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Abstract
Selfish routing is a classical mathematical model 
of how self-interested users might route traffic 
through a congested network. The outcome of 
selfish routing is generally inefficient, in that 
it fails to optimize natural objective functions. 
The price of anarchy is a quantitative measure 
of this inefficiency. We survey recent work that 
analyzes the price of anarchy of selfish routing. 
We also describe related results on bounding the 
worst-possible severity of a phenomenon called 
Braess’s Paradox, and on three techniques for 
reducing the price of anarchy of selfish routing. 
This survey concentrates on the contributions 
of the author’s PhD thesis, but also discusses 
several more recent results in the area.

1 Introduction
Over the past several years, there has been a 
tremendous surge of activity at the interface of 
computer science and economics. This survey is 
a brief introduction to two intertwined facets of 
this emerging research area, the price of anarchy 
and selfish routing. The price of anarchy, first 
defined by Koutsoupias and Papadimitriou [43, 
55], measures the extent to which competition 
approximates cooperation. It is motivated by the 
well-known fact that noncooperative equilibria 
can be inefficient, in that they need not optimize 
natural objective functions [24, 60]. Selfish 
routing refers to a mathematical model of traffic 
in a congested network. This model has a long 
history in the transportation science literature [6, 
10, 58, 85] and has also been widely studied by 
the computer networking community (see e.g. 
[8, 13, 28, 29, 52, 59]). The price of anarchy has 
recently been extensively studied in this model.

This survey concentrates on the contributions 
of the author’s PhD thesis [66], but also discusses 
several more recent results on the price of anarchy 

of selfish routing. In most cases, we provide self-
contained proofs. Many more details, results, and 
references can be found in the recent book [70], 
which is an expanded and revised version of [66].

1.1 Two Motivating Examples
We now introduce selfish routing and 
motivate the results described in this survey by 
informally exploring two important examples. 
Pigou discovered the first example in 1920 
[58]; Braess found the second in 1968 [11]. 
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(a) Pigou's example

(b) A nonlinear variant

Figure 1: Pigou's example and a nonlinear 
variant. The cost function c(x) describes the 
cost incurred by users of an edge, as a function 
of the amount of traffic routed on the edge.
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Example 1.1 (Pigou’s example [58]) 
Consider the simple network shown in 
Figure 1(a). Two disjoint edges connect a 
source vertex s to a sink vertex t. Each
 edge is labeled with a cost function c(·), 
which describes the cost (e.g., travel time) 
incurred by users of the edge, as a function 
of the amount of traffic routed on the 
edge. The upper edge has the constant 
cost function c(x) = 1, and thus represents 
a route that is relatively long but immune 
to congestion. The cost of the lower edge, 
by contrast, is governed by the function 
c(x) = x and thus increases as the edge gets 
more congested. In particular, the lower 
edge is cheaper than the upper edge if and 
only if less than one unit of traffic uses it.

Suppose there is one unit of traffic, 
representing a very large population of 
network users, and that each user chooses 
independently between the two routes 
from s to t. Assuming that each network 
user aims to minimize its cost, we should 
expect all traffic to follow the lower edge. 
Indeed, each network user should reason 
as follows: the lower route is never worse 
than the upper one, even when it is fully 
congested, and it is superior whenever some 
of the other users are foolish enough to 
take the upper route. In the “selfish routing 
outcome”, we therefore expect all networks 
users to incur one unit of cost.

Now suppose that, by whatever means, 
we can choose how the traffic is routed. 
Can we leverage this power to improve over 
the selfish routing outcome? To see that we 
can, consider assigning half of the traffic to 
each of the two routes. The network users 
forced onto the upper edge experience one 
unit of cost, and are thus no worse off than 
in the previous outcome. On the other 
hand, users permitted on the lower edge now 
enjoy lighter traffic conditions, and incur 
a mere 1/2 unit of cost. We have therefore 
lowered the cost of half of the users while 
making no one worse off. Moreover, the 
average cost incurred by traffic has decreased 
from 1 to 3/4.

Pigou’s example demonstrates that 
selfish routing need not produce an 
optimal outcome. This phenomenon can 
be amplified with a seemingly minor 
modification to Example 1.1. Suppose we 
replace the previously linear cost function 
c(x) = x with the highly nonlinear one  
c(x) = xp for p large (Figure 1(b)). As in 
Example 1.1, selfish users will all travel on 
the lower route, incurring a cost of 1. On 
the other hand, if we could force a small 

fraction of the traffic to travel along the 
upper route, then the average cost would 
drop to ε + (1 − ε)p+1, which approaches 0 as 
ε tends to 0 and p tends to infinity.

In Section 2, we will define the price of 
anarchy of selfish routing as the average cost 
of traffic in a selfish outcome divided by 
the minimum-possible average cost. If the 
price of anarchy of a network is close to 1, 
then we conclude that the negative impact 
of selfish routing is relatively small. The 
price of anarchy in Example 1.1 is at least 
4/3, and it tends to infinity with p in the 
nonlinear variant of Pigou’s example.

The price of anarchy of selfish routing 
can therefore be large if the network cost 
functions are “sufficiently nonlinear”. 
Pigou’s example and its nonlinear variant 
motivate the following questions, which 
are central to Section 2 of this survey. Can 
the price of anarchy be large even when 
cost functions are “not too nonlinear”? 
Is the price of anarchy larger in bigger, 
more complicated networks? Is it larger in 
multicommodity networks, where traffic 
emanates from and terminates at multiple 
locations? In Section 2 we will prove that 
the answer to all of these questions is “no”—
in fact, Pigou’s example and simple variants 
are in some sense universal bad examples for 
the price of anarchy of selfish routing. 

While the price of anarchy in our 
next example is no larger than in Pigou’s 
example, it is arguably a more startling and 
unintuitive display of the suboptimality of 
selfish routing.

Example 1.2 (Braess’s Paradox [11]) 
Consider the four-node network shown in 
Figure 2(a). There are two disjoint routes 
from s to t, each with combined cost 1 + x, 
where x is the amount of traffic that uses the 
route. The routes are therefore identical, and 
selfish traffic should split evenly between 
them. Assuming that there is one unit of 
traffic, all network users experience 3/2 
units of cost in the selfish routing outcome. 

Now suppose that, in an effort to decrease 
the cost encountered by the traffic, we build 
a short, high-capacity edge connecting the 
midpoints of the two existing routes. The 
new network is shown in Figure 2(b), with 
the new edge (v,w) possessing the constant 
cost function c(x) = 0. How will selfish 
traffic react?

