-

imization start with a base x Œ B(f ) and aug-

ment along paths of exchange capacity arcs from

{v|x(v) > 0} to {v|x(v) < 0}. A generic submodu-

lar flow algorithm may start with a flow j and a

base x Œ B(f ). By augmenting along paths of

flow and exchange arcs from {v|∂j(v) < x(v)} to

{v|∂j(v) > x(v)}, it is desired to obtain base x* Œ
B(f ) and flow j* satisfying ∂j* = x*.

Submodular Flow without an Exchange Oracle.

The hard part of submodular flow is dealing

with the exchange capacities efficiently. This is

the problem solved by combinatorial, polynomi-

al-time algorithms for submodular function

minimization. Thus, by adding to the arc set in

these SFM algorithms an additional set of arcs

that correspond to the flow arcs of a submodular

flow problem, it is possible to modify the SFM

algorithms to solve the feasible submodular flow

problem. Capacities of flow arcs are easy to com-

pute, and thus they do not add extra complexity

to these algorithms. This is the idea behind the

feasible submodular flow algorithm detailed in

[12]. It modifies the above mentioned push-rela-

bel algorithm for SFM by adding flow arcs to

the set of exchange arcs for y
i
, i Œ I, and general-

izes the Push operation to allow sending flow on

these flow arcs as well, thus solving the feasible

submodular flow problem within the same

asymptotic time bound as the push-relabel algo-

rithm for SFM.
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Given this result, it is perhaps natural to ask if

feasible submodular flow equivalent to submod-

ular function minimization. Checking if a sub-

modular flow is feasible is a submodular func-

tion minimization problem. But it is not clear

what the answer is if one asks to find a feasible

flow. Even for the special case of minimum cuts,

it is still not known if the exact (s, t)-minimum

cut problem is any easier than maximum flow.

Minimum Cost Submodular Flow. While there

seems to be a natural relation between feasible

submodular flow and submodular function min-

imization, the submodular flow problem with

costs would appear to be a more difficult prob-

lem. However, it is possible to extend the combi-

natorial algorithm for SFM in [31] to solve the

minimum cost submodular flow problem [12].

One reason for the success of this extension is

due to the fact that the SFM algorithm in [31] is

based on ideas arising in algorithms for submod-

ular flow, and in fact is highly similar to the sub-

modular flow algorithm in [14]. Unlike the case

for extending SFM algorithms to solve feasible

submodular flow, it is not sufficient to simply

add flow arcs to the set of arcs used in [31]. The

problem is that the algorithm described in [31]

is not particular in its choice of augmenting

path. In augmenting path algorithms for stan-

dard minimum cost flows, it is necessary to

select the least cost augmenting path. This is also

necessary in submodular flows. Thus it must be

shown that the augmenting path subroutine in

[31] can be extended to find a least cost aug-

menting path. This is proven in [12]. The result-

ing algorithm finds an optimal dual solution, i.e.

optimal node prices, for the submodular flow

problem. The optimal flow can then be found

with n –1 additional submodular function mini-

mizations.

5. Some Additional Questions

1. An example of a submodular function mini-

mization problem that we do not know how to

solve in polynomial time without recourse to a

general submodular function minimization algo-

rithm is checking the feasibility of transshipment

problem over time [29]. The transshipment

problem over time is flow problem with multiple

sources (vertices with positive supply) and multi-

ple sinks (vertices with negative supply; also

called positive demand). Each arc (u,v) in G has

a capacity, and a nonnegative transit time t
u,v

that determines how long it takes for flow leav-

ing u to arrive at v. Thus, flow leaving u at time

t arrives at v at time t + t
uv

. Given a time bound

T, the feasibility problem is to determine if there

exists a flow that completes by time T, respects

capacity constraints, and meets all demand. This

can be solved by submodular function mini-

mization. Is there a more efficient approach to

this problem that uses a more specialized algo-

rithm than general SFM? More broadly, do the

algorithms in this paper yield new and interest-

ing algorithms for special cases of SFM?

