
o P T I M AN
o 72

January 2006

Mathematical Programming Society Newsletter

	 Local Branching: Basics and Extensions 2	  	 Prizes 6	 	 	 gallimaufry 9	

72



o p t i m a 7 2 January 2006 page �

Abstract

The availability of effective exact or heuristic 
solution methods for general Mixed-
Integer Programs (MIPs) is of paramount 
importance for practical applications. In 
the present paper we investigate the use 
of a generic MIP solver as a black-box 
“tactical” tool to explore effectively suitable 
solution subspaces defined and controlled 
at a “strategic” level by a simple external 
branching framework. The procedure is 
in the spirit of well-known local search 
metaheuristics, but the neighborhoods 
are obtained through the introduction 
in the MIP model of completely general 
linear inequalities called local branching 
cuts. The new solution strategy is exact in 
nature, though it is designed to improve 
the heuristic behavior of the MIP solver 
at hand. It alternates high-level strategic 
branchings to define the solution 
neighborhoods and low-level tactical 
branchings to explore them. The result 
is a completely general scheme aimed at 
favoring early updatings of the incumbent 
solution, hence producing high-quality 
solutions at early stages of the computation.

1 Introduction

Mixed-Integer linear Programming 
(MIP) plays a central role in modeling 
difficult-to-solve (NP-hard) combinatorial 
problems. However, the exact solution 
of the resulting models often cannot be 
carried out for the problem sizes of interest 
in real-world applications; hence, one is 
interested in effective heuristic methods. 
Although several heuristic and metaheuristic 
frameworks have been proposed in the 
literature for specific classes of problems, 
only a few papers deal with general-purpose 
MIP heuristics, including [1], [8], [9], 
[11], [12], [14] and [3] among others.

Exact MIP solvers are nowadays very 
sophisticated tools designed to hopefully 
deliver, within acceptable computing time, 
a provable optimal solution of the input 
MIP model, or at least a heuristic solution 
with a practically-acceptable error. In fact, 
what matters in many practical cases is the 
possibility of finding reasonable solutions 
as early as possible during the computation. 
In this respect, the “heuristic behavior” 
of the MIP solver plays a very important 
role: An aggressive solution strategy that 

improves the incumbent solution at very 
early stages of the computation is strongly 
preferred to a strategy designed for finding 
good solutions only at the late steps of the 
computation (that for difficult problems 
will unlikely be reached within the time 
limit). Many commercial MIP solvers 
allow the user to have a certain control 
on their heuristic behavior through a set 
of parameters affecting the visit of the 
branching tree, the frequency of application 
of the internal heuristics, the fact of 
emphasizing the solution integrality rather 
than its optimality, etc. Unfortunately, 
in some hard cases a general-purpose 
MIP solver may prove not adequate even 
after a clever tuning, and one tends to 
quit the MIP framework and to design 
ad-hoc heuristics for the specific problem 
at hand, thus losing the advantage of 
working in a generic framework.

Recently, Fischetti and Lodi [5] investigated 
the use of a general-purpose MIP solver 
as a black-box “tactical” tool to explore 
effective suitable solution subspaces defined 
and controlled at a “strategic” level by a 
simple external branching framework. 
The procedure is in the spirit of well-
known local search metaheuristics, but 
the neighborhoods are obtained through 
the introduction in the MIP model of 
(invalid) linear inequalities called local 
branching cuts. This allows one to work 
within a perfectly general MIP framework, 
and to take advantage of the impressive 
research and implementation effort 
devoted to the design of MIP solvers. 

A main point: Soft vs. hard variable fixing.