We cannot expect the previous traffic 
pattern to persist in the new network. As 
in Pigou’s example, the cost of the new 
route s → v → w → t is never worse than 

that along the two original paths, and it is 
strictly less whenever some traffic fails to 
use it. We therefore expect all network users 
to deviate to the new route. Because of the 
ensuing heavy congestion on the edges (s, v) 
and (w, t), all of the traffic now experiences 
two units of cost. Braess’s Paradox thus 
shows that the intuitively helpful action of 
adding a new zero-cost edge can increase the 
cost experienced by all of the traffic!
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Figure 2: Braess' Paradox. The addition 
of an intuitvely helpful edge can 
adversely affect all of the Traffic

Example 1.2 shows that adding a new 
edge to a network can increase the cost 
incurred by selfish traffic. Equivalently, 
removing one edge from a network with 
linear cost functions can decrease this cost 
by a factor of at least 4/3. Can removing 
edges from a network decrease the cost 
incurred by selfish traffic by a larger factor 
in larger networks, or with nonlinear cost 
functions, or with multiple commodities, 
or with multiple edge removals allowed? 
If so, by how much? In Section 3 we give 
precise answers to all of these questions.

1.2 Overview
We begin in Section 2 by proving matching 
upper and lower bounds on the price of 
anarchy of selfish routing. After defining 
the classical model of selfish routing that 
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we study, we formalize the lower bound 
on the price of anarchy provided by simple 
variants of Pigou’s example. As suggested 
by Example 1.1 and the subsequent 
nonlinear variants, this lower bound will 
depend on the set of allowable edge cost 
functions. We then show a matching upper 
bound for essentially every set of allowable 
cost functions. For example, the price of 
anarchy in every multicommodity network 
with linear cost functions—functions of 
the form ax+b with a, b ≥ 0—is at most 
4/3. Thus the price of anarchy in such 
networks is maximized by Pigou’s example 
(Example 1.1). Similarly, the price of 
anarchy of multicommodity networks with 
cost functions that are polynomials with 
nonnegative coefficients and degree at most 
p is maximized by the nonlinear variant 
of Pigou’s example shown in Figure 1(b). 
We also explicitly compute the largest-
possible price of anarchy with respect to 
several different types of cost functions.

Section 3 studies the worst-possible 
severity of Braess’s Paradox. We show that 
Braess’s Paradox can be arbitrarily severe, 
even in single-commodity networks, 
provided nonlinear cost functions, large 
networks, and multiple edge removals are 
permitted. Precisely, for every n ≥ 2, there is 
a single-commodity, n-vertex network such 
that removing n/2 − 1 edges decreases the 
cost incurred by selfish traffic by an n/2 
factor. We also show that this construction 
is optimal in several senses, discuss 
extensions to multicommodity networks, 
and show that Braess’s Paradox is impossible 
to detect efficiently (assuming P ≠ NP).

Section 4 tackles the problem of reducing 
the price of anarchy in networks where it is 
unacceptably high. It surveys positive results 
for three distinct approaches: increasing the 
network capacity, routing a small portion 
of the traffic centrally, and influencing 
network users by taxing network edges.

Finally, Section 5 describes the broader 
research context for the results of this 
survey, and discusses other recent work that 
quantifies the inefficiency of noncooperative 
equilibria.

2 Bounding the Price of Anarchy
This section formally defines selfish 
routing networks, equilibria, and the price 
of anarchy (Subsection 2.1); introduces a 
simple lower bound on the price of anarchy 
that is based on Pigou’s example (Subsection 
2.2); and proves a matching upper bound 
on the price of anarchy (Subsection 2.3).

2.1 Preliminaries
Selfish Routing Networks
We begin by reviewing the terminology of 
classical multicommodity flow networks. 
See [2], for example, for more details and 
for historical notes on network flows. 
A multicommodity flow network is 
described by a directed graph G = (V,E), 
with vertex set V and edge set E, and a set 
(s1, t1), . . . , (sk, tk) of source-sink vertex 
pairs, also called commodities. Parallel 
edges are allowed, and a vertex can 
participate in multiple source-sink pairs.

For a multicommodity network G, let Pi 
denote the set of simple si-ti paths and P the 
union ∪ k 

i=1Pi. We always assume that  
Pi ≠ 0 for every i. A  flow in G is a 
nonnegative vector, indexed by P. For a 
flow f and a path P ∈ Pi, we interpret fP as 
the amount of traffic of commodity i that 
chooses the path P to navigate from si to ti. 
A flow f  induces a flow on edges  
{fe}e∈E, where fe = ∑P∈P : e∈P fP denotes the 
total amount of flow using the edge e. 
Finally, we use r to denote a nonnegative 
vector of traffic rates, indexed by the 
commodities of G. A flow f in G is feasible 
for r if it routes all of the prescribed traffic: 
for each i ∈ {1, 2, . . . , k}, ∑P∈Pi fP = ri.

To model the negative consequences of 
increasing congestion, we give each edge e 
of a network G a nonnegative, continuous, 
and nondecreasing cost function ce. A cost 
function ce(·) denotes the cost (e.g. travel 
time) incurred by traffic that traverses edge 
e, as a function of the edge congestion fe. 
A selfish routing network is then given by 
a triple of the form (G, r, c), where G is a 
multicommodity flow network, r is a vector 
of traffic rates, and c is a vector of cost 
functions, indexed by the edges of G. We 
often call such a triple an instance.

Equilibria
We next discuss equilibria in selfish 
routing networks. Let f  be a flow feasible 
for the instance (G, r, c). The overall cost 
cP ( f ) incurred by traffic on the path 
P in the flow f  is defined as the sum 
of the costs of the constituent edges: 
cP( f ) = ∑e∈P ce( fe ). Naturally, we expect 
selfish traffic to attempt to minimize its 
cost. This leads to the following definition, 
which was first formulated by Wardrop [85].

Definition 2.1 ([85]) Let f  be a feasible 
flow for the instance (G, r, c). The flow 
f  is a Wardrop equilibrium if, for every 

commodity i ∈ {1, 2, . . . , k} and every pair 
P, P̃ ∈ Pi of si-ti paths with fP > 0, 

 cP( f ) ≤ c P̃ ( f  ).

In other words, all paths in use by a 
Wardrop equilibrium f  have minimum-
possible cost (given their source, sink, and 
the congestion caused by f  ). In particular, 
all paths of a given commodity used by a 
Wardrop equilibrium have equal cost. In 
the theoretical computer science literature, 
Wardrop equilibria are also called Nash 
flows. Haurie and Marcotte [32] formalized 
the precise correspondence between 
Wardrop equilibria and Nash equilibria 
of finite normal-form games [50].
Remark 2.2 In Definition 2.1, we are 
implicitly assuming that every network 
user controls a negligible portion of the 
overall traffic, so that the actions of an 
individual user have essentially no effect on 
the network congestion. In the game theory 
literature, games with this property are 
called nonatomic [76]. Several recent papers 
have analyzed the price of anarchy in atomic 
variants of the selfish routing model studied 
in this survey; see Section 5 for references.