2. Despite the analogies drawn in this article,

submodular flow algorithms are not simple

extensions of minimum cost flow algorithms.

While all of the existing submodular flow algo-

rithms build on ideas used previously in network

flows, it is often nontrivial to extend these net-

work flow algorithms to submodular flows. For

example, Goldberg and Tarjan devised a cost-

scaling algorithm for minimum cost flow using

the push-relabel framework [25], but there is

still no cost scaling algorithm using push-relabel

techniques for minimum cost submodular flow.

Hence we do not know if the push-relabel algo-

rithm for SFM can be extended to solve general

submodular flow problems.

3. Submodular flow is a general problem class

for which all extreme solutions are integral. It is

not the most general such class. Edmonds and

Giles [9] describe a framework that includes a

more general class of problems with integral

polytopes: TDI systems. Can these algorithms be

extended to yield combinatorial algorithms for

TDI systems, or other general problem classes?

4. There are other linear programs involving

submodular functions for which the resulting

polytopes are not integral. An interesting class

model network design problems. A generic net-

work design problem asks to add a minimum

cost set of edges to an existing graph so that cer-

tain connectivity properties are met. Special

cases include the Steiner tree problem and the

minimum cost k-connected subgraph problem.

If f is a set function describing the connectivity

requirements between each subset and its com-

plement, then the network design for a graph 

G = (V,E) and cost vector c Œ R
E
, can be mod-

eled as an integer program with an exponential

number of constraints variable vector x Œ {0,1}
|E|

to indicate whether or not an edge is included in

the minimum cost solution: min c
T
x subject to 

" A Õ V, x(D(A)) ≥ f (A) and x Œ {0,1}
|E|

.

Frequently f is supermodular (meaning that –f is

submodular), or weakly-supermodular (i.e. f sat-

isfies f (A) + f (B) ≤ max{f (A U B) + f (A I B),

f (A\B) + f (B\A)}). Some approximation algo-

rithms to solve these often NP-hard problems

round the optimal solution to the linear pro-

gram relaxation of this formulation. Is there a

combinatorial, polynomial time algorithm to

solve this simple class of linear programs, for

even special cases of f ?
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http://www.cs.uu.nl/events/ipco2001 

INFORMS Fall 2000
November 3-7, 2000, San Antonio,Texas, USA
URL: http://ie.tamu.edu/informs2000/

IPCO VIII
June 13-15, 2001, Utrecht,The Netherlands
and DONET Summer school on Integer and Combinatorial Optimization
June 11-12, 2001, Utrecht,The Netherlands
http://www.cs.uu.nl/events/ipco2001
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IPCO VIII

Utrecht,The Netherlands

June 13-15, 2001

and DONET Summer school on Integer and Combinatorial Optimization

Utrecht,The Netherlands

June 11-12, 2001

The eighth Integer Programming and Combinatorial Optimization (IPCO) conference will be

held in Utrecht, The Netherlands, from June 13 to 15, 2001. The IPCO conference will be

immediately preceded by a summer school on Integer and Combinatorial Optimization. The

summer school will be given by Daniel Bienstock and Éva Tardos, who will each present four

one-hour lectures. The school is organized under the auspices of DONET, a European Network

for Discrete Optimization subsidized by the European Community. We hope that the combina-

tion of the two activities will make it easier for young researchers to participate in the joint event

even if an IPCO submission is not made.

For more information, please see the home page of the IPCO conference at

<http://www.cs.uu.nl/events/ipco2001> or send an e-mail to <ipco2001@cs.uu.nl>.

To be added to our mailing list, please fill out the pre-registration form at the web site or send

your name and e-mail address to <ipco2001@cs.uu.nl>.
–Karen Aardal, The ICPO VIII Organization Committee
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Objectives The meeting aims to provide a forum

for researchers, who are from Japan, Mainland

China, Hong Kong, Taiwan, Singapore, other

countries and regions, and working in the area

of optimization, to gather together to report and

exchange their latest works on optimization.

