N"68

OCTOBER2002

Exact algorithms for NP-hard problems 2

Conference Report 9

gallimaufry 14

OPTIM A 6 8EECLZWNY

PAGE 2

Exact algorithms for
NP-hard problems

Gerhard J. Woeginger*

We discuss fast exponential time solutions for
NP-complete problems. We survey known
results and approaches, we provide pointers to
the literature, and we discuss several open
problems in this area.

Introduction

Every NP-complete problem can be solved by
exhaustive search. Unfortunately, when the size
of the instances grows the running time for
exhaustive search soon becomes forbiddingly
large, even for instances of fairly small size. For
some problems it is possible to design
algorithms that are significantly faster than
exhaustive search, though still not polynomial
time. This survey deals with such fast, super-
polynomial time algorithms that solve NP-
complete problems to optimality. In recent years
there has been growing interest in the design
and analysis of such super-polynomial time
algorithms. This interest has many causes.

e It is now commonly believed that PTNE,
and that super-polynomial time algorithms
are the best we can hope for when we are
dealing with an NP-complete problem.
There is a handful of isolated results
scattered across the literature, but we are far
from developing a general theory. In fact, we
have not even started a systematic
investigation of the worst case behavior of
such super-polynomial time algorithms.

Some NP-complete problems have better
and faster exact algorithms than others.
There is a wide variation in the worst case
complexities of known exact (super-
polynomial time) algorithms. Classical
complexity theory can not explain these
differences. Do there exist any relationships
among the worst case behaviors of various
problems? Is progress on the different
problems connected? Can we somehow
classify NP-complete problems to see how
close we are to the best possible algorithms?

With the increased speed of modern
computers, large instances of NP-complete
problems can be solved effectively. For

example it is nowadays routine to solve
traveling salesman (TSP) instances with up
to 2000 cities. And if the data is nicely
structured, then instances with up to 13000
cities can be handled in practice (Applegate,
Bixby, Chvdtal & Cook [1]). There is a huge
gap between the empirical results from
testing implementations and the known
theoretical results on exact algorithms.

Fast algorithms with exponential running
times may actually lead to practical
algorithms, at least for moderate instance
sizes. For small instances, an algorithm with
an exponential time complexity of O(1.01")
should usually run much faster than an
algorithm with a polynomial time

complexity of O(n").

In this article we survey known results and
approaches to the worst case analysis of exact
algorithms for NP-hard problems, and we
provide pointers to the literature.

How do we measure the quality of an exact
algorithm for an NP-hard problem? Exact
algorithms for NP-complete problems are
sometimes hard to compare, since their analysis
is done in terms of different parameters. For
instance, for an optimization problem on graphs
the analysis could be done in terms of the
number 7 of vertices, or possibly in the number
m of edges. Since the standard reductions
between NP-complete problems may increase
the instance sizes, many questions in
computational complexity theory depend
delicately on the choice of parameters. The right
approach seems to be to include an explicit
complexity parameter in the problem
specification (Impagliazzo, Paturi & Zane [12]).
Recall that the decision version of every problem
in NP can be formulated in the following way:

Given x, decide whether there exists y so that

|y]” m(x) and R(x, y).

Here x is an instance of the problem; y is a short
YES-certificate for this instance; R(x, y) is a
polynomial time decidable relation that verifies
certificate y for instance x; and m(x) is a
polynomial time computable and polynomially

*g.j.woeginger@math.utwente.nl. Faculty of Mathematics, University of Twente, PO. Box 217,

7500 AE Enschede, The Netherlands.

OP TIMAG6 8

ocroser 2002

PAGE 3

bounded complexity parameter that bounds the
length of the certificate y. A trivial exact
algorithm for solving x would be to enumerate
all possible strings with lengths up to 7(x), and
to check whether any of them yields a YES-
certificate. Up to polynomial factors that depend
on the evaluation time of R(x,y), this would

yield a running time of 27

. The first goal in
exact algorithms always is to break the triviality
barrier, and to improve on the time complexity
of this trivial enumerative algorithm.
Throughout this survey, we will measure the
running times of algorithms only with respect to
the complexity parameter m(x). We will use a
modified big-Oh notation that suppresses all
other (polynomially bounded) terms that
depend on the instance x and the relation R(x,y).
We write O*(T(m(x))) for a time complexity of
the form O*(7(m(x))-poly(|x|)). This
modification may be justified by the exponential
growth of 7(m(x)). Note that for instance for
simple graphs with m(x)=7 vertices and m edges,

5. .
is sandwiched

the running time 1.7344"-n"m
between the running times 1.7344" and

1.7345". We stress, however, the fact that the
complexity parameter 7(x) in general is not
unique, and that it heavily depends on the
representation of the input. For an input in the
form of an undirected graph, for instance, the
complexity parameter might be the number 7 of
vertices or the number 7 of edges.

Time complexities and classes of optimization
problems. Consider a problem in NP as defined
above, with instances x and with complexity
parameter 7(x). An algorithm for this problem
has sub-exponential time complexity, if the
running time depends polynomially on |x| and
if the logarithm of the running time depends
sub-linearly on m(x). For instance, a running

time of |x|” - P

would be sub-exponential.
A problem in NP is contained in the complexity
class SUBEXP (the class of SUB-EXPonentially
solvable problems) if for every fixed € > 0, it can

25" time.

be solved in poly (|x|)
Let us briefly discuss some basic classes of
optimization problems that contain many
classical problems: the class of subset problems,
the class of permutation problems, and the class
of partition problems. In a subset problem, every
feasible solution can be specified as a subset of
an underlying ground set. For instance, fixing a
truth-assignment in the satisfiability problem
corresponds to selecting a subset of TRUE
variables. In the independent set problem, every

subset of the vertex set is a solution candidate.
In a permutation problem, every feasible solution
can be specified as a total ordering of an
underlying ground set. For instance, in the TSP
every tour corresponds to a permutation of the
cities. In single machine scheduling problems,
feasible schedules are often specified as
permutations of the jobs. In a partition problem,
every feasible solution can be specified as a
partition of an underlying ground set. For
instance, a graph coloring is a partition of the
vertex set into color classes. In parallel machine
scheduling problems, feasible schedules are often
specified by partitioning the job set and
assigning every part to another machine.

As we observed above, all NP-complete
problems possess trivial algorithms that simply
enumerate and check all feasible solutions. For
a ground set with cardinality 7, subset problems
can be trivially solved in O*(2") time,
permutation problems can be trivially solved in
O*(n!) time, and partition problems are trivial to

n log n

solve in O*(c" *®") time; here ¢ > 1 denotes a
constant that does not depend on the instance.
These time complexities form the triviality
barriers for the corresponding classes of

optimization problems.

Organization of the survey. The four
Sections 1-4 introduce and explain four central
techniques for designing fast exact algorithms:
Section 1 deals with dynamic programming
across the subsets, Section 2 discusses pruning of
search trees, Section 3 illustrates the power of
preprocessing the data, and Section 4 considers
approaches based on local search. Finally,
Section 5 gives some concluding remarks.

Throughout this paper, open problems refer to
unsolved research problems, while exercises pose
smaller questions and puzzles that should be
fairly easy to solve. A long version of this survey
will appear in the Springer book “Eureka, you
shrink!” edited by Michael Jiinger, Gerhard
Reinelt, and Giovanni Rinaldi. The long version
contains more examples, more exercises, and
more problems, and it also discusses the

interface to complexity theory.

1 Technique: Dynamic
programming across the subsets

A standard approach for getting fast exact
algorithms for NP-complete problems is to do
dynamic programming across the subsets. For
every ‘interesting’ subset of the ground set, there

is a polynomial number of corresponding states
in the state space of the dynamic program. In
the cases where all these corresponding states
can be computed in reasonable time, this
approach usually yields a time complexity
O0*(2"). We will illustrate these benefits of
dynamic programming by discussing the
traveling salesman problem. Sometimes, the
number of ‘interesting’ subsets is fairly small,
and then an even better time complexity might
be possible. This will be illustrated by discussing
the graph 3-colorability problem.

The traveling salesman problem (TSP). A
traveling salesman has to visit the cities 1 to 7.
He starts in city 1, runs through the remaining
n— 1 cities in arbitrary order, and in the very
end returns to his starting point in city 1. The
distance from city 7 to city j is denoted by d(%, ;).
The goal is to minimize the total travel length of
the salesman. A trivial algorithm for the TSP
checks all O(#!) permutations.