Beckmann, McGuire, and Winsten [6] 
resolved the important issues of existence 
and uniqueness of Wardrop equilibria.

Proposition 2.3 ([6])
Let (G, r, c) be an instance.

(a) The instance (G, r, c) admits at 
least one Wardrop equilibrium.

(b) If f and f̃ are Wardrop equilibria for  
(G, r, c), then ce(fe ) = ce( f̃e ) for every edge e.

The first part of Proposition 2.3 guarantees 
that a Wardrop equilibrium exists in 
every instance. The second part states 
that every two Wardrop equilibria induce 
identical edge costs. While two Wardrop 
equilibria need not induce identical 
flows on edges, Proposition 2.3(b) is 
strong enough for our purposes.

The proof of Proposition 2.3 in [6] is 
remarkable. Beckmann, McGuire, and 
Winsten [6] showed, by invoking the 
Karush-Kuhn-Tucker conditions (see e.g. 
[57]), that the Wardrop equilibria of an 
instance (G, r, c) are precisely the flows that 
minimize the potential function 
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           (1)
over all feasible flows for (G, r, c). Since 
cost functions are continuous and the 
space of all flows is compact, Weierstrass’s 
Theorem then implies Proposition 2.3(a). 
Since cost functions are nondecreasing, 
the function Φ is convex, and Proposition 
2.3(b) then follows without much difficulty. 
This use of a potential function has been 
influential in both game theory and 
theoretical computer science. Led by the 
work of Rosenthal [62] and Monderer 
and Shapley [49], potential functions have 
become a standard tool in noncooperative 
game theory for proving the existence of 
pure-strategy Nash equilibria in certain 
classes of games. In theoretical computer 
science, potential functions have been used 
to bound the price of anarchy in several 
applications [3, 36, 73, 74]. Intuitively, if 
equilibria optimize a potential function 
that is “close to” the objective function, 
then equilibria cannot be too inefficient. 
Indeed, the proximity between the potential 
function Φ in (1) and our objective 
function (3) below implies near-optimal 
upper bounds on the price of anarchy of 
selfish routing [74]. In this survey we focus 
only on optimal bounds, however, which 
follow from a different proof approach.

Speaking of which, the following 
variational inequality characterization of 
Wardrop equilibria, due to Smith [78], will 
play a crucial role in our upper bound on 
the price of anarchy.

Proposition 2.4 ([78]) A flow f 
feasible for (G, r, c) is a Wardrop 
equilibrium if and only if

        
for every flow f * feasible for (G, r, c).

Proposition 2.4 can easily be derived as 
an optimality condition for minimizers of 
the potential function (1). For simplicity, 
we instead give a short direct proof.

Proof: Definition 2.1 easily 
implies that a flow f is a Wardrop 
equilibrium if and only if

     (2)

for every flow f * feasible for (G, r, c). 
Writing cP( f ) = ∑e∈P ce( fe ) and reversing 
the order of summation on both sides 
of (2) then proves the proposition.  

The Price of Anarchy
We conclude the preliminaries by defining 
the price of anarchy. Since this definition 
aims to quantify the inefficiency of an 
equilibrium, it requires an objective 
function. We adopt the usual objective 
function from min-cost network flow, and 
define the cost C( f ) of a flow f in (G, r, c) as

 (3)
The first equality in (3) is a definition; 
the second follows from the same reversal 
of sums as in the proof of Proposition 
2.4. A flow feasible for an instance 
(G, r, c) is optimal if it minimizes the 
cost over all feasible flows. Because 
cost functions are continuous and 
the space of flows is compact, every 
instance admits an optimal flow.

We now define the price of anarchy as 
the ratio between the cost of a Wardrop 
equilibrium and of an optimal flow.

Definition 2.5 ([43, 55]) The price of 
anarchy ρ(G, r, c) of an instance (G, r, c) is

where f  is a Wardrop equilibrium and 
f * is an optimal flow for (G, r, c). The 
price of anarchy ρ(I) of a non-empty set 
I of instances is sup(G, r, c)∈I ρ(G, r, c). 

Definition 2.1 and Proposition 2.3(b) 
easily imply that all Wardrop equilibria 
have equal cost, and thus the price of 
anarchy of an instance is well defined 
unless there is a flow with zero cost. In 
this case, all Wardrop equilibria also 
have zero cost, and we define the price 
of anarchy of the instance to be 1.

2.2 The Pigou Bound
Definition of the Pigou Bound
Pigou’s example and its nonlinear variant 
(Subsection 1.1) show that the price of 
anarchy of selfish routing depends, at the 
very least, on the type of cost functions 
allowed. We will therefore aim for a 
bound on the price of anarchy that is 
parameterized by the set of allowable 

cost functions, and that is optimal for 
each such set. Common examples of sets 
of cost functions include linear functions, 
polynomials, and queueing delay functions.

For every set C of allowable cost functions, 
Pigou-like examples provide a natural lower 
bound on the price of anarchy of instances 
with cost functions in C. Specifically, suppose 
C contains all of the constant cost functions, 
and choose a cost function c2 ∈ C and a 
traffic rate r ≥ 0. Let c1 ∈ C denote the cost 
function everywhere equal to c2(r). Consider 
the usual two-node, two-link network of 
Pigou’s example (Figure 1), give the upper 
and lower edges the cost functions c1 and c2, 
respectively, and set the traffic rate to be r. 
Routing all traffic on the lower edge yields a 
Wardrop equilibrium with cost c2(r) r. The 
price of anarchy in this instance is thus

Definition 2.6 below uses this expression 
but does not constrain x from above by r; 
since c2 is nondecreasing, this modification 
does not affect the value of the maximum.

We can now obtain a lower bound on 
the price of anarchy by choosing the cost 
function c2 and the traffic rate r in the most 
pernicious way possible.

Definition 2.6 ([22, 67]) Let C be 
a nonempty set of cost functions. 
The Pigou bound α(C) for C is

(4)
with the understanding that 0/0 = 1.

Examples
While the defining equation (4) of the Pigou 
bound may appear fearsome to evaluate, it 
simplifies to a closed-form expression for 
many interesting sets of cost functions.

Example 2.7 ([67, 74]) If C = {ax + b :  
a, b ≥ 0} is the set of linear cost 
functions, then elementary 
calculations show that α(C ) = 4/3.

Thus Example 1.1 determines the Pigou 
bound for linear cost functions.

Example 2.8 ([22]) Similarly, if C is the set 
of concave cost functions, then α(C ) = 4/3.