Topics Include Linear and Nonlinear

Optimization, Continuous and Discrete

Optimization, Deterministic and Stochastic

Optimization, Smooth and Nonsmooth

Optimization, Single- and Multi-Objective

Optimization, Integer and Combinatorial

Optimization, Convex and Nonconvex

Optimization

Organization and Endorsement

The Sino-Japan Optimization Meeting (SJOM)

is endorsed by the Mathematical Programming

Society (MPS), the Research Association of

Mathematical Programming (RAMP), Japan,

and the Chinese Mathematical Programming

Society. The First Sino-Japan Optimization

Meeting (SJOM 2000) is organized by The City

University of Hong Kong and The Hong Kong

Polytechnic University. The organization com-

mittee of SJOM 2000 is in charge of the organi-

zation work of SJOM 2000, and will report to

the steering committee of SJOM. The steering

committee will assist the organization of SJOM

2000, and select the organizers and locations of

the future SJOM meetings. It is expected that

the steering committee will formally meet dur-

ing SJOM 2000. The term of the co-chairs of

the steering committee will end at the second

SJOM meeting.

Organization Committee of SJOM 2000

Liqun Qi (<maqilq@polyu.edu.hk>, The Hong

Kong Polytechnic University), Co-Chair;

Jianzhong Zhang (<mazhang@cityu.edu.hk>,

City University of Hong Kong), Co-Chair;

Chuangyin Dang (<mecdang@cityu.edu.hk>,

City University of Hong Kong); and Xiaoqi

Yang (<mayangxq@polyu.edu.hk>, The Hong

Kong Polytechnic University), Treasurer.

Steering Committee of SJOM

Xiaoqiang Cai (The Chinese University of Hong

Kong); Xiaojun Chen (Shimane University);

Satoru Fujishige (Osaka University); Masao

Fukushima (Kyoto University), Co-Chair; Jiye

Han (Chinese Academy of Sciences); Toshihide

Ibaraki (Kyoto University); Masakazu Kojima

(Tokyo Institute of Technology); Hiroshi Konno

(Tokyo Institute of Technology); Shinji Mizuno

(Tokyo Institute of Technology); Kazuo Murota

(Kyoto University); Liqun Qi (The Hong Kong

Polytechnic University); Jie Sun (The National

University of Singapore); Kunio Tanabe

(Institute of Statistics Mathematics); Tetsuzo

Tanino (Osaka University); Kok Lay Teo (The

Hong Kong Polytechnic University), Co-Chair;

Soon-yi Wu (National Cheng Kung University);

Wenci Yu (East China University of Science and

Technology); Ya-xiang Yuan (Chinese Academy

of Sciences); Jianzhong Zhang (City University

of Hong Kong); Xiangsun Zhang (Chinese

Academy of Sciences)

Guest Plenary Speakers

Rainer Burkard (Technische Universitat Graz,

Austria), Gianni Di Pillo (Universita di Roma

“La Sapienza,” Italy), Carl Timothy Kelley

(North Carolina State University, USA), Jean-

Philippe Vial (University of Geneva,

Switzerland)

Special Arrangements

Meeting proceedings or special issues of some

journals, tours and economical hotel accommo-

dations will be indicated in the Second

Announcement.

Further Information

E-Mail: Eva Yiu (maevayiu@polyu.edu.hk) or

Peggy Chan (machan@cityu.edu.hk); web site:

<http://www.polyu.edu.hk/~ama>; or contact

Organization Committee Members (e-mail

addresses shown above)

First Announcement
The First Sino-Japan Optimization Meeting

Hong Kong, October 26-28, 2000

Computational Optimization and Applications

(COAP) announces a call for papers in the area

of Stochastic Programming with special empha-

sis on new computational methods, experimen-

tal results as well as applications of stochastic

programming methodology. We use the term

“stochastic programming” in a broad sense to

cover stochastic optimization problems in which

information is revealed sequentially over time.