We now sketch the exact TSP algorithm of
Held & Karp [8] that is based on dynamic
programming across the subsets. For every non-
empty subset S ¢ {2,...,n} and for every city
7 €S we denote by OPT[S; 7] the length of the
shortest path that starts in city 1, then visits all
cities in S — {7} in arbitrary order, and finally

stops in city 7. Clearly, OrT[{7};7] = d(1, 7) and

OPrT[S; 7] = min {OrT([S - {i}y] + 4(j, 7) :
jeS-1{}

By working through the subsets S in order of
increasing cardinality, we can compute the value
OPT[S; 7] in time proportional to |§|. The
optimal travel length is given as the minimum
value of OPT[{2,...,7}37]+d(j,1) over all j with
27 7” n. This yields an overall time complexity
of O(#*2") and hence O*(2").

This result was published in 1962, and from
nowadays point of view almost looks trivial.
Still, it yields the best time complexity that is
known today.

Open problem 1.1 Construct an exact algorithm
Jor the traveling salesman problem with time
complexity OX(c") for some ¢ < 2. In fact, it even
would be interesting to reach such a time
complexity OX(c") with ¢ < 2 for the closely related,
but slightly simpler Hamiltonian cycle problem
(given a graph G on n vertices, does it contain a
spanning cycle).

OPTIM A 6 8EECLZWNY

PAGE 4

Hwang, Chang & Lee [11] describe a sub-

! .
M"Y exact algorithm

exponential time O (¢
with some constant ¢ > 1 for the Euclidean TSP,
The Euclidean TSP is a special case of the TSP
where the cities are points in the Euclidean
plane and where the distance between two cities
is the Euclidean distance. The approach in [11]
is heavily based on planar separator structures,

and it cannot be carried over to the general TSP

Graph coloring. Given a graph G = (V] E) with
n vertices, color the vertices with the smallest
possible number of colors such that adjacent
vertices never receive the same color. This
smallest possible number is the chromatic
number %(G) of the graph. Every color class is a
vertex set without induced edges; such a vertex
set is called an independent set. An independent
set is maximal, if none of its proper supersets is
also independent. For any graph G, there exists a
feasible coloring with x(G) colors in which at
least one color class is a maximal independent
set. Moon & Moser [19] have shown that a
graph with 7 vertices contains at most
3"°®1.4422" maximal independent sets. By
considering a collection of 7/3 independent
triangles, we see that this bound is best possible.
Paull & Unger [24] designed a procedure that
generates all maximal independent sets in a
graph in O(x") time per generated set.

Based on the ideas introduced by Lawler [16],
we present a dynamic program across the subsets
with a time complexity O*(2.4422"). Fora
subset S < V of the vertices, we denote by G[S]
the subgraph of G that is induced by the vertices
in S, and we denote by OPT[S] the chromatic
number of G[S]. If § is empty, then clearly
OPT[S] = 0. Moreover, for S T @ we have

Or1[S] = 1 + min {OPT[S — 7] : T maximal
indep. set in G[S]}.

We work through the sets S in order of
increasing cardinality, such that when we are
handling S, all its subsets have already been
handled. Then the time needed to compute the
value OPT[S] is dominated by the time needed
to generate all maximal independent subsets 7"
of G[S]. By the above discussion, this can be
done in #°3*" time where £ is the number of
vertices in G[S].This leads to an overall time

complexity of

k k

k=0

n n n n
3 (}(23k/33n2 < ()3k/3:n2(1+31/3))n'
k=0

Since 1 + 3" ©2.4422, this yields the claimed
time complexity O*(2.4422"). Very recently,
Eppstein [6] managed to improve this time
complexity to O*(2.4150") where 2.4150 ®4/3
+ 3*°/4. His improvement is based on carefully
counting the small maximal independent sets in
a graph.

Finally, we turn to the (much easier) special
case of deciding whether x(G) = 3. Lawler [16]
gives a simple O*(1.4422") algorithm: Generate
all maximal independent sets S, and check
whether their complement graph G[V - §] is
bipartite. Schiermeyer [30] describes a rather
complicated modification of this idea that
improves the time complexity to O*(1.415").
The first major progress is due to Beigel &
Eppstein [3] who get a running time of
0*(1.3446") by applying the technique of
pruning the search tree; see Section 2 of this
survey. The current champion algorithm has a
time complexity of 0*(1.3289") and is due to
Eppstein [5]. This algorithm combines pruning
of the search tree with several tricks based on
network flows and matching.

Exercise 1.2 (Nielsen [20])

Find an O*(1.7851") exact algorithm that decides
Jor a graph on n vertices whether y(G)=4. Hint:
Generate all maximal independent sets of
cardinality at least n/4 (why?), and use the
algorithm from [5] to check their complement
graphs.

Eppstein [5] also shows that for n/4” k" n/3, a
graph on n vertices contains at most O(3" "4
maximal independent sets. Apply this result to
improve the time complexity for 4-coloring further
to O%(1.7504").

2 Technique: Pruning the
search tree

Every NP-complete problem can be solved by
enumerating and checking all feasible solutions.
An organized way for doing this is to (1)
concentrate on some piece of the feasible
solution, to (2) determine all the possible values
this piece can take, and to (3) branch into
several subcases according to these possible
values. This naturally defines a search tree: Every
branching in (3) corresponds to a branching of
the search tree into subtrees. Sometimes, it can
be argued that certain values for a certain piece
can never lead to an optimal solution.
In these cases we may simply ignore all
these values, kill the corresponding

subtrees, and speed-up the search procedure.
Every Branch-and-Bound algorithm is based on
this idea, and we can also get exact algorithms
with good worst case behavior out of this idea.
However, to get the worst case analysis through,
we need a good mathematical understanding of
the evolution of the search tree, and we need
good estimates on the sizes of the killed subtrees
and on the number and on the sizes of the
surviving cases.

We will illustrate the technique of pruning
the search tree by developing algorithms for the
satisfiability problem, and for the independent
set problem in graphs.

The satisfiability problem. Let X = {x,, x,,...,x }
be a set of logical variables. A variable or a
negated variable from X is called a Jiteral. A
clause over X is the disjunction of literals from X.
A Boolean formula is in conjunctive normal form
(CNF), if it is the conjunction of clauses over X.
A formula in CNF is in A-CNF, if all clauses
contain at most # literals. A formula is satisfiable,
if there is a truth assignment from X to {0,1}
which assigns to each variable a Boolean value
(0=false, 1=true) such that the entire formula
evaluates to true. The £-satisfiability problem is
the problem of deciding whether a formula F in
k-CNF is satisfiable. It is well-known that 2-
satisfiability is polynomially solvable, whereas 4-
satisfiability with #> 3 is NP-complete. A trivial
algorithm checks all possible truth assignments
in O*(2") time.

We will now describe an exact O*(1.8393")
algorithm for 3-satisfiability that is based on the
technique of pruning the search tree. Let / be a
Boolean formula in 3-CNF with m clauses
(m” #°). The idea is to branch on one of the
clauses ¢ with three literals ¢ ,¢,,/,. Every
satisfying truth assignment for F must fall into
one of the following three classes:

(a) literal f] is true;
(b) literal ¢ L s false, and literal /¢ , Is true;

(c) literals ¢ ,and V4 , are false, and literal ¢ 3
is true.

We fix the values of the corresponding one, two,
three variables appropriately, and we branch into
three subtrees according to these cases (a), (b),
and (c) with 7 — 1, n— 2, and 7 — 3 unfixed
variables, respectively. By doing this, we cut
away the subtree where the literals £, /,,/,

OP TIMAG6 8

ocroser 2002

PAGE 5

all are false. The formulas in the three subtrees
are handled recursively. The stopping criterion is
when we reach a formula in 2-CNE, which can
be resolved in polynomial time. Denote by 71(7)
the worst case time that this algorithm needs on

a 3-CNF formula with 7 variables. Then
T(n) " T(n-1) + T(n-2) + T(n-3) + O(n+m).

Here the terms 7(n — 1), T(n — 2), and 7(n — 3)
measure the time for solving the subcase with
n—1, n—2, and n — 3 unfixed variables,
respectively. Standard calculations yield that
7{(n) is within a polynomial factor of o where
o is the largest real root of o’= o + o +1. Since
a @1.8393, this gives a time complexity of
0*(1.8393").

In a milestone paper in this area, Monien &
Speckenmeyer [18] improve the branching step
of the above approach. They either detect a
clause that can be handled without any
branching, or they detect a clause for which the
branching only creates formulas that contain
one clause with at most £ — 1 literals. A careful
analysis yields a time complexity of O*(f") for
k-satisfiability, where 8 is the largest real root of
B=2-1/B""". For 3-satisfiability, this time
complexity is O*(1.6181"). Schiermeyer [29]
refines these ideas for 3-satisfiability even
further, and performs a quantitative analysis of
the number of 2-clauses in the resulting
subtrees. This yields a time complexity of
0*(1.5783"). Kullmann [14, 15] writes half a
book on the analysis of this approach, and gets
time complexities of 0*(1.5045") and
0*(1.4963") for 3-satisfiability. The current
champion algorithms for satisfiability are,
however, not based on pruning the search tree,
but on local search ideas; see Section 4 of this

survey.