Example 2.9 ([67]) If C is the set 
of polynomials with nonnegative 
coefficients and degree at most p, then
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α(C) = [1 − p · (p + 1)−(p+1)/p]−1.              (5)
As p grows large, the right-hand side of 
(5) tends to infinity as p / ln p [67, 84].

The right-hand side of (5) is simply 
the price of anarchy in the nonlinear 
variant of Pigou’s example discussed 
in Subsection 1.1. The Pigou bound 
for (nondecreasing) bounded-degree 
polynomials with arbitrary coefficients is 
not well understood, though partial results 
have recently been obtained by So [79].

Remark 2.10 One of the most popular 
types of cost functions in transportation 
science applications is quartic functions 
with nonnegative coefficients (see e.g. 
Sheffi [77]). The Pigou bound (5) for 
such functions is roughly 2.15.

Our final example is for the delay functions 
of M/M/1 queues—queues with Poisson 
arrivals and exponentially distributed 
service times—which are common in 
computer network applications (see e.g. 
[7, 8]). These delay functions correspond 
to cost functions of the form c(x) = 
1/(u − x), where u can be interpreted as an 
edge capacity or a queue service rate. The 
value of such a function is defined to be 
+∞ when x ≥ u. Allowing infinite costs 
requires some technical modifications to 
the selfish routing model that we ignore 
in this survey; see [66] for more details.

The Pigou bound for the set of M/M/1 
delay functions is +∞ [28]. Intuitively, 
this follows from Example 2.9 because 
an M/M/1 delay function behaves like a 
polynomial with arbitrarily large degree 
when it is nearly saturated. In analogy 
to restricting the polynomial degree in 
Example 2.9, we impose a lower bound 
umin on all queue service rates and an upper 
bound Rmax on the value that the traffic rate 
r can take on in (4).

Example 2.11 ([67]) Suppose Rmax < umin 
and let C = {(u − x)−1 : u ≥ umin} be the set 
of M/M/1 delay functions with service 
rate at least umin. Let α(C) denote the 
largest possible price of anarchy in Pigou-
like networks with cost functions in C 
and traffic rate at most Rmax. (Formally, 
α(C) is given by (4) with the additional 
restriction that x, r ≤ Rmax.) Then

 (6)

The right-hand side of (6) tends to infinity 
as Rmax → umin, but is bounded by a constant 
if Rmax is at most a constant fraction of umin.

Simple Worst-Case Networks
The Pigou bound uses only simple 
networks to provide a lower bound on 
the price of anarchy. Specifically, the 
next proposition follows immediately 
from the definition of the bound.

Proposition 2.12 ([67]) Let C be a set 
of cost functions that includes all of the 
constant functions, and let I denote the single-
commodity instances with a two-node, two-
link network and cost functions in C. Then
 ρ(I) ≥ α(C).

If the set C does not contain all of the 
constant cost functions, then we can 
obtain similar results using modestly more 
complex networks. For example, suppose 
the set C of cost functions is diverse in 
the sense that {c(0) : c ∈ C} = [0,∞). Then 
an edge with the constant cost function 
c(x) = a can, for all practical purposes, be 
“simulated” by a large number of parallel 
edges that each have a cost function 
satisfying c(0) = a. This observation means 
that a Pigou-like network with a constant 
cost function can be replaced by a network 
with two nodes, (an unrestricted number 
of) parallel links, and cost functions in C 
without affecting the price of anarchy.

s t

Figure 3: Worst-case networks for 
inhomogeneous sets of cost functions. The 
number of paths and the number of edges 
in each path can be arbitrarily large.

Proposition 2.13 ([67]) Let C be a diverse 
set of cost functions, and let I denote the 
single-commodity instances with a network of 
parallel links and cost functions in C. Then
 ρ(I) ≥ α(C).

The set of cost functions in Example 
2.11 is not diverse when umin > 0, but 
it is inhomogeneous in the sense that it 
contains a function c with c(0) > 0. As 
in Proposition 2.13, the Pigou bound 

remains valid for such sets of cost functions 
provided we allow somewhat more complex 
networks. Specifically, let a union of paths 
mean a network with one source, one 
sink, and an arbitrarily large number of 
internally vertex-disjoint paths directed 
from the source to the sink (Figure 3).

Proposition 2.14 ([67]) Let C be an 
inhomogeneous set of cost functions, and 
let I denote the single-commodity instances 
with a network that is a union of paths 
and with cost functions in C. Then
  ρ(I) ≥ α(C).

The idea of the proof of Proposition 2.14 
is to impose diversity by considering 
the closure –C of C under multiplication 
by positive scalars, apply Proposition 
2.13, and use multiple copies of edges 
with cost functions in C to simulate 
edges with cost functions in  –C .

Remark 2.15 The Pigou bound does 
not apply to homogeneous sets C of cost 
functions, where c(0) = 0 for all c ∈ C. The 
price of anarchy of selfish routing is not 
completely understood for such sets; the 
upper bound in the next subsection holds 
for these sets, but it is not optimal. See [23] 
for refined upper bounds on the price of 
anarchy with respect to homogeneous sets 
of sufficiently low-degree polynomials.

2.3 Optimality of the Pigou Bound
With all the preliminaries in place, we 
can now easily prove an upper bound on 
the price of anarchy of selfish routing 
that matches the Pigou bound. For 
convenience, we first state a lemma that 
follows immediately from Definition 2.6.

Lemma 2.16 Let C be a set of cost 
functions and  α(C) the Pigou bound 
for C. For c ∈ C and x, r ≥ 0,

We now use this lemma and the variational 
inequality of Proposition 2.4 to prove 
the optimality of the Pigou bound.

Theorem 2.17 ([22, 67]) Let C be a 
set of cost functions and α(C) the Pigou 
bound for C. If (G, r, c) is an instance 
with cost functions in C, then
ρ(G, r, c) ≤ α(C).
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Proof: Let f * and f  be an optimal flow and 
a Wardrop equilibrium, respectively, for 
an instance (G, r, c) with cost functions in 
the set C. The theorem follows by writing

where for the first inequality we have 
applied Lemma 2.16 to each edge e 
with x = f e* and r = fe, and the second 
inequality follows from Proposition 2.4. 

Theorem 2.17 implies that the lower 
bounds on the price of anarchy in Examples 
2.7– 2.11 are the best possible. Thus the 
price of anarchy of networks with linear 
(or concave) cost functions is precisely 
4/3; the price of anarchy of networks with 
cost functions that are polynomials with 
nonnegative coefficients and degree at most 
p is precisely the right-hand side of (5); 
and the price of anarchy of instances with 
sum of all traffic rates at most Rmax, cost 
functions that are M/M/1 delay functions, 
and service rates bounded below by umin > 
Rmax is precisely the right-hand side of (6).