Thus, traditional dynamic programming as well

as its more recent adaptations are also consid-

ered relevant to this special issue. As suggested

by the focus of COAP, we are particularly inter-

ested in computational approaches and signifi-

cant applications. Hence submitted papers

should be motivated by these thrusts. As one

might expect, a primary requirement for publi-

cation in this issue is novelty of the ideas

expounded in the paper.

The special issue, which will be edited by

Professors Suvrajeet Sen and Julia Higle, will be

refereed in accordance with established proce-

dures of COAP. Please send five copies of the paper

to: Melissa Sullivan, Computational

Optimization and Applications Editorial

Office, Kluwer Academic Publishers, 101

Philip Drive, Norwell, MA 02061, USA.

Important: In your cover letter, provide your e-

mail address and state that the paper is for con-

sideration in the special issue on Stochastic

Programming. Papers for the special issue should

be submitted by December 15, 2000. 

Call for Papers

COAP
Computational Optimization and Applications
Special Issue on Stochastic Programming
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Sixth International Symposium on 
Generalized Convexity/Monotonicity

Karlovassi, Samos, Greece

August 30 – September 3, 1999

preceded by Summer School on Generalized

Convexity/Monotonicity, August 25-28,1999

The Symposium and its preceding Summer School were organ-

ized by the Working Group on Generalized Convexity

(WGGC). About thirty students participated in the Summer

School and over one hundred researchers attended the

Symposium. The Summer School, directed by J.B.G. Frenk,

introduced graduate students as well as researchers from other

fields to major topics of Generalized Convexity and

Generalized Monotonicity. The material was covered in twelve

tutorials presented by J.P. Crouzeix, J.B.G. Frenk, N.

Hadjisavvas, D.T. Luc, J.E. Martinez-Legaz, P.M. Pardalos, J.P.

Penot and S. Schaible. Most “students” of the Summer School

stayed on for the Symposium while several participants of the

Symposium arrived early to attend tutorials of the Summer

School. The response to the first WGGC summer school pre-

ceding a WGGC symposium was overwhelmingly positive.

Thanks to the efforts of M. Sniedovich, IFORS representative,

the three best students of the Summer School obtained an

IFORS scholarship. During the following week more than fifty

lectures were presented and followed by researchers from twen-

ty-six countries. Topics covered included various kinds of gen-

eralized convex functions and generalized monotone maps,

optimality conditions, duality, fractional programming, multi-

objective programming, nonsmooth analysis, variational

inequalities, equilibrium problems as well as topics less repre-

sented at previous symposia such as stochastic convexity and

global optimization. Furthermore, as at the last symposium,

several invited lectures introduced participants to neighboring

fields of generalized convexity. This time set-valued optimiza-

tion, multiplicative/fractional programming, global optimiza-

tion and stochastic programming were the emphasis with tuto-

rials by J. Jahn (Germany), H. Konno (Japan), P.M. Pardalos

(USA) and A. Prekopa (USA), respectively.

The conference site, a small town on a Greek island, offered

limitless opportunities for professional contacts among the par-

ticipants. A rich scientific program was complemented by a

social program with many highlights. The Symposium was

hosted by the Department of Mathematics of the University of

the Aegean, located on Samos, the birthplace of Pythagoras and

Aristarchus. This truly scenic island with its interesting archeo-

logical sites gave the conference a special background. The par-

ticipants left enriched and appreciative of the excellent organi-

zation by N. Hadjisavvas (Samos) who with his local and inter-

national team put together this memorable event in the history

of WGGC. Further details are found on the web site of the

Summer School and the Symposium at

<http://www.samos.aegean.gr/math/gc6/>. A selection of refer-

eed papers presented at the Symposium will appear in the

Proceedings to be published by Springer Verlag in the series

“Lecture Notes in Economics and Mathematical Systems” (eds.