Exercise 2.1 For a formula F in CNE consider
the following bipartite graph G, : For every logical
variable in X; there is a corresponding variable-
vertex in G, and for every clause in E there is a
corresponding clause-vertex in G,. There is an edge
from a variable-vertex to a clause-vertex if and
only if the corresponding variable is contained (in
negated or un-negated form) in the corresponding
clause. The planar satisfiability problem is the
special case of the satisfiability problem that
contains all instances with formulas F in CNF for
which the graph G, is planar.

Design a sub-exponential time exact algorithm

Jor the planar 3-satisfiability problem! Hint: Use

the planar separator theorem of Lipton & Tarjan
[17] to break the formula F into two smaller,
independent pieces. Running times of roughly
o¥ ") are possible.

The independent set problem. Given a graph
G=(V, E) with n vertices, the goal is to find an
independent set of maximum cardinality. An
independent set S ¢ Vis a set of vertices that
does not induce any edges. Moon& Moser [19]
have shown that a graph contains at most
3"° ®1.4422" maximal (with respect to
inclusion) independent sets. Hence the first
goal is to beat the time complexity O*(1.4422").
We describe an exact 0*(1.3803") algorithm
for independent set that is based on the
technique of pruning the search tree. Let G be a
graph with 7 edges. The idea is to branch on a
high-degree vertex: If all vertices have degree at
most two, then the graph is a collection of cycles
and paths. It is straightforward to determine a
maximum independent set in such a graph.
Otherwise, G contains a vertex v of degree
d 2 3; let v,,..., v, be the neighbors of v in G.
Every independent set / for G must fall into one

of the following two classes:

(a) 7 does not contain v.
(b) I does contain v; then / cannot contain

any neighbor of v.

We dive into two subtrees. The first subtree
deals with the graph that results from removing
vertex v from G. The second subtree deals with
the graph that results from removing v together
with v, ..., v, from G. We recursively
compute the maximum independent set in both
subtrees, and update it to a solution for the
original graph G. Denote by 7(n) the worst case
time that this algorithm needs on a graph with
7 vertices. Then

Tn)” Tn—-1) + T(n—4) + O(n + m).

Standard calculations yield that 7(») is within a
polynomial factor of ' where y ©1.3803 is the
largest real root of Y = ¥’ + 1. This yields the
time complexity O*(1.3803").

The first published paper that deals with exact
algorithms for maximum independent set is
Tarjan & Trojanowski [34]. They give an
algorithm with running time 0*(1.2599"). This
algorithm follows essentially the above approach,
but performs a smarter (and pretty tedious)
structural case analysis of the neighborhood

around the high-degree vertex ». The algorithm
of Jian [13] has a time complexity of
0*(1.2346"). Robson [26] further refines the
approach. A combinatorial argument about
connected regular graphs helps to get the
running time down to 0*(1.2108"). Robson's
algorithm uses exponential space. Beigel [2]
presents another algorithm with a weaker time
complexity of 0*(1.2227"), but polynomial
space complexity. Robson [27] is currently
working on a new algorithm which is supposed
to run in time O*(1.1844"). This new
algorithm is based on a detailed computer
generated subcase analysis where the number of
subcases is in the tens of thousands.

Open problem 2.2 (2) Construct an exact
algorithm for the maximum independent set
problem with time complexity O*(¢") for some
¢” 1.1. If this really is doable, it will be very
tedious to do.

(b) Prove a lower bound on the time complexity
of any exact algorithm for maximum independent
set that is based on the technique of pruning the
search tree and that makes its branching decision
by solely considering the subgraphs around a fixed

chosen vertex.

Exercise 2.3 Design a sub-exponential time exact
algorithm for the restriction of the maximum
independent set problem to planar graphs! Hint:
Use the planar separator theorem of Lipton &
Tarjan [17].

3 Technique: Preprocessing the data

Preprocessing is an initial phase of computation,
where one analyzes and restructures the given
data, such that later on certain queries to the
data can be answered quickly. By preprocessing
an exponentially large data set or part of this
darta in an appropriate way, we may sometimes
gain an exponentially large factor in the running
time. In this section we will use the technique of
preprocessing the data to get fast algorithms for
the subset sum problem and for the binary
knapsack problem. We start this section by
discussing two very simple, polynomially
solvable toy problems where preprocessing helps
alot.

In the first toy problem, we are given two
integer sequences x,, . . ., x,and y,, .. ., y, and
an integer S. We want to decide whether there
exist an x, and a y; that sum up to S. A trivial
approach would be to check all possible pairs in

OPTIM A 6 8EECLZWNY

PAGE 6

O(F’) overall time. A better approach is to first
preprocess the data and to sort the x, in

O(k log k) time. After that, we may repeatedly
use bisection search in this sorted array, and
search for the % values S — y;in O(log) time per
value. The overall time complexity becomes

O(k log k), and we save a factor of # / log k. By
applying the same preprocessing, we can also
decide in O(k log #) time, whether the sequences
(x, yand (y;) are disjoint, or whether every value
x, also occurs in the sequence (y;).

In the second toy problem, we are given 4
points (x,y) in two-dimensional space, together
with the # numbers z,,. . . ,z,, and a number W.
The goal is to determine for every z; the largest
value y,, subject to the condition that x, + z.” W.
The trivial solution needs O(£”) time, and by
applying preprocessing this can be brought
down to O(k log 4): If there are two points

”

(x,y) and (xj, y].) with x, x; and y, 2 Iy then
the point (xj, y].) may be disregarded since it is
always dominated by (x, y). The subset of non-
dominated points can be computed in

O(k log k) time by standard methods from
computational geometry. We sort the non-
dominated points by increasing x-coordinates
and store this sequence in an array. This
completes the preprocessing. To handle a value
z, we simply search in O(log 4) time through
the sorted array for the largest value x, less or
equal to W -z,

In both toy problems preprocessing improved
the time complexity from O(F) to Ok log k).
Of course, when dealing with exponential time
algorithms an improvement by a factor of
k[log k is not impressive at all. The right
intuition is to think of 4 as roughly 2", Then
preprocessing the data yields a speedup from
¥ =2"to klog k = n2", and such a speedup of
2"” indeed is impressive!

The subset sum problem. In this problem, the
input consists of positive integers 4,, . . . ,a, and
S. The question is whether there exists a subset
of the , that sums up to S. The subset sum
problem belongs to the class of subset problems,
and can be solved (trivially) in O*(2") time. By
splitting the problem into two halves and by
preprocessing the first half, the time complexity
can be brought down to O*(\/27) @
0*(1.4145").

Let X denote the set of all integers of the form
T a,withIcfl, ..., [%/2]1, and let Y denote
the set of all integers of the form X_, 2, with
Ic{ln/2]+1,..., n. Note that 0 € Xand

0 e Y. It is straightforward to compute X and V'
in 0*(2") time by complete enumeration. The
subset sum instance has a solution if and only if
there exists an x, € Xand a yeY with

x,+y, = 5. But now we are back at our first toy
problem that we discussed at the beginning of
this section! By preprocessing X and by
searching for all § - ¥, in the sorted structure, we
can solve this problem in O(12") time. This
yields an overall time of O* 2",

Exercise 3.1 (Van Vliet [35])

In the Three-Partition problem, the input consists

. b, and
s .. ¢, vogether with an integer D. The question

of 3n positive integers a,, . . . a, b, ..
!
is to determine whether there exist three
permutations %, W, ¢, of {1, . . ., n} such that
Aoy + by + Cyy = D bolds forall i = 1, ..., n.
By checking all possible triples (% v, ¢) of
permutations, this problem can be solved trivially
in O¥nl’) time.

Use the technique of preprocessing the data to
improve the time complexity to O¥(nl).

The binary knapsack problem. Here the
input consists of 7 items that are specified by a
positive integer value #, and a positive integer
weight w, (=1, ..., n), together with a bound
W. The goal is to find a subset of the items with
the maximum total value subject to the
condition that the total weight does not exceed
W. The binary knapsack problem is closely
related to the subset sum problem, and it can be
solved (trivially) in O*(2") time. In 1974,
Horowitz & Sahni [10] used a preprocessing
trick to improve the time complexity to o*(2").

For every I < {1,..., [7/2]} we create a
compound item x, with value #,= X_, 4, and
weight w,= 2,_,w, and we put this item into
the set X. For every J < { Ln/2] +1,..., n} we
put a corresponding compound item y, into the
set Y. The sets Xand Y can be determined in
O0*(2") time. The solution of the knapsack
instance now reduces to the following: Find a
compound item x, in X and a compound item y,
in Y; such that w, + w, ” Wand such that 2, +
a, becomes maximum. Buc this can be handled
by preprocessing as in our second toy problem,
and we end up with an overall time complexity
and an overall space complexity of o*(2").