Moreover, since the Pigou bound is 
based only on the simplest of instances, the 
matching upper bound of Theorem 2.17 
implies that simple networks always furnish 
worst-possible examples of the inefficiency 
of selfish routing. Precisely, Propositions 
2.12–2.14 and Theorem 2.17 give the 
following corollary.

Corollary 2.18 Let C be a 
set of cost functions.

(a) If C contains the constant functions, 
then the price of anarchy of instances 
with cost functions in C is achieved, 
up to an arbitrarily small factor, by 
a single-commodity instance with 
a two-node, two-link network.

(b) If C is diverse, then the price of anarchy 
of instances with cost functions in C 
is achieved, up to an arbitrarily small 
factor, by a single-commodity instance 
with a network of parallel links.

(c) If C is inhomogeneous, then the price of 
anarchy of instances with cost functions in 
C is achieved, up to an arbitrarily small 

factor, by a single-commodity instance 
with a network that is a union of paths.

Informally, Corollary 2.18 states that 
the price of anarchy is controlled only by 
the set of allowable cost functions, and 
is essentially independent of the number 
of commodities and of the complexity 
of the allowable network topologies.

Remark 2.19 Theorem 2.17 has undergone 
several iterations in just a few short years. 
It was first proved for the special case 
of linear cost functions in Roughgarden 
and Tardos [74]. Roughgarden [63] then 
proved Theorem 2.17 for bounded-degree 
polynomials with nonnegative coefficients. 
The proof in [63] was fairly complex and 
did not explicitly take advantage of the 
variational inequality given in Proposition 
2.4. Roughgarden [65] extended this 
proof and established Theorem 2.17 for all 
sets of cost functions that satisfy a weak 
technical condition (met by essentially all 
cost functions that arise in applications). 
Ronen [61] pointed out that Proposition 2.4 
could be used to vastly simplify the proof 
of Theorem 2.17, under the same technical 
condition. This revised analysis appears in 
[67]. Correa, Schulz, and Stier Moses [22] 
then showed that, once the proof is based 
on Proposition 2.4, it can be modified so 
that no technical conditions whatsoever 
are needed. The proof of Theorem 2.17 
given above is taken from [22]. More 
recently, two more proofs of Theorem 
2.17 have been given by Tardos [82] and 
Correa, Schulz, and Stier Moses [23].

3 Bounding Braess’s Paradox
This section studies the worst-possible 
severity of Braess’s Paradox. Subsection 
3.1 gives a construction that shows 
that the severity of Braess’s Paradox 
can grow with the network size when 
nonlinear cost functions and multiple 
edge removals are permitted. Subsection 
3.2 proves matching upper bounds for 
single-commodity networks. Subsection 
3.3 gives a brief overview of Braess’s 
Paradox in multicommodity networks. 
Finally, Subsection 3.4 presents negative 
results for the computational problem 
of efficiently detecting Braess’s Paradox. 
We omit many proofs from this section; 
see [70] for the technical details.

3.1 A Bigger Braess’s Paradox
The discovery of Braess’s Paradox [11] 
immediately intrigued researchers and 
catalyzed numerous research directions 
(see [72] for a survey). However, nearly all 
of this work focused on Braess’s original 
four-node network (Figure 2) and variants 
thereof. We next show that Braess’s original 
example is merely the tip of the iceberg: 
Braess’s Paradox can be arbitrarily severe 
in large single-commodity networks. 

We measure the severity of Braess’s 
Paradox with the Braess ratio—the factor 
by which the cost of a Wardrop equilibrium 
exceeds that of an equilibrium in a 
subnetwork.

Definition 3.1 The Braess ratio β(G, r, c) 
of a single-commodity instance (G, r, c) is

       (7)
where H ranges over subnetworks of 
G that contain an s-t path, and f and 
f H denote Wardrop equilibria for (G, 
r, c) and (H, r, c), respectively. 

As with Definition 2.5, the Braess ratio 
of an instance (G, r, c) is well defined 
unless it admits a flow with zero cost, in 
which case we define β(G, r, c) to be 1.

The Braess ratio in Example 1.2 is 4/3. 
No larger Braess ratio is possible in single-
commodity networks with linear cost 
functions. This fact is a consequence of the 
following close connection between the 
price of anarchy and the Braess ratio.

Proposition 3.2 If (G, r, c) is a 
single-commodity instance, then
 β(G, r, c) ≤ ρ(G, r, c).

Proof: For every subgraph H of G, a 
Wardrop equilibrium f H of (H, r, c) is a 
feasible flow for (G, r, c); by the definition 
of the price of anarchy, the cost of f  H is 
at most a ρ(G, r, c) factor less than that of 
a Wardrop equilibrium for (G, r, c).  

As promised, Theorem 2.17 and 
Proposition 3.2 imply that every single-
commodity instance with linear cost 
functions has a Braess ratio of at most 4/3.

Exhibiting a family of instances with 
arbitrarily large Braess ratios requires a new, 
more complicated construction than those 
we have seen so far. Proposition 3.2 implies 
that such a family must make use of cost 
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functions drawn from a sufficiently rich 
set (such as polynomials with unbounded 
degree). We encountered one such family 
in the nonlinear variant of Pigou’s example 
(Subsection 1.1), but it is easy to see that all 
of these instances have a Braess ratio of 1. 
There is also an analogous nonlinear variant 
of Example 1.2, obtained by replacing the 
linear cost functions on the edges (s, v) and 
(w, t) with the functions c(x) = x p for p large. 
The Braess ratios of these instances approach 
2 as p → ∞. As we will see in Subsection 
3.2, a Braess ratio larger than 2 cannot 
arise without allowing larger networks and 
multiple edge removals.

Our main result in this subsection is the 
following.

Theorem 3.3 ([72]) For every n ≥ 2, 
there is a single-commodity instance 
(G, r, c) with n vertices and
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Figure 4: The second and third Braess 
graphs. Edges are labeled with their types.

Proof: We can assume that n is even, 
since the odd case reduces to the even 
case by adding an isolated vertex. We 
can also assume that n is at least 4. Write 
n = 2k + 2 for a positive integer k.

We next define the kth Braess graph Bk. 
Start with a set of 2k + 2 vertices V k =  
{s, v1, . . . , vk,w1, . . . ,wk, t}. The edge set E k  
is the union of the sets {(s, vi ), (vi, wi ),  
(wi , t) : 1 ≤ i ≤ k}, {(vi,wi−1) : 2 ≤ i ≤ k}, and 
{(v1, t)} ∪ {(s,wk )} (see Figure 4). Call edges 
of the form (vi,wi) the type A edges, edges of 
the form (vi,wi−1), (s,wk ), and (v1, t) the type 
B edges, and edges of the form (s, vi ) and 
(wi, t) the type C edges (see Figure 4). Note 
that B1 is the graph in the original Braess’s 
Paradox (Figure 2(b)).