N. Hadjisavvas, J.E. Martinez-Legaz and J.P. Penot). For infor-

mation on the proceedings of the previous five symposia in

Vancouver (1980), Canton (1986), Pisa (1988), Pecs (1992)

and Marseille-Lyminy (1996), see the web site of WGGC

(http://genconv.ec.unipi.it/).
–Siegfried Schaible, Scientific Committee of WGGC

(siegfried.schaible@ucr.edu)

FAP Web Announcement We are happy to announce

that the WWW server, FAP Web on Frequency Assignment, is now publicly avail-

able at <http://fap.zib.de/>. Our intention is to collect and supply information

related to solving frequency assignment problems.

We have compiled a (certainly still incomplete) list of publications on 

frequency assignment methods and collected results on the CALMA, COST 259,

and Philadelphia instances. We would like to keep track of the latest results

obtained as well as to supply benchmark problems for download. This cannot be

done without your support.

We would appreciate your assistance with helping to disseminate the information

on FAP Web, offering suggestions to improve FAP Web, and keeping us updated.

All information can be submitted with forms available at FAP Web (Submit sec-

tion), or by sending an e-mail to <fap@zib.de>. You are also encouraged to fill in

the form concerning your contact address if you’d like this address listed at the 

server. (This may increase the likelihood of receiving spam mail, however.)

Finally, we would like to take the opportunity to thank everybody who has

(mostly indirectly) contributed so far, be it by sending (preprints of ) papers, by sup-

plying benchmark instances, or by providing assignments for some of the instances.

–Andreas Eisenblaetter (eisenblaetter@zib.de) and Arie Koster (koster@zib.de)

STANFORD UNIVERSITY 
Department of Management Science & Engineering

A
pplications are invited for a tenure-track faculty position in the field

of optimization. The rank is open, and all branches of optimization are

of interest, e.g., continuous, discrete, large scale, etc. In particular the

department seeks a new faculty member who has an outstanding methodological

foundation and strong applications interests. If appropriate, the successful candi-

date may choose to become involved in School of Engineering activities in the

area of Computational and Mathematical Engineering. The department hopes

to fill the position by September 1, 2001.

The Department of Management Science & Engineering (MS&E) is newly

created by the merger of the Engineering-Economic Systems and Operations

Research Department and the Industrial Engineering and Engineering

Management Department. The department’s mission is research and education

associated with the development of the knowledge, tools, and methods required

to make decisions, shape policies, configure organizational structures, design

engineering systems, and solve operational problems arising in the information-

intensive, technology-based economy. The department has special interest in

theory and application in optimization and systems modeling, probability and

stochastic systems, production operations and manufacturing, decision analysis

and risk analysis, economics and finance, organizational behavior, and manage-

ment and entrepreneurship. The department is also developing expertise in

information science and technology and in technology, policy and strategy. A

more complete description appears in the department Web site at

http://www.stanford.edu/dept/msande/.

Applicants should send a resume (including research accomplishments, teach-

ing experience, publications), transcript of (doctoral) graduate study, at least one

published or unpublished research paper if available, and names and addresses of

at least three references to: Professor Richard Cottle, Search Committee Chair,

Department of Management Science & Engineering, Terman Engineering

Center, Stanford University, Stanford, CA 94305-4026. They should also ask

referees to send recommendation letters directly to Professor Cottle. Review of

the applications will begin in January of 2001.

Stanford University is an equal opportunity employer and welcomes nomina-

tions of women and minority group members and applications from them. 
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mind sharpener We invite OPTIMA readers to submit solutions to the problems to Robert Bosch

(bobb@cs.oberlin.edu). The most attractive solutions will be presented in a forthcoming issue.