In 1981, Schroeppel & Shamir [33] improved
the space complexity of this approach to
O0*(2"), while leaving its time complexity
unchanged. The main trick is to split the
instance into four pieces with 7/4 items each,

instead of two pieces with 7/2 items. Apart from
this, there has been no progress on exact
algorithms for the knapsack problem since 1974.

Open problem 3.2 Construct an exact algorithm
Jor the subset sum problem or the knapsack
problem with time complexity O*(c") for some

¢ <2, or prove that no such algorithm can exist
under some reasonable complexity assumptions.

4 Technique: Local search

The idea of using local search methods in
designing exact exponential time algorithms is
relatively new. A local search algorithm is a search
algorithm that wanders through the space of
feasible solutions. At each step, this search
algorithm moves from one feasible solution to
another one nearby. In order to express the word
‘nearby’ mathematically, we need some notion of
distance or neighborhood on the space of
feasible solutions. For instance in the
satisfiability problem, the feasible solutions are
the truth assignments from the set X of logical
variables to {0, 1}. A natural distance between
truth assignments is the Hamming distance, that
is, the number of bits where two truth
assignments differ.

In this section we will concentrate on the 3-
satisfiability problem where the input is a
Boolean formula £ in 3-CNF over the 7 logical
variables in X = {x,, x,,....x }; see Section 2 for
definitions and notations for this problem. We
will describe three exact algorithms for 3-
satisfiability that all are based on local search
ideas. All three algorithms are centered around
the Hamming neighborhood of truth
assignments: For a truth assignment 7 and a non-
negative integer 4, we denote by H(z, d) the set
of all truth assignments that have Hamming
distance at most 4 from assignment # It is easy
to see that H(#, d) contains exactly Zio(z)
elements.

Exercise 4.1 For a given truth assignment t and

a given non-negative integer d, use the technique of
pruning the search tree to check in 0*(3%) time
whether the Hamming neighborhood Hz, d)
contains a satisfying truth assignment for the 3-
CNF formula E

In other words, the Hamming neighborhood
H(z, d) can be searched quickly for the 3-

satisfiability problem. For the A-satisfiability
problem, the corresponding time complexity

would be O*(£%).

OP TIMAG6 8

ocroser 2002

PAGE 7

First local search approach to 3-satisfiability.
We denote by 0” (respectively 17) the truth
assignment that sets all variables to 0
(respectively, to 1). Any truth assignment is in
H(0", n/2) or in H(1", n/2). Therefore by
applying the search algorithm from Exercise 4.1
twice, we get an exact algorithm with running
time O*(4/3") ®0%(1.7321") for 3-satisfiability.
It is debatable whether this algorithm should be
classified under pruning the search tree or under
local search. In any case, it is due to Schéning

[32].

Second local search approach to 3-
satisfiability. In the first approach, we
essentially covered the whole solution space by
two balls of radius 4 = 7/2 centered at 0" and 1.
The second approach works with balls of radius
d = n/4. The crucial idea is to randomly choose
the center of a ball, and to search this ball with
the algorithm from Exercise 4.1. If we only do
this once, then we ignore most of the solution
space, and the probability for answering
correctly is pretty small. But by repeating this
procedure a huge number o of times, we can
boost the probability arbitrarily close to 1. A
good choice for o is 0 =100 - 2"/2:5(:). The
algorithm now works as follows: Choose o times
a truth assignment # uniformly at random, and
search for a satisfying truth assignment in

H(z, n/4). If in the end no satisfying truch
assignment has been found, then answer that the
formula F is not satisfiable.

We will now discuss the running time and the
error probability of this algorithm. By Exercise
4.1, the running time can be bounded by
roughly o - 3", By applying Stirling's
approximation, one can show that up to a
polynomial factor the expression Z/Zfo (;) behaves
asymptotically like (256/27)"*. Therefore, the
upper bound o - 3" on the running time is in
0*((3/12)") = 0*(1.5").

Now let us analyze the error probability of the
algorithm. The only possible error occurs, if the
formula F is satisfiable, whereas the algorithm
does not manage to find a good ball H(z, #/4)
that contains some satisfying truth assignment
for F. For a single ball, the probability of
containing a satisfying truth assignment equals
2:140 (;)/2", that is the number of elements in
H(z, n/4) divided by the overall number of
possible truth assignments. This probability
equals 100/c.. Therefore the probability of
selecting a ball that does 70t contain any
satisfying truth assignment is 1 — 100/c.. The

probability of o times not selecting such a ball
equals (1 — 100/a), which is bounded by the
negligible value ¢ 100

In fact, the whole algorithm can be
derandomized without substantially increasing
the running time. Dantsin, Goerdt, Hirsch,
Kannan, Kleinberg, Papadimitriou, Raghavan &
Schéning [4] do not choose the centers of the
balls at random, but they take all centers from a
so-called covering code so that the resulting balls
cover the whole solution space. They show that
such covering codes can be computed within
reasonable amounts of time. The approach in
[4] yields deterministic exact algorithms for /-
satisfability with running time O*((2 — %7)").
For 3-satisfiability, [4] improve the time
complexity further down to O*(1.4802") by
using a smart idea for an underlying branching
step. This is currently the fastest known

deterministic algorithm for 3-satisfiability.

Third local search approach to 3-satisfiability.
The first approach was based on selecting the
center of a ball deterministically, and then
searching through the whole ball. The second
approach was based on selecting the center of a
ball randomly, and then searching through the
whole ball. The third approach now is based on
selecting the center of a ball randomly, and then
doing a short random walk within the ball.
More precisely, the algorithm repeats the
following procedure roughly 200 - (4/3)" times:
Choose a truth assignment ¢ uniformly at
random, and perform 27 steps of a random walk
starting in # In each step, first select a violated
clause at random, then select a literal in the
selected clause at random, and finally flip the
truth value of the corresponding variable. If in
the very end no satisfying truth assignment has
been found, then answer that the formula Fis
not satisfiable.

The intuition behind this algorithm is as
follows. If we start far away from a satisfying
truth assignment, then the random walk has
little chance of stumbling towards a satisfying
truth assignment. Hence, it is a good idea to
terminate it quite early after 27 steps, without
wasting time. But if the starting point is very
close to a satisfying truth assignment, then the
probability is high that the random walk will be
dragged closer and closer towards this satisfying
truth assignment. And if the random walk
indeed is dragged into a satisfying truth
assignment, then with high probability this
happens within the first 27 steps of the random

walk. The underlying mathematical structure is
a Markov chain that can be analyzed by
standard methods. Clearly, the error probability
can be made negligibly small by sufficiently
often restarting the random walk. And up to a
polynomial factor, the running time of the
algorithm is proportional to the number of
performed random walks. This implies that the
time complexity is O*((4/3)") ® 0*(1.3334").

This algorithm and its analysis are due to
Schéning [31]. Some of the underlying ideas go
back to Papadimitriou [21]} who showed that
2-SAT can be solved in polynomial time by a
randomized local search procedure. The
algorithm easily generalizes to the 4-satisfiability
problem, and yields a randomized exact
algorithm with time complexity
(O*((2(£—1)/k)"). The fastest known randomized
exact algorithm for 3-satisfiability is due to
Hofmeister, Schéning, Schuler & Watanabe [9],
and has a running time of 0*(1.3302"). It is
based on a refinement of the above random walk
algorithm.

Open problem 4.2 Design better deterministic
and/or randomized algorithms for the k-
satisfiability problem.

More results on exact algorithms for k-
satisfiability and related problems can be found
in the work of Paturi, Pudlak & Zane [22],
Paturi, Pudlak, Saks & Zane [23], Pudlak [25],
and Rodések) [28].

5 Concluding remarks

Currently, when we are dealing with an
optimization problem, we are used to look at its
computational complexity, its approximability
behavior, its online behavior (with respect to
competitive analysis), its polyhedral structure.
Exact algorithms with good worst case (time)
behavior should probably become another
standard item on this list, and we feel that the
known techniques and results as described in
Sections 1-4 deserve to be taught in our
introductory algorithms courses.

There remain many open problems and
challenging questions around the worst case
analysis of exact algorithms for NP-hard
problems. This seems to be a rich and promising
area. We only have a handful of techniques
available, and there is ample space for
improvements and for new results.

OPTIMAG6 8

aucust 2002

PAGE 8

References

[1] D. APPLEGATE, R. BIXBY,
V. CHVATAL, AND W.
COOK [1998]. On the
solution of traveling
salesman problems.
Documenta Mathematica 3,
645-656.

[2] R.BEIGEL [1999]. Finding
maximum independent sets in
sparse and general graphs.
Proceedings of the 10th ACM-
SIAM Symposium on Discrete
Algorithms (SODA'1999),
856-857.