Define cost functions on the edges of Bk 
as follows.
(A) Type A edges are given the 

cost function ck
e (x) = 0.

(B) Type B edges are given the 
cost function ck

e (x) = 1.
(C) For each i ∈ {1, 2, . . . , k}, the type 

C edges (wi, t) and (s, vk−i+1) are 
given a continuous, nondecreasing 
cost function ck

e (x) with 
 ck

e (k/(k + 1)) = 0 and ck
e  (1) = i.

For i = 1, . . . , k, let Pi denote the path  
s → vi → wi → t. For i = 2, . . . , k, let 
Q i denote the path s → vi → wi-1 → t. 
Define Q1 to be the path s → vi → t and 
Q k+1 the path s → wk → t. On one hand, 
routing one unit of flow on each of 
P1, . . . , Pk yields a Wardrop equilibrium 
f  for (B 

k, k, ck ) in which all traffic incurs 
cost k + 1 (Figure 5(a)). On the other 
hand, if H is the subgraph obtained from 
B 

k by deleting the k type A edges, then 
routing k/(k +1) units of flow on each of 
Q1, . . . ,Q k+1 yields a Wardrop equilibrium 
f  H for (H, k, ck ) in which all traffic incurs 
only one unit of cost (Figure 5(b)). Thus
β(G, r, c) ≥ C( f  )/C( f  H) = k + 1 = n/2,
completing the proof.  

Remark 3.4 In the proof of Theorem 
3.3, the subgraph H was obtained from 
B 

k by removing k edges. Thus, for 
every positive integer k, there is a single-
commodity instance for which removing k 
edges can decrease the cost of a Wardrop 
equilibrium by a factor of k +1.

Remark 3.5 The construction in 
the proof of Theorem 3.3 can also 
be adapted for restricted sets of cost 
functions, such as polynomials. See [72] 
for more details and further examples.
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Figure 5: Proof of Theorem 3.3, when 
k = 3. Solid edges carry traffic in the 
Wardrop equilibrium, dashed edges 
do not. Edge costs are with respect 
to the Wardrop equilibrium

3.2 A Matching Upper Bound
This subsection shows that, among 
single-commodity networks, the Braess 
ratio is maximized by the networks 
constructed in the proof of Theorem 3.3.

Theorem 3.6 ([72]) If (G, r, c) is a single-
commodity instance with n vertices, then

Following Lin, Roughgarden, and Tardos 
[45], we will obtain Theorem 3.6 as a 
consequence of a more general theorem. The 
statement of this more general result uses the 
following definition.

Definition 3.7 Let (G, r, c) be a single-
commodity instance and S a subset of 
the edges of G. The set S is sparse if no 
two edges of S share an endpoint, and in 
addition no edge of S is incident to s or t.
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In other words, a set of edges is 
sparse if and only if they form an 
(undirected) matching of V \ {s, t}.

Our general bound on Braess’s Paradox 
states that the size of the largest sparse set 
removed controls how much the cost of a 
Wardrop equilibrium can decrease.

Theorem 3.8 ([45]) Let (G, r, c) be a 
single-commodity instance, H a subgraph 
of G, and f and f̃  Wardrop equilibria for 
(G, r, c) and (H, r, c), respectively. Let S 
denote the edges in G but not H. If every 
sparse subset of S contains at most k edges, then
 C( f ) ≤ (k + 1) · C(  f  ).

Theorem 3.8 easily implies Theorem 3.6, 
as well as an upper bound on the severity of 
Braess’s Paradox that is parameterized by the 
number of edges removed.

Proof of Theorem 3.6: Since there are 
only n − 2 vertices of G that are not s or 
t, every sparse set of edges has at most 
(n − 2)/2  =  n/2  − 1 edges. Theorem 
3.8 now implies the theorem. 

The next corollary implies that the only 
way to achieve arbitrarily large Braess ratios 
is to allow an unlimited number of edge 
removals, answering a question of Kameda 
[37].

Corollary 3.9 ([45]) Removing k 
edges from a single-commodity network 
decreases the cost of a Wardrop equilibrium 
by at most a factor of k + 1.

Proof: Obvious from Definition 
3.7 and Theorem 3.8.  

In particular, we noted earlier that simple 
nonlinear variants on Braess’s original 
example achieve a Braess ratio arbitrarily 
close to 2; if only a single edge removal 
is allowed, then no single-commodity 
instance has a larger Braess ratio. More 
generally, the construction in the proof 
of Theorem 3.3 matches the bound of 
Corollary 3.9 for every k (see Remark 3.4).

We now outline the proof of Theorem 
3.8, which is more delicate than the upper 
bounds on the price of anarchy given in 
Section 2. In particular, the proof must be 
sensitive to the number of network vertices, 
whereas two-node networks typically 
determine the price of anarchy (Corollary 
2.18). Because of this, the proof of Theorem 

3.8 has a stronger combinatorial flavor than 
those in Section 2.

A key tool in the proof of Theorem 3.8 is 
the following notion of an alternating path.

Definition 3.10 Let f and  f̃  be feasible 
flows for the instance (G, r, c).

(a) An edge e of G is ( f, f̃  )-light if  
fe ≤ f̃e and f̃e > 0, ( f, f̃  )-heavy if fe > f̃e , and
( f, f̃ )-useless if fe = f̃e = 0.

(b) An undirected path is ( f, f̃  )-alternating 
if it comprises only forward ( f, f̃  )-light 
edges and backward ( f, f̃  )-heavy edges.

When the context is clear, we drop 
the dependence on f and  f̃  from 
the terms in Definition 3.10.

Example 3.11 Consider the Braess’s Paradox 
network (Figure 2(b)). Let f  be the Wardrop 
equilibrium and  f̃  the optimal flow, which 
splits the traffic evenly between the paths  
s → v → t and s → w → t. Then, edges 
(s, v), (v,w), and (w, t) are ( f, f̃  )-heavy 
while edges (s,w) and (v, t) are ( f, f̃  )-light. 
The unique ( f, f̃  )-alternating s-t 
path is s → w → v → t.

The next lemma states that, for every 
pair of feasible flows, an s-t alternating path 
exists. It is an easy consequence of flow 
conservation arguments.

Lemma 3.12 Let f and  f̃  be flows feasible 
for the single-commodity instance 
(G, r, c). Then, there is an (f, f̃  )-alternating 
s-t path. Moreover, if f is directed 
acyclic, then every such path begins 
and ends with an (f, f̃  )-light edge.