In Tiger Electronics’ handheld electronic solitaire game Lights Out,

the player strives to turn out all 25 lights that make up a 5 x 5 grid

of cells. On each turn, the player is allowed to click on any one

cell. Clicking on a cell activates a switch that causes the states of

the cell and its neighbors to change from on to off or from off to

on. Corner cells are considered to have two neighbors, edge cells to

have three, and interior cells to have four. Figure 1 demonstrates

what happens when the player clicks on cells (1, 1) and (1, 2).

Problems Interested readers may enjoy trying to solve the 

following problems:

1. Formulate an integer program for finding a way to turn out all the

lights in as few turns as possible. Hint 1: The order in which the cells

are clicked doesn’t matter. Hint 2: A cell shouldn’t be clicked more

than once.

2. What if each cell has a three-way bulb? (Repeatedly clicking on a 

single three-way bulb changes its state from off to low, from low to

medium, from medium to high, from high to off, and so on.) Which

is easiest: (a) turning off all the lights when they’re all on their high

setting? (b) turning them off when they’re all on medium? (c) turn-

ing them off when they’re all on low?

Readers who have a Java-enabled browser can play the game online by

going to Martin Chlond’s “Integer Programming and Recreational

Mathematics” web page (www.chlond.demon.co.uk/academic/puzzles.html)
and following the link to the “Five by five puzzle.” (In Chlond’s version,

all of the lights are initially off and the goal is to turn them all on.) To the

author’s knowledge, Chlond was the first person to use integer program-

ming to find an optimal solution to a Lights Out-type game. Incidentally,

the rest of Chlond’s web page is well worth a visit too. It is a lovely collec-

tion of recreational mathematics problems that can be solved with integer

programming.

Armies of Queens, Revisited

In the June installment of OPTIMA Mind Sharpener, we presented a vari-

ant of the well-known 8-queens problem. We stated that two armies of

queens (black and white) peaceably coexist on a chessboard when they are

placed on the board in such a way that no two queens from opposing

armies can attack each other. We then asked readers to formulate an inte-

ger program to find the maximum size of two equal-sized peaceably coex-

isting armies.

Frank Plastria submitted the following very nice, very simple IP formu-

lation of the problem:

Plastria’s formulation has two binary variables for each square (i, j) of the

board. One of them, b
i
, j, indicates whether or not square (i, j) holds a

black queen. The other, w
i
, j, specifies whether or not square (i, j) contains

a white queen. The constraint (1) keeps the armies the same size. The

constraints (2) keep the armies at peace. The set M is the set of all ordered

pairs of chessboard squares that share a row, column, or diagonal line of

the chessboard. (Note that ((i
1
,j

1
), (i

2
,j

2
)) Œ M if and only if i

1
= i

2
, j

1
= j

2
,

or |i
1

– i
2
| = |j

1
– j

2
.)

Due to a lack of adequate IP software, Plastria was unable to implement

his formulation. He did prove, however, that the optimal value of the LP

relaxation of his integer program is 32, and he did conjecture that the

optimal value of his integer program is 9. (The best solution he was able

to find has nine queens in each army and is displayed in Figure 2.)

Plastria’s formulation is not a tight one. The author tested it with

CPLEX (version 4.0.9) on a 200 MHz Pentium PC and obtained an opti-

mal solution (with objective value equal to 9) in just over four hours. It

turns out that there are many optimal solutions. The author hasn’t yet

classified all of them. His favorite one (for the moment) is displayed in

Figure 3.
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Lights Out
by Robert A. Bosch

Dec. 14, 1999
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Integer Programming

by Laurence A. Wolsey

Wiley 1998

ISBN 0-471-28366-5, GBP 37.50

I
nteger programming is a powerful, but finicky tool; while it provides a very broad framework

for applications, care needs to be taken in the model building process in order to effectively

use the current generation of solution methods. Laurence Wolsey is the world’s master at

squeezing the most out of the IP framework; watching him manipulate the constraints of an

IP is like seeing a lecture at the Hogwarts School of Witchcraft and Wizardry. It is very fortunate

that Wolsey’s text is aimed squarely at teaching the rest of us the ins and outs of IP practice.