A commonly used, and often effective, 
heuristic scheme fitting into the framework 
described in the introduction is based on 
the so-called (hard) variable fixing or diving 
idea, which can be described as follows. 
We assume to have an exact or heuristic 
black-box solver for the problem at hand. 
The solver is first applied to the input data, 
but its parameters are set so as to quickly 
abort execution and return a (possibly 
infeasible) “target solution” x–. . This solution 
is defined, e.g., as the solution of the root-
node Linear Programming (LP) relaxation, 
possibly after a clever rounding of some of 
its fractional variables, or as any heuristic 
solution of the problem. Solution x–. is then 
analyzed, and some of its nonzero variables 
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are heuristically rounded up to the nearest 
integer (if non-integer) and then fixed to 
this value. The method is then iteratively re-
applied on the restricted problem resulting 
from fixing: The black-box solver is called 
again, a new target solution is found, 
some of its variables are fixed, and so on. 
In this way the problem size reduces after 
each fixing, hence the black-box solver 
can concentrate on smaller and smaller 
“core problems” with increasing chances 
of solving them to proven optimality. 

A critical issue in variable-fixing methods 
is of course related to the choice of the 
variables to be fixed at each step. As a 
matter of fact, for difficult problems high-
quality solutions are only found after several 
rounds of fixing. On the other hand, wrong 
choices at early fixing levels are typically 
very difficult to detect, even when bounds 
on the optimal solution value are computed 
before each fixing: In the hard cases, the 
bound typically remains almost unchanged 
for several fixings, and increases suddenly 
after an apparently-innocent late fixing. 
Therefore, one has to embed in the scheme 
backtracking mechanisms to recover 
from bad fixings, a very difficult task.

The question is then how to fix a relevant 
number of variables without losing the 
possibility of finding good feasible solutions. 
To better illustrate this point, suppose 
one is given a heuristic 0-1 solution x–. of a 
pure 0-1 MIP model with n variables, and 
wants to concentrate on a core subproblem 
resulting from fixing to 1 at least 90% (say) 
of its nonzero variables. How should one 
choose the actual variables to be fixed? Put 
in these terms, the question lends itself to a 
simple answer: Just add to the MIP model 
a linear soft fixing constraint of the form

x x xj j
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j
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and apply the black-box solver to the 
resulting MIP model. In this way one 
avoids a too-rigid fixing of the variables 
in favor of a more flexible condition 
defining a suitable neighborhood of the 
current target solution, to be explored by 
the black-box solver itself. In the example, 
the underlying hypothesis is that the 10% 
of slack left in the right-hand side of (1) 
drives the black-box solver as effectively 
as fixing a large number of variables, but 

with a much larger degree of freedom–
hence better solutions can be found. 

Good results using a hard fixing policy 
have been reported recently by Danna, Le 
Pape and Rothberg [3]. Their method called 
Relaxation Induced Neighborhood Search 
hard fixes in some nodes of a branch-and-
cut tree each integer variable xj that assumes 
an integer value in the current continuous 
relaxation, which is in turn coincident 
with its value in the incumbent solution. 
An eventually smaller additional MIP is 
then defined and heuristically explored in 
the attempt of improving the incumbent 
solution. The method appears in the arsenal 
of ILOG-Cplex since the recent version 9.0.

2 Local branching as a heuristic for 
MIPs

The soft fixing mechanism outlined in 
the previous section leads naturally to the 
general framework exploited in [5] to find 
good approximate solutions for hard MIPs. 
This framework, which is exact in nature, is 
designed to improve the heuristic behavior 
of the MIP solver at hand. It alternates 
high-level strategic branchings to define 
solution neighborhoods and low-level 
tactical branchings (performed within the 
MIP solver) to explore them. The result can 
then be viewed as a two-level branching 
strategy aimed at favoring early updatings 
of the incumbent solution, hence producing 
improved solutions at early stages of the 
computation. More precisely, we consider a 
generic MIP with 0-1 variables of the form:
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Here, the variable index set N: = {1, . . . , n}  
is partitioned into (B, G, C), where  
B ≠ 0 is the index set of the 0-1 variables, 
while the possibly empty sets G and 
C index the general integer and the 
continuous variables, respectively.

Given a feasible reference solution x–. of 
(P), let S–  : = {j ∈B : = x–.j = 1} denote the 
binary support of x–. . For a given positive 
integer parameter k, we define the k-OPT 

neighborhood N( x–. , k) of  x as the set of 
the feasible solutions of (P) satisfying the 
additional local branching constraint:
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where the two terms in left-hand side count 
the number of binary variables flipping 
their value (with respect to x–. ) either from 
1 to 0 or from 0 to 1, respectively.