The proof of Theorem 3.8 then proceeds 
by induction along an alternating path, 
repeatedly using the shortest-path structure 
of a Wardrop equilibrium. Details are in 
[70].

3.3 Multicommodity Networks
So far, this section has only studied Braess’s 
Paradox in single-commodity networks. 
We next briefly survey very recent results 
of Lin et al. [46] on Braess’s Paradox in 
multicommodity networks. We define the 
Braess ratio for such networks as follows. 
For a multicommodity instance (G, r, c) 
and a commodity i, let di(G, r, c) denote 
the common cost incurred by all traffic of 
commodity i in a Wardrop equilibrium 

for (G, r, c). Note di(G, r, c) is well defined 
by Definition 2.1 and Proposition 2.3.

Definition 3.13 The Braess ratio β(G, r, c) 
of a multicommodity instance (G, r, c) is

where H ranges over the subnetworks of 
G that contain an si-ti path for each i.

Thus the Braess ratio of a multicommodity 
instance is large only if removing some 
set of edges decreases the cost incurred 
by the traffic of every commodity by a 
large amount. Definitions 3.1 and 3.13 
coincide in single-commodity networks.

The upper bound on the Braess ratio 
in Theorem 3.6 does not carry over to 
multicommodity networks: Lin et al. [46] 
showed that the Braess ratio can grow 
exponentially with the network size, even in 
two-commodity networks.

Theorem 3.14 ([46]) There is a family of 
two-commodity networks {(G n, rn, cn)}∞

n=1 
such that Gn has O(n) vertices and edges 
and β(G n, rn, cn) = 2Ω(n) as n → ∞.

In fact, the construction in the proof 
of Theorem 3.14 shows the following: 
adding a single edge to a two-commodity 
network (G n, rn, cn) with O(n) vertices 
and edges, d2(G

 n, rn, cn) = 0, and  
d1(G

 n, rn, cn) = 1 can increase the common 
cost incurred by traffic of the two 
commodities to roughly the (n − 1)th and 
nth Fibonacci numbers, respectively.

On the other hand, the Braess ratio is 
always at most exponential in the network 
size.

Theorem 3.15 ([46]) There is a constant 
a > 0 such that for every k, n ≥ 1 and 
every instance (G, r, c) with k commodities 
and n vertices, β(G, r, c) ≤ 2akn.

The proof of Theorem 3.15 actually 
shows the stronger statement that if f  is a 
Wardrop equilibrium for the k-commodity, 
n-vertex instance (G, r, c) and f̃  is feasible 
for (G, r, c), then the maximum cost 
maxi di(G, r, c) incurred by traffic in f is 
2O(kn) times the maximum cost incurred 
by traffic in f̃ . The question of whether 
or not the largest-possible Braess ratio of 
multicommodity networks depends on 
the number of commodities is open.
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3.4 Detecting Braess’s Paradox Is 
Hard
Previous results of this section were 
devoted to the analysis of the worst-
case severity of Braess’s Paradox. Braess’s 
Paradox also suggests a natural algorithmic 
question: given a network, is it suffering 
from the paradox? If so, which edges 
should be removed to recover the best-
possible Wardrop equilibrium?

This innocuous question turns out to 
be extremely difficult to answer, in a sense 
we make precise below. To keep things 
simple, we will initially consider only 
single-commodity networks with linear cost 
functions. Detecting Braess’s Paradox can 
be phrased as an optimization problem as 
follows: given a single-commodity instance 
(G, r, c) with linear cost functions, find 
a subnetwork that minimizes the cost 
of a Wardrop equilibrium for (H, r, c) 
over all subnetworks H ⊆ G. We call this 
optimization problem Linear Network 
Design.

Linear Network Design can be 
solved by enumerating all subgraphs H of 
G, computing a Wardrop equilibrium in 
each, and picking the best solution. (Since 
Wardrop equilibria are the minima of the 
convex function in (1), one can be computed 
using convex programming.) On the other 
hand, there may be an exponential number 
of candidate subnetworks H. How well can 
we solve this optimization problem if we use 
only a reasonable amount of computational 
resources?

We will use basic concepts of 
computational complexity theory as 
described in, for example, Garey and 
Johnson [30]. Recall that a γ -approximation 
algorithm for a minimization problem runs 
in polynomial time and returns a solution 
no more than γ times as costly as an optimal 
solution. The value γ is the approximation 
ratio or performance guarantee of the 
algorithm.

While we would obviously like to solve 
Linear Network Design optimally in 
polynomial time, a natural weaker goal is 
to design a γ-approximation algorithm with 
γ as close to 1 as possible. Of course, even 
the trivial algorithm, which always returns 
the entire network G, can be viewed as 
an approximation algorithm for Linear 
Network Design. Because the Braess ratio 
of every network with linear cost functions 
is at most 4/3 (Proposition 3.2), we have the 
following guarantee on the trivial algorithm.

Proposition 3.16 The trivial algorithm 
is a  4–₃-approximation algorithm for 
Linear Network Design.

Needless to say, we should aspire to design 
better, more clever approximation algorithms. 
Alas, none exist, assuming P ≠ NP.

Theorem 3.17 ([72]) For every ε > 0, there 
is no ( 4–₃ − ε)-approximation algorithm for 
Linear Network Design (unless P = NP).

Proof: We give a polynomial-time “gap 
reduction” from the NP-complete problem 
2 Directed Disjoint Paths (2DDP) 
[26]: given a directed graph G = (V,E) 
and distinct vertices s1, s2, t1, t2 ∈ V , 
are there si-ti paths Pi for i = 1, 2, such 
that P1 and P2 are vertex-disjoint? We 
can prove the theorem by showing how 
a (  4–₃ − ε)-approximation algorithm for 
Linear Network Design can be used 
to differentiate between “yes” and “no” 
instances of 2DDP in polynomial time.
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Figure 6: Proof of Theorem 3.17. 
In a “no” instance of 2DDP, the 
existence of s1-t1  and s2-t2 paths implies 
the existence of an s1-t2 path.

Consider an instance I of 2DDP, as 
above. Augment the vertex set V by an 
additional source s and sink t, and include 
the directed edges (s, s1), (s, s2), (t1, t), 
and (t2, t) (see Figure 6). Denote the new 
network by G' = (V',E' ) and endow the 
edges of E' with the following linear cost 
functions c: edges of E are given the cost 
function c(x) = 0, edges (s, s2) and (t1, t) are 
given the cost function c(x) = x, and edges 
(s, s1) and (t2, t) are given the cost function 
c(x) = 1. The instance (G', 1, c) can be 
constructed from I in polynomial time.