Wolsey’s book is a true textbook. It is about one-third the size of the classic Integer and

Combinatorial Optimization by G.L. Nemhauser and L.A. Wolsey, and it contains a factor of 148

times more exercises than the monumental work Theory of Linear and Integer Programming by A.

Schrijver. I highly recommend Wolsey’s book for adoption as a text in undergraduate and graduate

courses. Indeed, in our department we created a new course to match Wolsey’s text, and it is being

very well received by the senior undergraduates, as well as by students in our Ph.D. program. The

text, moreover, is also a nice vehicle for potential industrial users of integer programming to see how

to best use IP software tools.

After two introductory chapters, a quick treatment of some basic combinatorial algorithms

(shortest paths, minimum spanning trees, bipartite matching) is presented in chapters 3 and 4. This

is followed by chapters on dynamic programming, complexity theory, and branch and bound. The

heart of the book begins with the cutting-plane material presented in chapters 8 and 9. Wolsey gives

an extensive treatment of general purpose cutting planes as well as facet-defining inequalities for

special classes of integer and mixed-integer problems. Lagrangian relaxation and column generation

methods are covered in chapters 10 and 11, and a short treatment of heuristic algorithms is given

in chapter 12. The text concludes with an excellent summary chapter titled “From Theory to

Solutions,” that should be of particular interest to IP practitioners. This final chapter is presented

as a series of questions and answers, guiding the reader through the modeling and solution process.

Wolsey’s book is a pleasure to read, and the author has done a very good job at selecting the mate-

rial to cover. Integer Programming will no doubt be the standard IP text for years to come.

–BILL COOK
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Scheduling Algorithms

by Peter Brucker

Springer-Verlag, 1998

ISBN 3-540-64105-X, DM 138

T
his is a slightly extended (16 additional pages) and updated version of the book

with the same title that appeared in the first edition in 1995. The structure and

the titles of the chapters are the same as in the first edition. The book deals

with deterministic problems in connection with machine or processor sched-

uling, and it concentrates on the presentation of polynomial algorithms for different class-

es of scheduling problems. Moreover, branch and bound algorithms as well as local search

algorithms for the exact and heuristic solution of NP-hard scheduling problems are briefly

discussed. The book consists basically of three parts.

The first part (Chapters 1 - 3) contains some elementary material dealing with the clas-

sification of scheduling problems, with some basic problems and algorithms that are rele-

vant for the development of solution procedures in connection with scheduling problems

(e.g. linear and integer programming, maximum flow problems, matching problems, arc

coloring in bipartite graphs and dynamic programming) and with the computational com-

plexity of scheduling problems.

Chapters 4 - 6 cover classical scheduling algorithms for solving single machine problems

(Chapter 4), parallel machine problems (Chapter 5) and shop scheduling problems (open

shop, flow shop, job shop and mixed shop; Chapter 6). This is the main part of the book

and contains known scheduling algorithms developed during the past 40 years. In Chapter

6, the disjunctive graph model as a useful tool for constructing optimal schedules is intro-

duced. The job shop problem with minimizing the makespan is considered in detail. In

particular, a branch and bound algorithm based on the block approach and immediate

selection is described, which was the first algorithm that was able to solve the famous 10

x 10 problem given by Muth and Thompson (1963), and the application of tabu search

techniques for the heuristic solution of this problem is discussed.

The last part (Chapters 7 - 11) deals with some topics that have been considered recent-

ly, particularly in connection with flexible manufacturing, and which are not or only par-

tially included in other recent books on scheduling. More specifically, single machine

scheduling problems involving due dates (Chapter 7), single machine batching problems

(Chapter 8), scheduling problems with changeover and transportation times (Chapter 9),

problems with multi-purpose machines (Chapter 10) and problems with multiprocessor

tasks (Chapter 11) are treated.