(3] R. BEIGEL AND D.
EPPSTEIN [1995]. 3-
Coloring in time O(1.3446"):
A no-MIS algorithm.
Proceedings of the 36th Annual
Symposium on Foundations of
Computer Science
(FOCS’1995), 444-453.

[4] E. DANTSIN, A. GOERDT,
E.A. HIRSCH, R. KANNAN,
J. KLEINBERG, C.H.
PAPADIMITRIOU, P.
RAGHAVAN, AND U.
SCHONING) [2001]. A
deterministic (2 —%)"
algorithm for £-SAT based on
local search. To appear in
Theoretical Computer Science.

(5] D. EPPSTEIN [2001].
Improved algorithms for 3-
coloring, 3-edge-coloring, and
constraint satisfaction.
Proceedings of the 12th ACM-
SIAM Symposium on Discrete
Algorithms (SODA2001), 329-
337.

[6] D. EPPSTEIN [2001]. Small
maximal independent sets and
faster exact graph coloring.
Proceedings on the 7th
Workshop on Algorithms and
Data Structures (WADS2001),
Springer, LNCS 2125, 462-
470.

[7] M.R. GAREY AND D.S.
JOHNSON [1979].
Computers and Intractability: A
Guide to the Theory of NP-
Completeness. Freeman, San
Francisco.

[8] M. HELD AND R.M. KARP
[1962]. A dynamic
programming approach to
sequencing problems. Jjournal

of STAM 10, 196-210.

[9] T. HOFMEISTER, U.
SCHONING, R. SCHULER,
AND O. WATANEBE
[2001]. A probabilistic 3-SAT
algorithm further improved.
Manuscript.

[10] E. HOROWITZ AND S.
SAHNI [1974]. Computing
partitions with applications to
the knapsack problem.
Journal of the ACM 21, 277-
292.

[11] R.Z. HWANG, R.C.
CHANG, AND R.C.T. LEE
[1993]. The searching over
separators strategy to solve
some NP-hard problems in
subexponential time.
Algorithmica 9, 398-423.

(12] R. IMPAGLIAZZO, R.

PATURI, AND FE. ZANE

[1998]. Which problems have

strongly exponential

complexity? Proceedings of the
39th Annual Symposium on

Foundations of Computer

Science (FOCS’1998), 653-

663.

T. JIAN [1986]. An

O (2% algorithm for

solving maximum

—
—
(S
=

independent set problem.
[EEE Transactions on
Computers 35, 847-851
O. KULLMANN [1997].
Worst-case analysis, 3-SAT
decisions, and lower bounds:
Approaches for improved SAT
algorithms. In: The
Satisfiability Problem: Theory
and Applications, D. Du, J.
Gu, PM. Pardalos (eds.),
DIMACS Series in Discrete
Mathematics and Theoretical
Computer Science 35, 261-
313.
O. KULLMANN [1999].
New methods for 3-SAT
decision and worst case
analysis. Theoretical Computer
Science 223, 1-72.
[16] E.L. LAWLER [1976]. A
note on the complexity of the
chromatic number problem.

—
—
I\

fland

—
—
N
=

Information Processing Letters
5, 66-67.

[17]1 RJ. LIPTON AND R.E.
TARJAN [1979]. A separator
theorem for planar graphs.
SIAM Journal on Applied

Mathematics 36, 177-189.

[18] B. MONIEN AND E.
SPECKENMEYER [1985].
Solving satisfiability in less
than 2" steps. Discrete Applied
Mathematics 10, 287-295.

[19]]J.W. MOON AND L.
MOSER [1965]. On cliques
in graphs. Israel Journal of
Mathematics 3, 23-28.

[20] J.M. NIELSEN [2001].

Personal communication.

C.H. PAPADIMITRIOU

[1991]. On selecting a

satisfying truth assignment.

Proceedings of the 32nd Annual

Symposium on Foundations of

Computer Science

(FOCS’1991), 163-169.

R. PATURI P PUDLAK,

AND E ZANE [1997].

Satisfiability coding lemma.

Proceedings of the 38th Annual

Symposium on Foundations of

Computer Science

(FOCS’1997), 566-574.

R. PATURI P PUDLAK,

M.E. SAKS, AND E ZANE

[1998]. An improved

exponential time algorithm for

k-SAT. Proceedings of the 39th

Annual Symposium on

Foundations of Computer

Science (FOCS'S1998), 628-

637.

M. PAULL AND S. UNGER

[1959]. Minimizing the

number of states in

incompletely specified

(21]

[22

[}

sequential switching functions.
IRE Transactions on Electronic
Computers 8, 356-367.

[25] P.PUDLAK [1998].
Satisfiability — algorithms and
logic. Proceedings of the 23rd
International Symposium on
Mathematical Foundations of
Computer Science
(MFCS’1998), Springer,
LNCS 1450, 129-141.

[26] J.M. ROBSON [1986].
Algorithms for maximum
independent sets. Journal of
Algorithms 7, 425-440.

[27] J.M. ROBSON [2002].
Finding a maximum
independent set in time
0(2"%:? Manuscript.

[28] R. RODOSEK) [1996]. A
new approach on solving 3-
satisfiability. Proceedings of the
3rd International Conference
on Artificial Intelligence and
Symbolic Mathematical
Computation, Springer, LNCS
1138, 197-212.

[29] I. SCHIERMEYER [1992].
Solving 3-satisfiability in less
than O(1.579") steps. Selected
papers from Computer Science
Logic (CSL’1992), Springer,
LNCS 702, 379-394.

[30] I. SCHIERMEYER [1993].

Deciding 3-colorability in less

than O(1.415") steps.

Proceedings of the 19th

Workshop on Graph Theoretic

Concepts in Computer Science

(WG’1993), Springer, LNCS

790, 177-182.

U. Schéning [1999]. A

probabilistic algorithm for

£-SAT and constraint
satisfaction problems.

Proceedings of the 40th Annual

Symposium on Foundations of

Computer Science

(FOCS’1999), 410-414.

U. Schéning [2001]. New

algorithms for £-SAT based on

the local search principle.

Proceedings of the 26th

International Symposium on

Mathematical Foundations of

Computer Science

(MFCS2001), Springer,

LNCS 2136, 87-95.

[33] R. SCHROEPPEL AND A.
SHAMIR [1981]. A
7=002"),s=002"
algorithm for certain NP-
complete problems. SIAM
Journal on Computing 10, 456-
464.

[34] R.E. TARJAN AND A.E.
TROJANOWSKI [1977].
Finding a maximum
independent set. SIAM
Journal on Computing 6, 537-
546.

[35] A. VAN VLIET [1995].

Personal communication.

OP TIMAG6 8

ocroser 2002

PAGE 9

Report from the
Integer Programming
Conference in Honor

of Egon Balas

Alberto Caprara

As somebody noted at the conference, Egon
Balas is so efficient that he was born in early
June, a perfect period to celebrate his birthday
with a conference. His precise age is perhaps not
particularly significant, considering that his
aspect is essentially unchanged with respect to
the picture from the 50s that appears in his
biography (have you ever heard about
“highlanders™?).

In any case, since Egon's age is an integer
multiple of 10 starting from June 8, Gerard
Cornuejols and Bill Pulleyblank organized at
CMU a conference in his honor, which
consisted of three days of invited plenary talks
by people who have done outstanding work on
Integer Programming, many of them being
Egon's co-authors or former PhD students, and
one afternoon of contributed talks selected from
a wide set of submissions.

The conference organization was supported
by Mary Bober and Barbara Carlson, whose
kindness and efficiency reminds everybody that
outstanding universities have outstanding staff.
Also, a few PhD students at CMU were
involved in the not-so-easy task of distributing
the room keys to the many attendants staying in
the CMU buildings and arriving at every
possible hour during the night - this was
probably a good training to stay up for watching
the soccer World Cup.

Not only was there no conference fee (while
there was plenty of good conference food and
drinks), but the participation of a large number
of PhD students was supported by the various
sponsors.

The only bug in the organization was that the
good weather was reserved only for the
conference duration, whereas many people had
to stay a few more days before or after, noting
what is the meaning of bad weather in the
summer in Pittsburgh (once back, I stopped
complaining about the bad weather in Bologna).

Back to Egon, I am probably not the right
person to say something on him from a
scientific viewpoint, since my Balas number is
only 2 (a “heavy” 2, however). I would simply
like to note that his impact on the scientific
community goes certainly beyond his many
outstanding papers, co-authors, and PhD
students. For instance, thinking about my
personal case, Egon is one of those mythical
scientists that attract in their work place many
young people interested in doing research: even

if eventually most of these people do not

actively work with the mythical scientist (simply
because they are too many), they find a very
interesting environment that changes their view
of research. Moreover, and I would say most
important, looking at Egon all researchers from
my generation tend to have very optimistic
expectations for their research activity in the
next (at least) 50 years...