In the relevant case in which the cardinality 
of the binary support of any feasible 
solution of (P) is a constant, this constraint 
can more conveniently be written in 
its equivalent “asymmetric” form:

( ) ( / ) ( )1 2 8− ≤ ′ =
∈
∑ x k kj
j S

The above definition is consistent, e.g., 
with the classical k'-OPT neighborhood 
for the Traveling Salesman Problem (TSP), 
where constraint (8) allows one to replace 
at most k' edges of the reference tour x–. .

As its name suggests, the local branching 
constraint can be used as a branching 
criterion within an enumerative scheme 
for (P). Indeed, given the incumbent 
solution x–. , the solution space associated 
with the current branching node can be 
partitioned by means of the disjunction:

D

D
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(left branch)

or

(right bra1 nnch) (9)

As to the neighborhood-size parameter 
k, it should be chosen as the largest value 
producing a left-branch subproblem which 
is likely to be much easier to solve than 
the one associated with its father. The 
idea is that the neighborhood N( x–. , k) 
corresponding to the left branch must be 
“sufficiently small” to be optimized within 
short computing time, but still “large 
enough” to likely contain better solutions 
than x–. . According to our computational 
experience, the choice of k is seldom a 
problem by itself, in that values of k in range 
[10, 20] proved effective in most cases.

A first implementation of the local 
branching idea is illustrated in Figure 
1, where the triangles marked by the 
letter “T” (for Tactical) correspond to 
the branching subtrees to be explored 
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through a standard “tactical” branching 
criterion such as, branching on fractional 
variables−i.e., they represent the application 
of the black-box exact MIP solver.

In the figure, we assume to have a starting 
incumbent solution x–   1 at the root node 
1. The left-branch node 2 corresponds 
to the optimization within the k-OPT 
neighborhood N( x–   1, k), which is 
performed through a tactical branching 
scheme converging (hopefully in short 
computing time) to an optimal solution in 
the neighborhood, say x–   2. This solution 
then becomes the new incumbent solution. 
The scheme is then re-applied to the right-
branch node 3, where the exploration of 
N( x–   2, k) \ N( x–   1, k) at node 4 produces a 
new incumbent solution x–   3. Node 5 is then 
addressed, which corresponds to the initial 
problem (P) amended by the two additional 
constraints D(x, x–   1) ≥ k + 1 and D(x, x–   2) ≥ 
k + 1. In the example, the left-branch node 
6 produces a subproblem that contains no 
improving solution. In this situation the 
addition of the branching constraint  
D(x, x–   3) ≥ k + 1 leads to the right-branch 
node 7, which is explored by tactical 
branching. Note that the fractional LP 
solution of node 1 is not necessarily cut off 
in both son nodes 2 and 3, as is always the 
case when applying standard branching on 
variables. The same holds for nodes 3 and 
5. In fact, the local branching philosophy 
is quite different from the standard one: 
We do not want to force the value of a 
fractional variable, but we rather instruct 
the solution method to explore first some 

promising regions of the solution space. The 
advantage of the local-branching scheme 
is an early (and more frequent) update of 
the incumbent solution. In other words, 
we quickly find better and better solutions 
until we reach a point where local branching 
cannot be applied any more (node 7, in the 
example); hence, we have to resort to tactical 
branching to conclude the enumeration.

This behavior is illustrated in Figure 2, 
where we solved MIP instance tr24-15
[15] by means of three codes: The 
commercial solver ILOG-Cplex 7.0 in 
the two versions emphasizing the solution 
optimality or feasibility, respectively, 
and the local branching scheme where 
ILOG-Cplex 7.0 (optimality version) is 
used to explore the “T-triangle” subtrees, 
and the local branching constraints are 
of type (7) with k = 18. Apart from the 
emphasizing setting, all the three codes 
were run with the same parameters. As 
to the initial reference solution x–   1 needed 
in the local branching framework, it was 
obtained as the first feasible solution 
found by ILOG-Cplex 7.0 (optimality 
version)−the corresponding computing time 
is included in the local-branching running 
time. The test was performed on Digital 
Alpha Ultimate Workstation 533 MHz.