Most extensions in comparison with the first edition can be found in Chapters 8 and

11. In contrast to the first edition, where only batching problems with the length of a

batch equal to the sum of the processing times of the jobs in the batch have been consid-

ered, the new edition includes also p-batching problems, where the length of a batch is

equal to the maximum of the processing times of the jobs in the batch. Both the unbound-

ed (the batch can contain arbitrarily many jobs) and the bounded model are considered.

The chapter on multiprocessor tasks has been extended by some comments on preemptive

multiprocessor task problems and on multi-mode multiprocessor task problems.

The chapters finish with a survey of complexity results, where both the maximal poly-

nomially solvable problems and the minimal NP-hard problems are listed in the tables.

These tables have been updated in comparison with the first edition of the book, and they

now also contain a lot of results that have been recently obtained. The book is a very help-

ful tool for the development of concrete scheduling algorithms.

–FRANK WERNER, OTTO-VON-GUERICKE UNIVERSITÄT MAGDEBURG 

Handbook of Computational Geometry

edited by J.R. Sack and J. Urrutia

Elsevier Science, North-Holland

ISBN 0-444-82537-1, 1088 PAGES, USD 190.50

C
ompared with its important influence on

today’s Geometry and its strong impact on

other fields inside and outside mathematics, a

comprehensive and extensive source on

Computational Geometry was long overdue. However, is

there a chance to cover at least most of the variety of this

field, ranging from Algorithms and Data Structure,

Optimization and Euclidean Geometry to applications in

Visualizations, Robotics, CAD, etc., in only one book?

There is! And the proof is given by the Handbook on

Computational Geometry edited by J. R. Sack and J. Urrutia.

This handbook contains 22 chapters, most of them

devoted to basic problems and concepts in Computational

Geometry like Davenport-Schinzel sequences, Arrange-

ments, Voronoï Diagrams, Closest-Point Problems, Link

Distance Problems, Graph-Drawing, Similarity of

Geometric Shapes, Spanning Trees and Spanners, Visibility,

Animation, Geometric Data Structures, Spatial Data

Structures, Illumination Problems, Polygon Decom-

position, Parallel Computational Geometry, Randomized

Algorithms, Derandomization and Robustness in

Geometric Computation. In addition, three chapters on

Geographical Information Systems, Geometric Shortest

Path and Network Optimization, and Mesh Generation

show in an impressive manner the interaction of

Computational Geometry with other fields of science.

My overall impression is that most of the chapters are

written in a very comprehensive, detailed and stimulating

way. Each chapter contains an extensive list of references,

and there is no doubt that this book will be a very valuable

resource for researchers. However I can also recommend

this handbook to everyone who just wants to get an impres-

sion of the problems, tools and techniques used in

Computational Geometry, or who is just curious about what

is going on in this field. I am sure that this book will satis-

fy her/his curiosity and thirst for knowledge.

–MARTIN HENK, MAGDEBURG 
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Application for Membership

I wish to enroll as a member of the Society.

My subscription is for my personal use and not for the benefit of any library or institution.

� I will pay my membership dues on receipt of your invoice.

� I wish to pay by credit card (Master/Euro or Visa).

CREDITCARD NO. EXPIRY DATE

FAMILY NAME

MAILING ADDRESS

TELEPHONE NO. TELEFAX NO.

EMAIL

SIGNATURE

Mail to:

Mathematical Programming Society

3600 University City Sciences Center

Philadelphia PA 19104-2688 USA

Cheques or money orders should be made

payable to The Mathematical Programming

Society, Inc. Dues for 1999, including sub-

scription to the journal Mathematical

Programming, are US $75.

Student applications: Dues are one-half the

above rate. Have a faculty member verify your

student status and send application with dues

to above address.

Faculty verifying status

Institution

The deadline for the

next issue of OPTIMA

is November15, 2000.

Math and Money!

Clay Mathematics Institute 

has announced seven

“Millenium Prize Problems.” 

A prize of $1,000,000 is 

given for the solution of 

each of these problems. See

<http://www.ams.org/claymath/>. 