For those who want to hear something
personal about Egon, there would be the talks
given by Edith, Anna and Vera Balas, Sebastian
Ceria, Manfred Padberg and Bill Pulleyblank at
the conference dinner. We cannot give here all
of them for several reasons. For instance, all the
pictures in Sebastian's talk would require the
space of a few issues of OPTIMA. On the other
hand, we are very proud to report below the
speech of somebody who certainly needs no
introduction, having Balas number 1, a very
heavy 1, and at the same time Padberg number
0!

Hi folks,

I am Manfred Padberg, Ph.D. 1971, GSIA,
Carnegie-Mellon University. You must have
heard that I am Egon's first student or, maybe,
that I am his first retired student.

In any case, as Egon once told me and
probably others, I am his FIRST AMERICAN
STUDENT. Now that is THREE propositions
in one: STUDENT, yes. That is in the GSIA

OPTIM A 6 8EECLZWNY

race 10

files. FIRST, no, not really anyway --Egon has
helped others in their professional development
before me: Peter Hammer is here tonight with
us. Peter can attest to the fact that he benefitted
from Egon's brain way before me. As did others
like Cristian Bergenthaller, Mihai Dragomirescu
back in Egon's native country. Now that leaves
AMERICAN. And that's a good question:
American, who? Egon, me? The answer seems
easy at first: Egon carries an American passport
since many years; so, de jure et de facto (by law
and by his whereabouts), Egon is American. My
own passport is still what it was when I came to
this country in 1968; so, de jure, | am not an
American to date; neither de facto --I live
currently in France. Yet I am Egon's FIRST
AMERICAN STUDENT; the man has said so
himself! What better proof?

True, while neither of the two of us were
Americans in this sense in 1968, undoubtedly,
both of us have become AMERICANIZED over
the many years that have passed since then. So
here is the question that I will try to answer
tonight: How AMERICAN has Egon gotten
over these past thirty five something years that
he and Edith have lived on this continent?

I will start with the time when I came to
GSIA. This was at the beginning of the
1968/1969 academic year. Egon had just about
one year ecarlier joined GSIA as the Ford
Distinguished Research Professor and he was
new, very much a Homo Novus in the GSIA
spirit of that time. Egon was already very well-
known internationally and certainly deserved the
grand title. His 1965 paper “An additive
algorithm for solving linear programs with zero-
one variables”, published in the flagship journal
of our profession Operations Research, had
rocked, yes rocked, the discrete optimization
world. The “Balasian algorithm” --as it was
called by several of our colleagues-- had opened
a way to answer difficult problems in business.
Problems that had been identified and
formulated in the ten to fifteen years preceding
Egon's paper and that could in fact not be
solved before that time. This paper --like many
other papers written by Egon later on-- is a true
classic in the field of Operations Research/Management
Science. In a study done in the mid eighties
Egon's 1965 paper was identified as the most
frequently cited article of the Operations Research
journal during the twenty year period preceding
the survey.

I had come from the University of Mannheim
with a Ford Foundation Doctoral Fellowship to

get my Ph.D. from GSIA. So both I and Egon
have to thank Mr. Ford for giving us the chance
of getting and working together. For some
reason I was classified a “Special Student”,
“special” meaning “problematic” or likely not to
succeed in the Ph.D. program. Don't ask me
why. I managed to get into Egon's advanced
classes right from the start nevertheless. It was
not easy. For me this experience was an
important first step towards my own
Americanization. I'll tell you the details some
other time.

That first semester at GSIA I took Economics
of the Firm with Richard Roll, Introduction to
Management Analysis and Policy, co-taught by
Kalman Cohen and Alfred Kuehn, and Egon
Balas' Mathematical Programming- 1. Boy, what a
difference in teaching styles and personalities.
Cohen, Kuehn and Roll expected to --if not
insisted on-- being called Kal, Al and Dick,
respectively. I had seen that happen in American
movies and here it was reality. But not so in
Balas' case. With Egon it was either Professor
Balas or Dr. Balas. There were other striking
differences in the teaching style. But I can't
dwell on them now.

What about Egon's teaching? One word and
that one in capital letters suffices to describe it:
SUPERB. The man would stroll into the class
room on time, not one piece of paper in his
hands or pockets, no “absent minded professor”
stuff. Egon typically put one or two of his
twenty-five or so students up on the blackboard
to check on the previous assignments. Then he
proceeded to deliver a meticulously prepared
lecture --no repetitions, no story telling in
Egon's classes. You want proof? Come and visit
Suzy and me in Marseille. I still have my old
note books from my student days at GSIA. I
flipped through them the other day, just to
remind me. For most classes, there are some four
or five pages filled with my scriblings of that
time and then many BLANK pages. Not so for
Egon's classes. Indeed, these old notes from his
classes are still helpful today, to grasp this fine
point or that in the development of an
argument.

Egon's teaching was inspiring and demanding
at the same time. Persistence in the problem
solving process is one of the prime qualities that
I learned from Egon and that comes to my mind
when I think back to those years. Let me tell
you a little anedocte about that. In the Spring
term of 1969 Egon finally discussed his additive
algorithm for zero-one linear programs in class.

He then gave an assignment, one of the number
examples from his classic paper. Except Egon did
not tell us so! Of course not! I believe it was the
Eastern or Pentecoste weekend of 1969. The
Padberg's had wanted to spend it at Lake Erie.
To do the assignment took the entire weekend.
No Lake Erie that weekend, my wife and kids
were disenchanted to say the least, but I got the
job done. Oh no, I was not the only one in
Egon's class, mind you. Marcel Boyer, a French
Canadian fellow student, had done it too. When
Marcel and I compared notes on Tuesday before
class, it had taken Marcel 48 handwritten pages
compared to my 49 pages to do the assignment.
Most importantly, we had found the same
optimum solution. What had happened? Egon --
in one of his rare underperformances-- had
inadvertently messed up one of the coefficients
of the number example when he had put it on
the black board. The example --when changed--
took at best two pages to solve. Morale? First,
Egon had inspired at least two guys in his class--
Marcel Boyer and me-- to spoil a long Spring
weekend for our respective families. For the
betterment of science naturally! Second, this
taught us that persistence is necessary to solve
difficult problems.

Of course, inspiration and persistence hardly
ever come from a single source. GSIA's eminent
faculty in those days, like William (Bill) Cooper,
the late Richard Cyert or Dick Cyert to us
students, Gerald (Gerry) Thompson, Robert
(Bob) Lucas, Herbert (Herb) Simon and many
others had created an intellectual climate that
was unique and conducive, really conducive to
the use of mathematics in the social sciences. I
hope that this spirit persists at GSIA to date.

At about the time that I took Egon's second
class I was working with Kal Cohen. I had read
the book “Analytical Methods in Banking” which
Kal had coedited in 1966. This book is full of
mixed-integer programming formulations for
difficult, challenging and important problems
from finance and the banking industry. Many of
these problems remain important to date.
Mathematically speaking, these were exactly the
kind of problems that Egon was interested in.
They were big and difficult to solve. Now that is
exactly what Egon was really trying to do. Solve
those difficult, big problems from industry. No
wonder then that by my second year at GSIA,
Egon had become my official advisor in GSIA's
Ph.D. program.

I won't bore you with a day-by-day or a year-
by-year account of all of these years. That would

OP TIMAG6 8

ocroser 2002

PAGE 1 1

be impossible here. Suffice it to say, that by
about 1973/1974 Egon and I had written four
or five joint articles; we had several papers in
the “pipeline”, some of which never saw the
light of day. I had returned to Germany upon
graduation in 1971. My job in Berlin
permitted me to travel freely. Egon and I
continued our cooperation by my frequent
visits to Pittsburgh over several years. And yet:
Egon was still “Professor Balas” to me. But
then one day it happened. At the end of a long
technical letter --Egon was dissecting a referee
report on a joint paper and he still knows how
to do that-- it said:

“By the way, Manfred, I think you should
call me Egon.”

I must have read this line twice or thrice,
probably aloud to myself. What had happened?
Egon had joined the world of the Kal's, the
Al's, the Bill's, the Dick's, the Gerry's, of the
American culture. No more European stiffness,
that European professorial stuff. The inevitable
Americanization of Professor Egon Balas had
set in.

As it goes with such processes of assimilation
to a different culture, there are relapses. It never
comes easy. I remember that evening in 1981
in my apartment in Brussels, Belgium, when I
had the impression that Egon might have
preferred to be called “Professor Balas” again.
But it was a fleeting impression. When several
years later Egon told me that he was just a
husband like the most of us, “the husband of a
famous art historian by the name of Edith
Balas”, I knew that all was well, that things
were going in the right direction. The final
proof that Egon had become a true American
came a few of years ago. He told me that the
Balas' had left their lovely home overlooking
the Shadyside section of Pittsburgh which I
knew from the earlier years. He told me that
they now owned a bigger property in the
Squirrel Hill part of town and that they had
their own swimming pool. A private swimming
pool! The ultimate dream and achievement of
the American couple! Now, there I had proof
that Egon can proudly say to himself and to all
of us:

Mathematicus Americanus sum!