According to the figure, the performance 
of the local branching scheme is quite 
satisfactory in that it is able to improve the 
initial solution several times in the early 
part of the computation. As a matter of fact, 
the local-branching incumbent solution is 
significantly better than that of the two 

other codes during almost the entire run. 
As to optimality convergence, the local 
branching method concludes its run after 
1,878 CPU seconds, whereas ILOG-Cplex 
7.0 in its optimization version converges 
to optimality within 3,827 CPU seconds 
(the feasibility version is unable to prove 
optimality within a time limit of 6,000 
CPU seconds). Note, however, that the 
enhanced convergence behavior of the local 
branching scheme in proving optimality 
cannot be guaranteed in all cases. Indeed, 
the framework described in Figure 1 has 
been specialized to obtain good approximate 
solutions for hard MIPs by using effective 
ideas from the metaheuristic area such as 
a time limit on the exploration of each 
node and sophisticated diversification 
strategies. For space limit, we do not include 
the final description of the framework 
(see [5] for details), but an example of 
the execution on the hard MIP instance 
B1C1S1 [15] is reported in Figure 3. 
Complete results are given in [5].

3 Local branching extensions

The main idea discussed in Section 1 
opens many interesting fields of application 
in which the basic local branching 
idea can extend its range of use. 

Tighter integration within the MIP solver.

There are two ways of exploiting local 
branching constraints. The first uses 
the local branching constraints as a 
“strategic” branching rule within an exact 
solution method, to be alternated with a 
more standard “tactical” branching rule. 
This approach, described in Section 2, 

Figure 2: Solving MIP instance tr24-15 (solution value vs. CPU seconds).Figure 1: The basic local branching scheme.
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uses the MIP solver as a black-box for 
performing the tactical branchings. This 
is remarkably simple to implement, but 
has the disadvantage of wasting part 
of the computational effort devoted, 
to the exploration of the nodes where 
no improved solution could be found 
within the node time limit. Therefore, a 
more integrated (and flexible) framework 
where the two branching rules work 
in tight cooperation is expected to 
produce an enhanced performance.

Local search by branch-and-cut.

A second way of using the local branching 
constraints is within a genuine heuristic 
framework akin to Tabu Search (TS) or 
Variable Neighborhood Search (VNS). As a 
matter of fact, all the main ingredients of 
these metaheuristics (defining the current 
solution neighborhood, dealing with tabu 
solutions or moves, imposing a proper 
diversification, etc.) can easily be modeled 
in terms of linear cuts to be dynamically 
inserted and removed from the model. 
This naturally leads to a completely general 
(and hopefully powerful) TS or VNS 
framework for MIPs possibly designed to 
take into account the structure of specific 
combinatorial problems. Very promising 
results in this direction have been obtained 
by Fischetti, Polo and Scantamburlo [7].

Working with infeasible reference 
solutions.

As stated, the local branching framework 
requires a starting (feasible) reference 
solution x–   1, which we assume is provided 
by the MIP black-box solver. However, for 

difficult MIPs (such as, hard set partitioning 
models) even the definition of this solution 
may require an excessive computing 
time. In this case, one should consider 
the possibility of working with infeasible 
reference solutions. It is then advisable 
to adopt the widely-used mechanism in 
metaheuristic frameworks consisting in 
modifying the MIP model by adding slack 
variables to (some of) the constraints, while 
penalizing them in the objective function. 
A sophisticated version of this simple idea 
has been considered by Fischetti and Lodi 
[6] in conjunction with a recently proposed 
algorithm to find an initial solution for 
MIPs called Feasibility Pump [4].

Dealing with general-integer variables.

Local branching is based on the assumption 
that the MIP model contains a relevant set 
of 0-1 variables to be used in the definition 
of the “distance function” D(x, x–   ). 
According to our computational experience, 
this definition is effective even in case of 
MIPs involving general integer variables, 
in that the 0-1 variables (which are often 
associated with big-M terms) are likely to 
be largely responsible for the difficulty of 
the model. However, it may be the case that 
the MIP model at hand does not involve 
any 0-1 variable, or that the 0-1 variables do 
not play a relevant role in the model−hence 
the introduction of the local branching 
constraint does not help the MIP solver. In 
this situation, one is interested in modified 
local branching constraints including the 
general-integer variables in the definition 
of the distance function D(x, x–   ). To this 
end, suppose MIP model (P) involves the 

bounds lj ≤ xj ≤ uj for the integer variables
xj ( j ∈ I : = B ∪ G). Then a 
suitable local branching constraint 
can be defined as follows:

where weights mj are defined, e.g., as 
mj = 1/(uj − lj) for all j ∈ I, while the 
variation terms xj 

+ and xj 
- require the 

introduction into the MIP model of 
additional constraints of the form:

xj = x–  j + xj
+ - xj

-,  xj
+  ≥ 0,  xj

- ≥ 0,

∀j ∈ I : lj < x–  j < uj .

Use of local branching constraints 
within special-purpose codes.
As outlined in the introduction, there is no 
need of using local branching constraints 
within a general-purpose MIP solvers. In 
fact, these constraints can be effectively 
integrated within special-purpose (black-
box) codes, both exact and heuristic, 
designed for specific problems so as to 
enhance their heuristic capability. Obviously 
the only requirement is that the code is 
able to take into account linear inequalities. 
In this context, using local branching 
constraints within a special-purpose branch-
and-cut code seems to be very suitable, 
and interesting results have been obtained 
by Hernández-Pérez and Salazar [10]. 

4 On-line Resources

A beta version of the LocBra code is 
available for research purposes together 
with a collection of hard MIP instances, 
and some papers and slides illustrating the 
method at the web page: www.or.deis.unibo.
it/research_pages/ORinstances/MIPs.html
Finally, a Local Branching heuristic 
is now part of the arsenal of ILOG-
Cplex since version 9.1.

Figure 3: LocBra as a heuristic for instance B1C1S1 (solution value vs. CPU sec.).
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DANTZIG PRIZE
Call for nominations 2006
Nominations are solicited for the George B. Dantzig Prize, administered 
jointly by the Mathematical Programming Society (MPS) and the Society 
for Industrial and Applied Mathematics (SIAM). This prize is awarded 
to one or more individuals for original research which by its originality, 
breadth and depth is having a major impact on the field of mathematical 
programming. The contribution(s) for which the award is made must 
be publicly available and may belong to any aspect of mathematical 
programming in its broadest sense. Preference will be given to candidates 
who have not reached their 50th birthday in the year of the award. 

The prize will be presented at the 2006 SIAM Annual Meeting to be held 
July 10-14, 2006, in Boston, Mass. Past prize recipients are listed on the 
MPS Web site. The members of the prize committee are Robert Bixby 
(Chair), Arkadi Nemirovski, Jong-Shi Pang, and Alexander Schrijver.

Nominations should consist of a letter describing the nominee’s 
qualifications for the prize and a current curriculum vitae of the 
nominee, including a list of publications. They should be sent to the 
chair of the committee and received by Nov. 15 2005. Submission of 
nomination materials in electronic form is strongly encouraged.

Robert E. Bixby
ILOG, Inc. and Rice University
8 Briarwood Ct.
Houston, Texas, 77019
USA

E-mail: bixby@ilog.com or bixby@rice.edu

SÉMINAIRE DE 
MATHÉMATIQUES
SUPÉRIEURES 2006/NATO ADVANCED 
STUDY INSTITUTE

45th session

Combinatorial Optimization:
Methods and Applications

JUNE 19-30 2006

Université de Montréal. Requests for 
participation or financial assistance must be 
received before Feb. 28 2006.

www.dms.umontreal.ca/sms/
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A. W. TUCKER PRIZE
Call for nominations 2006
The next A. W. Tucker Prize will be awarded at the XIXth International 
Symposium on Mathematical Programming in Rio de Janeiro, 30 July-
4 August 2006, for an outstanding paper authored by a student.