Happy birthday, Egon!

Report from the 9th
[PCO Conference

Alberto Caprara

The 9th Conference on Integer Programming
and Combinatorial Optimization was held at
the Massachusetts Institute of Technology
(MIT) in the last week of May. This is the only
selective conference in the “Optimization” field,
as opposed to “Theoretical Computer Science”,
where such meetings are the norm. As a result,
most of the participants have either a paper
accepted or did not submit anything, both
because many are not financially supported if
they cannot give a talk, and because it is
psychologically difficult to attend if the paper
you submitted was rejected. This means that the
number of participants is generally between 50
and 100 (actually it was more than a hundred
this year), which makes it possible to talk at least
a few minutes with all the people you know,
something certainly impossible in very large
conferences such as the Mathematical
Programming Symposium. Moreover, selectivity
and session uniqueness force the speakers to be
more responsible (since acceptance of their
paper implied rejection of others, and they are
not competing for the audience with a few
dozen other speakers in parallel), guaranteeing a
very high level of the talks. In my opinion, this
should stimulate the MPS authorities to
consider the possibility in the future to have an
IPCO every year instead of twice every three
years, of course keeping the big Symposium
every third year.

On the scientific side, the program committee
was chaired by Bill Cook. The subjects covered
by the 33 accepted papers (about one third of
the 110 submitted, most of which I guess of
very good quality) were essentially the same as
for the previous IPCO conferences. In
particular, the main topics, which refer to about
3/4 of the papers presented, are (in order of
appearance at the conference): submodular
function minimization and generalizations,
multicommodity flows, integrality gaps,

separation for the TSP polytope, properties and

practical use of general cutting planes,
approximation algorithms (and schemes) for
scheduling, packing, facility location and
network design problems, nonstandard
approaches to integer programming (based on
semidefinite and subadditive relaxations and on
basis reduction). There was certainly more
emphasis on the theoretical aspects of the
problems rather than on their practical solution,
although most problems discussed arise from
important real-world applications. Personally, I
noted an increasing interest in knapsack-like
packing problems with respect to the past,
contrary to my previous impression to be one of
the very few researchers still interested in these
problems.

As was (fortunately) always the case in all
occasions in which I could attend an IPCO
meeting, the organization, whose committee was
chaired by Andreas Schulz, was very efficient.
For the social part, this meant providing plenty
of good food and drinks for the participants for
three consecutive days - this forced me to make
a trip to Boston without visiting any restaurant.
In particular, on Sunday night, before the
conference started, there was a reception at the
MIT museum, where many participants could
try an interesting combination of a 6-hours jet
lag with special effects from the museum (such
as holograms). This is at least as much fun as
being drunk, with the notable difference that
every effect disappears as soon as you go to bed,
which is something that everybody above 30
appreciates a lot. The conference dinner was
held at the Fogg Art Museum at Harvard
University, a very nice location with very good
food and drinks, which is a very rare and
appreciated combination. Perhaps, the only
drawback was the very high quality and easy
accessibility of the wine, whose effect was not
completely vanished the day after...

OPTIM A 6 8EECLZWNY

PAGE 12

D. R. FULKERSON
PRIZE

Call for nominations

The Fulkerson Prize Committee invites
nominations for the Delbert Ray Fulkerson
Prize, sponsored jointly by the Mathematical
Programming Society and the American
Mathematical Society. The Fulkerson Prize is
for outstanding papers in the area of discrete
mathematics. The Prize will be awarded at the
XVIIIth International Symposium on
Mathematical Programming to be held in
Copenhagen, Denmark, August 18-22, 2003.

Eligible papers should represent the final
publication of the main result(s) and should
have been published in a recognized journal, or
in a comparable, well-refereed volume intended
to publish final publications only, during the six
calendar years preceding the year of the
Symposium (thus, from January 1997 through
December 2002). The prizes will be given for
single papers, not series of papers or books, and
in the event of joint authorship the prize will be
divided.

The term ‘discrete mathematics’ is interpreted
broadly and is intended to include graph theory,
networks, mathematical programming, applied
combinatorics, applications of discrete
mathematics to computer science, and related
subjects. While research work in these areas is
usually not far removed from practical
applications, the judging of papers will only be
based on their mathematical quality and
significance.

Previous winners of the Fulkerson Prize are
listed below. Further information about the
Fulkerson Prize can be found at
www.mathprog.org/prz/fulkerson.htm.

The Fulkerson Prize Committee consists of
Gerard Cornuejols (Carnegie-Mellon
University), Andrew M. Odlyzko (University of
Minnesota), and David P. Williamson (IBM
Almaden Research Center), chair.

Please send your nominations (including
reference to the nominated article and an
evaluation of the work) by January 31, 2003 to
the chair of the committee. Electronic
submissions are preferred.

David P. Williamson

Re: Fulkerson Prize

IBM Almaden Research Center, K53/B1
650 Harry Rd.

San Jose, CA 95120

USA

e-mail: dpw@almaden.ibm.com

Previous winners of the Fulkerson Prize:

1979: Kenneth Appel and Wolfgang Haken;
Richard M. Karp; Paul D. Seymour

1982: L.G. Khachiyan/D.B. Iudin and
A.S. Nemirovskii;
G.P. Egorychev/D.I. Falikman;
Martin Grotschel, Laszlo Lovasz, and
Alexander Schrijver

1985: Jozsef Beck; H.W. Lenstra, Jr.;
Eugene M. Luks

1988: Eva Tardos; Narendra Karmarkar

1991: Alfred Lehman; Nikolai E. Mnev;
Martin Dyer, Alan Frieze, and
Ravi Kannan

1994: Lou Billera; Neil Robertson,
Paul D. Seymour, and Robin Thomas;
Gil Kalai

1997: Jeong Han Kim

2000: Michel X. Goemans and
David P. Williamson;
Michele Conforti, Gerard Cornuejols,
and M. R. Rao

OP TIMAG6 8

ocroser 2002

PAGE 13

New Editorial Board

for Operations Research
Letters

George Nemhauser, the founding editor of
Operations Research Letters, has resigned after
being at the helm for twenty years. Starting with
Volume 30, the editorial board will be led by Jan
Karel Lenstra (jkl@win.tue.nl). There are
thirteen area editors, to whom papers should be
submitted:

Sigrun Andradottir
(sa@isye.gatech.edu), simulation

Sem Borst (sem@cwi.nl), communication
networks

Onno Boxma
(boxma@win.tue.nl),

queueing theory and applications

Vadim Linetsky
(linetsky@iems.nwo.edu),

financial engineering

Alexander Martin
(martin@mathematik.tu-darmstadt.de),
discrete optimization

S. Thomas McCormick
(stmv@adk.commerce.ubc.ca),
graphs and networks

Nimrod Megiddo
(megiddo@almaden.ibm.com),
OR with multiple decision makers

Martin Savelsbergh
(Martin.Savelsbergh@isye.gatech.edu),
routing, location and supply chain management

Stefan Scholtes
(s.scholtes@jims.cam.ac.uk),
continuous optimization

Riidiger Schultz
(schultz@math.uni-duisburg.de),
linear and stochastic optimization

Sridhar Seshadri
(sseshadr@stern.nyu.edu),
inventory, reliability and control

Steef van de Velde
(s.velde@fac.fbk.eur.nl),

sequencing and scheduling

Gerhard Woeginger
(woeginge@math.utwente.nl),
approximation and heuristics

The new board intends to reinforce the
character of ORL as a high-quality journal for
the rapid publication of short papers and
research announcements. It is committed to
make a serious attempt to review each
submission within three months. The electronic
submission of papers is encouraged.

Next to concise articles, generally limited to
ten journal pages, extended abstracts of two to
four pages, announcing results without full
proofs, are welcome too. The authors of such
contributions may submit support material that
enables the board to verify the results.

O Y B] Auvcust 2002 race 14

gallimaufry

Application for Membership

1 wish to enroll as a member of the Society. Mail to:

Mathematical Programming Society
3600 University City Sciences Center
[J1 will pay my membership dues on receipt of your invoice. Philadelphia PA 19104-2688 USA

My subscription is for my personal use and not for the benefit of any library or institution.

[J1 wish to pay by credit card (Master/Euro or Visa).

Cheques or money orders should be made
payable to The Mathematical Programming

Society, Inc. Dues for 2002, including
CREDIT CARD NO. EXPIRATION DATE

subscription to the journal Mathematical
FAMILY NAME Programming, are US $80.

Student applications: Dues are one-half the

MAILING ADDRESS)
above rate. Have a faculty member verify your
student status and send application with dues
to above address.