The paper can deal with any area of mathematical programming. All students, graduate 
or undergraduate, are eligible. Nominations of undergraduate students are welcome. 
The Awards Committee will screen the nominations and select at most three finalists. 
The finalists will be invited, but not required, to give oral presentations at a special 
session of the symposium. The awards committee will select the winner before the 
symposium and present the award prior to the conclusion of the symposium.

The paper may be original research, a particularly notable exposition or survey, a report 
on innovative computer routines and computing experiments, or a presentation of a 
new and ingenious application. The paper must be solely authored and completed 
since 2003. A Ph.D. thesis qualifies. The paper and the work on which it is based 
should have been undertaken and completed in conjunction with a degree program.

Nominations must be made in writing to the chairman of the awards committee 
by a faculty member at the institution where the nominee was a student when the 
paper was completed. Moreover, nominators should send one copy each of: 1) the 
student’s paper and a separate summary of the paper’s contributions, written by 
the nominee, no more than two pages in length and 2) a brief biographical sketch 
of the nominee to each of the four members of the Tucker Prize committee:

The awards committee may request additional information.

The deadline for nominations is February 1, 2006.

Nominations and the accompanying documentation must be written in a language 
acceptable to the awards committee. The winner will receive an award of $750 (U.S.) and 
a certificate. The other finalists will also receive certificates. The Society will also pay 
partial travel expenses for each finalist to attend the symposium. These reimbursements 
will be limited in accordance with the amount of endowment income available. A 
limit in the range from $500 to $750 (U.S.) is likely. The institutions from which the 
nominations originate will be encouraged to assist any nominee selected as a finalist 
with additional travel expense reimbursement. Previous winners and further information 
about the Tucker Prize can be found at www.mathprog.org/prz/tucker.htm#winners.

The Lagrange Prize 
in Continuous 
Optimization
Call for Nominations
Nominations are invited for the Lagrange 
Prize in Continuous Optimization, awarded 
jointly by the Mathematical Programming 
Society (MPS) and the Society for 
Industrial and Applied Mathematics 
(SIAM). The prize will be presented at the 
SIAM Annual Meeting in July 2006.

To be eligible, works should form the 
final publication of the main result(s) 
and should be published either (a) as 
an article in a recognized journal or in 
a comparable, well-referenced volume 
intended to publish final publications only; 
or (b) as a monograph consisting chiefly 
of original results rather than previously 
published material. Extended abstracts and 
prepublications, and articles published in 
journals, journal sections, or proceedings 
that are intended to publish non-final 
papers, are not eligible. The work must have 
been published during the six calendar years 
preceding the year of the award meeting.

Judging of works will be based primarily 
on their mathematical quality, significance, 
and originality. Clarity and excellence 
of the exposition and the value of the 
work in practical applications may be 
considered as secondary attributes.

The Prize Committee for 2006 consists of 
John Dennis, Nick Gould, Adrian Lewis, 
and Mike Todd. Full details and prize rules 
are given at www.mathprog.org/prz/lagrange.
htm To nominate a publication for the prize, 
please send a copy of the paper and a letter 
of nomination by January 23, 2006 to :

Michael J. Todd
School of Operations Research
Rhodes Hall
Cornell University
Ithaca, NY 14853-3801

E-mail: miketodd@cs.cornell.edu

Electronic submissions are preferred.

Prof. S. Thomas McCormick (Chair)
Sauder School of Business
University of British Columbia
Vancouver, B.C., Canada V6T 1Z2
Tom.McCormick@sauder.ubc.ca

Prof. Monique Laurent
CWI, Centrum voor Wiskunde 
en Informatica
Kruislaan 413
NL-1098 SJ Amsterdam, The Netherlands
M.Laurent@cwi.nl

Prof. Jong-Shi Pang
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, New York 12180-3590, USA
pangj@rpi.edu

Prof. Rüdiger Schultz
Department of Mathematics
University of Duisburg-Essen Campus
Lotharstr. 65
D-47057 Duisburg, Germany
schultz@math.uni-duisburg.de
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Beale-Orchard-Hays Prize
Call for nominations 2006
The Mathematical Programming Society invites 
nominations for the Beale-Orchard-Hayes Prize 
for Excellence in Computational Mathematical 
Programming. For details of rules and eligibility, 
please see www.mathprog.org/prz/boh.htm

Nominations can be submitted either electronically 
or in writing, but not a combination of the two. The 
nomination must include a cover letter with the title, 
authors, and publication details of the nominated 
paper or book. If submitted electronically, the final 
published version of the nominated publication should 
be attached to the message. If in writing, please send 
four copies of the paper or book. Supporting justification 
and any supplementary materials are welcome but 
not mandatory. The screening committee reserves 
the right to request further supporting materials 
from the nominees. The deadline for nominations is 
March 17, 2006. Nominations should be mailed to:

Stephen Wright
Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706 USA
E-mail: swright@cs.wisc.edu

D.R. FULKERSON PRIZE
Call for nominations
The Fulkerson Prize Committee invites nominations for the Delbert Ray 
Fulkerson Prize, sponsored jointly by the Mathematical Programming 
Society (MPS) and the American Mathematical Society. Up to three 
awards of US $1500 each are presented at each (triennial) International 
Symposium of the MPS. The Fulkerson Prize is for outstanding papers 
in the area of discrete mathematics. The prize will be awarded at the 
19th International Symposium on Mathematical Programming to 
be held in Rio de Janeiro, Brazil from July 30 to Aug. 4, 2006.

Eligible papers should represent the final publication of the main result(s) 
and should have been published in a recognized journal, or in a comparable, 
well-refereed volume intended to publish final publications only, during 
the six calendar years preceding the year of the Symposium (thus, from 
Jan. 2000 through Dec. 2005). The prizes will be given for single papers, 
not series of papers or books, and in the event of joint authorship the 
prize will be divided. The term “discrete mathematics” is interpreted 
broadly and is intended to include graph theory, networks, mathematical 
programming, applied combinatorics, applications of discrete mathematics 
to computer science, and related subjects. While research work in these 
areas is usually not far removed from practical applications, the judging of 
papers will be based only on their mathematical quality and significance.

Further information about the Fulkerson Prize, including a list of previous 
winners, can be found at www.mathprog.org/prz/fulkerson.htm  
and at www.ams.org/prizes/fulkerson-prize.html.

The Fulkerson Prize committee consists of Noga Alon (Tel-Aviv University), 
Bill Cunningham (U. Waterloo) and Michel Goemans (MIT), chair.

Please send your nominations (including reference to the nominated 
article and an evaluation of the work) by Jan. 31, 2006 to the committee 
chair. Electronic submissions to goemans@math.mit.edu are preferred. 

Michel Goemans
MIT, Room 2-351
Department of Mathematics
77 Massachusetts Avenue
Cambridge, MA 02139
USA

E-mail: goemans@math.mit.edu
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Application for Membership

I wish to enroll as a member of the Society.

My subscription is for my personal use and not for the benefit of any library or institution.

 I will pay my membership dues on receipt of your invoice.

 I wish to pay by credit card (Master/Euro or Visa).

credit card no.	 expiration date

family name

mailing address

telephone no.	 telefax no.

E-mail

signature

Mail to:

Mathematical Programming Society 
3600 University City Sciences Center 
Philadelphia, PA 19104-2688 USA

Cheques or money orders should be 
made payable to The Mathematical 
Programming Society, Inc. Dues for 
2006, including subscription to the 
journal Mathematical Programming, 
are US $80. Retired are $50.
Student applications: Dues are $25. 
Have a faculty member verify your 
student status and send application 
with dues to above address.

Faculty verifying status

Institution



gallimaufry
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