TELEPHONE NO. TELEFAX NO.

EMAIL Faculty verifying status

SIGNATURE »

Institution

Simply fax this whole page to 25% off all titles peloyy

. _ _ 0r members of th
Sprlnger 2 1 2 5 3 3 5 5 8 7 or athel:natica' e
Please send me: 9gramming SOCiety

3-540-41744-3 Alevras, Padberg, Linear Optimization and
Extensions.US 34985 $37.46

3-540-65431-3 Ausiello et al., Approximate Solutions of NP-hard
Optimization Problems. US $59:95~ $44.96

0-387-98633-2 Aven, Jensen, Stochastic Models in Reliability.
USS7H95 $53.96

0-387-98859-9 Balakrishnan, Ranganathan, A Textbook of Graph
Theory. US 35995~ $44.96

1-85233-268-9 Bang-Jensen,Gutin, Digraphs. Theory, Algorithms
and Applications Theory. US $95:60~ $71.25

0-387-98705-3 Bonnans, Shapiro, Perturbation Analysis of
Optimization Problems. US $79:95~ $59.96

0-387-98535-2 Chicone, Ordinary Differential Equations with
Applications. US $59:95~ $44.96

0-387-98727-4 (ohen, Advanced Topics in Computational Number
Theory.US 35995 $44.96

0-387-98512-3 Crauel, Gundlach (Eds.), Stochastic Dynamics.
US 36495 $48.71

0-387-98976-5 Diestel, Graph Theory. Softcover. US $34:95~ $26.21

0-387-95014-1 Diestel, Graph Theory. Hardcover. US $69:95~ $52.46

3-540-67787-9 Du et al. (Eds.), Computing and Combinatorics.
USS23-60° $54.75

0-387-98945-5 Dullerud, Paganini, A Course in Robust Control
Theory.US $59:95~ $44.96

0-387-98836-X Durrett, Essentials of Stochastic Processes.
US 36995~ $52.46

3-540-67191-9 Eiselt, Sandblom, Integer Programming and
Network Models. US$94:66" $70.50

3-540-60931-8 Embrechts et al., Modelling Extremal Events.
US$79:95 $59.96

0-387-94527-X Fishman, Monte Carlo.Concepts, Algorithms,
and Applications. US $24:95 $56.21

0-387-98605-7 Kevorkian, Partial Differential Equations. US $59:85" $44.96
3-540-67226-5 Korte, Vygen, Combinatorial Optimization. US $45:86~ $33.75

0-387-98725-8 Kulkarni, Modeling, Analysis, Design, and Control of
Stochastic Systems. US 2495 $56.21

0-387-95139-3 Kushner, Dupuis, Numerical Methods for Stochastic
Control Problems in Continuous Time. US $69:95~ $52.46

3-540-65274-4 Langtangen, Computational Partial Differential
Equations. US $7495" $56.21

3-540-41554-8 Marks (Ed.), Graph Drawing. US $59:60° $44.25

3-540-67296-6 Mei, Numerical Bifurcation Analysis for Reaction-
Diffusion Equations. US $84:60" $63.00

3-540-66061-5 Michalewicz, Fogel, How to Solve It: Modern
Heuristics. US 34985~ $37.46

3-540-67715-1 Montanari et al. (Eds.), Automata, Languages and
Programming. US $89-80" $66.75

3-540-66024-0 Murota, Matrices and Matroids for Systems Analysis.
USSH2:00 $84.00

3-540-61477-X Musiela, Rutkowski, Martingale Methods in Financial
Modelling. US $79:95~ $59.96

3-540-41114-3 Nazareth, DLP and Extensions. US $54:95~ $41.21
3-540-66905-1 Nguyen et al. (Eds.), Optimization. US $72:66" $54.00
0-387-98793-2 Nocedal, Wright, Numerical Optimization. US $69:95~ $52.46
3-540-41004-X Paterson (Ed.), Algorithms - ESA 2000.US $23-80" $54.75

1-85233-304-9 Pelsser, Efficient Methods for Valuing Interest Rate
Derivatives. US $64:95 48.71

3-540-57045-4 Prokhorov, Statulevicius (Eds.), Limit Theorems of
Probability Theory. US 510460 $78.00

3-540-67442-X Rolim (Ed.), Parallel and Distributed Processing.
US 813600 $82.50

0-387-98513-1 Sastry, Nonlinear Systems. US $79:95~ $59.96

0-387-98773-8 Serfozo, Introduction to Stochastic Networks.

. 22021 USS2495 $56.21
3-540-67633-3 Giancarlo, Sankoff (Eds.), Combinatorial Pattern 0-387-95016-8 Steele, Stochastic Calculus and Financial Applications.
MatchmgUS_SﬁQ—@O’ $51.75 USM 55246
3-540-64766-X Goldreich, Modern Cryptography, Probalistic Proofs -387-94654-3 Tavlor. Partial Differential Equati 7.4
and Pseudorandomness. US $7985 $59.96 0-387-94654-3 Taylor, Partia D|. erentla. qgatlons:US SA—9—95.. $37.46
. A 0-387-98346-5 Thomas, Numerical Partial Differential Equations.
3-540-64902-6 Grimmett, Percolation. US $99:60" $74.25 US $59:95" $44.96
0-387-98736-3 Harris et al., Combinatorics and Graph Theory. 0-387-98779-7 Thorisson, Coupling, Stationarity, and Regeneration.
USS4495 $33.71 US$7995 $59.96

3-540-66419-X Jacod, Protter, Probability Essentials. US $36:60~ $27.00

3-540-67996-0 Jansen, Khuller (Eds.), Approximation Algorithms 3-540-65367-8 Vazirani, Approximation Algorithms. US $3495™ $26.21

for Combinatorial Optimization. US 352007 $39.00 | 3 540, 67853.0 Wesseling, Principles of Computational Fluid Dynamics.
0-387-94839-2 Karatzas, Shreve, Methods of Mathematical Finance. US $89-80° $66.75

USS7495 $56.21

METHOD OF PAYMENT:
(J CHECK/MONEY ORDER ENCLOSED ~ (A AMEX IMC [QVISA [DISCOVER

3-540-66321-5 Varga, Matrix Iterative Analysis. US $89:95 $67.46

v Uy Yoy 0O v U U 0 U U Joyd O U U U o0 o od oo
oy 0o Oy 0 Ud UJ J doddo 0 0 0 0 Ud O Ud o dod

Please fill in your membership number:

BOOKSUBTOTALS SALES TAX: RESIDENTS OF CA, IL, MA, MO, NJ, NY, PA, TX, VA,
AND VT, PLEASE ADD SALES TAX. CARD NO EXP.DATE
SALESTAX $ CANADIAN RESIDENTS, PLEASE ADD 7% GST.
SHIPPING: PLEASE ADD $5.00 FOR SHIPPING ONE BOOKAND SIGNATURE DATE
SHIPPING $ $1.00 FOR EACH ADDITIONAL BOOK.
Orders are processed upon receipt. If an order cannot be NAME
TOTAL AMOUNT $ fulfilled within 90 days, payment will be refunded upon
request. Prices quoted are payable in US currency or its ADDRESS
equivalent and are subject to change without notice.
Remember, your 30 day return privilege is always
quaranteed. CITY/STATE/ZIP
PHONE E-MAIL
PLEASE MAIL ORDERS TO: CALL: Please make sure you mention
Mathematics Promotion 1-800-SPRINGER promotion code S350 when calling or
Promotion Code S350 FAX: faxing. You will need this in order to receive
Springer-Verlag New York, Inc. (212) 533-5587 the appropriate discount.
175 Fifth Avenue

New York, NY 10010 Promotion #5350

o P T I M A

MATHEMATICAL PROGRAMMING SOCIETY

UNIVERSITY OF

FLORIDA

Center for Applied Optimization
371 Weil

PO Box 116595

Gainesville FL 32611-6595 USA

EDITOR:

Jens Clausen

Informatics and Mathematical Modelling,
Technical University of Denmark
Building 305 room 218

DTU, 2800 Lyngby

TIf: +45 45 25 33 87 (direct)

Fax: +45 45 88 26 73

e-mail: jec@imm.dru.dk

CO-EDITORS:

Robert Bosch

Dept. of Mathematics
Oberlin College

Oberlin, Ohio 44074 USA
e-mail: bobb@cs.oberlin.edu

Alberto Caprara,

DEIS Universita di Bologna,
Viale Risorgimento 2,

I - 40136 Bologna, Italy
e-mail: acaprara@deis.unibo.it

FIRST CLASS MAIL

FOUNDING EDITOR:
Donald W. Hearn

DESIGNER:
Christina Loosli

PUBLISHED BY THE

MATHEMATICAL PROGRAMMING SOCIETY &
GATOREngineering, PUBLICATION SERVICES
University of Florida

Journal contents are subject to change by the
publisher.