The theorem is implied by the following 
two statements (the brief proofs of which 
we omit): if I is a “yes” instance of 2DDP, 
then G' admits a subnetwork H such that 
a Wardrop equilibrium for (H, 1, c) has 
cost 3/2; and if I is a “no” instance, then 
for every subnetwork H of G', a Wardrop 
equilibrium for (H, 1, c) has cost at least 2. 

Thus, no polynomial-time algorithm 
for Linear Network Design has an 
approximation ratio superior to that of 
the trivial algorithm. Equivalently, it is 
NP-hard to distinguish between “paradox-
free” instances (with Braess ratio 1) and 
instances suffering from the most severe 
manifestations of the paradox (with Braess 
ratio 4/3).

While we have only established the 
optimality of the trivial algorithm for 
networks with linear cost functions, 
similar results hold with other sets of 
allowable edge cost functions. For example, 
let General Network Design be the 
analogous optimization problem for single-
commodity networks with arbitrary cost 
functions. Theorem 3.6 implies that the 
trivial algorithm is a  n/2 -approximation 
algorithm for General Network 
Design, where n is the number of network 
vertices. On the other hand, the following 
inapproximability result holds.

Theorem 3.18 ([72]) Assuming  
P ≠ NP, for every ε > 0 there is no  
(  n/2  - ε)- approximation algorithm 
for General Network Design.

The proof of Theorem 3.18 is somewhat 
involved and makes use of the Braess 
graphs that were introduced in the 
proof of Theorem 3.3. For the proof, 
and similar results for other sets of 
allowable cost functions, see [72]. For 
analogous intractability results for 
multicommodity networks, which build 
on the two-commodity networks alluded 
to in Theorem 3.15, see Lin et al. [46].

4 Coping with Selfishness: How To 
Reduce the Price of Anarchy
We have seen that the price of anarchy of 
selfish routing can be large in networks 
with highly nonlinear cost functions, 
including with functions that are common 
in applications, such as M/M/1 delay 
functions. This final technical section 
asks: other than somehow enforcing 
optimal routing, what can we do about 
it? Can modest intervention, when 
feasible, significantly reduce the price 
of anarchy? We briefly discuss three 
techniques for mitigating the inefficiency 
of selfish routing: increasing the capacity 
of the network (Subsection 4.1), routing 
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a small amount of traffic centrally 
(Subsection 4.2), and influencing traffic 
with edge taxes (Subsection 4.3).

4.1 Capacity Augmentation
For the rest of this survey we study networks 
with arbitrary cost functions, where the 
price of anarchy is unbounded. We next 
show that a bound on the inefficiency 
of selfish routing in such networks is 
nonetheless possible, via a so-called bicriteria 
approach. Specifically, our next result is 
that the cost of a Wardrop equilibrium 
is at most that of an optimal flow that 
is forced to route twice as much traffic 
between each source-sink pair. We will see 
that this result has the following alternative 
interpretation: in lieu of centralized control, 
the inefficiency of selfish routing can be 
offset by a moderate increase in link speed.

Example 4.1 Consider the nonlinear variant 
of Pigou’s example (Figure 1(b)): a two-node, 
two-link network with cost functions  
c(x) = 1 and c(x) = xp for p large. Recall 
that with one unit of traffic, the Wardrop 
equilibrium routes all flow on the lower 
edge, while the optimal flow routes ε 
units of flow on the upper edge and 
the rest on the lower edge (where 
ε → 0 as p → ∞). When the traffic rate 
r exceeds one, an optimal flow assigns 
the additional r − 1 units of traffic to the 
upper link, incurring a cost that tends to 
r − 1 as p → ∞. In particular, for every 
p an optimal flow feasible for twice the 
original traffic rate (r = 2) has cost at least 
1, which equals the cost of the Wardrop 
equilibrium in the original instance.

We now show that the bound stated in 
Example 4.1 holds for all instances.

Theorem 4.2 ([74]) If f  is a Wardrop 
equilibrium for (G, r, c) and f * 
is feasible for (G, 2r, c), then
 C( f ) ≤ C( f * ).

Proof: Let f and f * denote a Wardrop 
equilibrium for (G, r, c) and a feasible 
flow for (G, 2r, c), respectively. For each 
commodity i, let di(G, r, c) denote the 
common cost incurred by the traffic of 
commodity i in the flow f (see Definition 
3.13). Definition 2.1 and the definition of 
cost (3) imply that C( f ) = ∑i ridi(G, r, c).
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Figure 7: Construction in the proof of 
Theorem 4.2 of the modified c-e given 
the original cost function ce  and the 
Wardrop equilibrium value fe. Solid 
lines denote graphs of functions.

The key idea is to define a set of cost 
functions c̄ that satisfies two properties: 
lower bounding the cost of f  relative to that 
of f  is easy with respect to c̄; and the new 
cost functions c̄ approximate the original 
ones c, in the sense that the cost of f* with 
respect to c̄ is close to its original cost. 
Specifically, we define c̄e(x) = max{ce(x), 
ce( fe)} for each edge e and x ≥ 0. Figure 7 
illustrates this construction. Let  C̄(·) denote 
the cost of a flow in the instance (G, r, c̄). 
Note that  C̄( f *) ≥ C( f *) while  C̄( f ) = C( f ).

We first upper bound the amount by 
which the new cost  C̄( f *) of f*  can exceed 
its original cost C( f *). For every edge e, 
c̄e(x)−ce(x) is zero for x ≥ fe and bounded 
above by ce( fe) for x < fe, so

 x(c̄e(x) − ce(x)) ≤ ce( fe )fe    (8)

for all x ≥ 0. The left-hand side of (8)—the 
discrepancy between x c̄e(x) and xce(x)—is 
maximized when x is slightly smaller 
than fe and when ce(x) = 0. In this case, 
the value of the left-hand side of (8) is 
essentially the area of the rectangle enclosed 
by dashed lines in Figure 7(a), which in 
turn is the cost incurred by the Wardrop 

equilibrium f on the edge e. Thus

(9)
In other words, evaluating f * with cost 
functions c̄, rather than c, increases its 
cost by at most an additive C( f ) factor. 

Now we lower bound  C̄( f *). By 
construction, the modified cost c̄e(·) of 
an edge e is always at least ce( fe ), so the 
modified cost c̄P(·) of a path P ∈ Pi is 
always at least cP ( f ), which in turn is at 
least di(G, r, c). Therefore,

             
The theorem now follows immediately 
from inequalities (9) and (10). 

Remark 4.3 Example 4.1 shows that the 
bound in Theorem 4.2 is the best possible.
Another interpretation of Theorem 4.2 
is that the benefit of centralized control 
is equaled or exceeded by the benefit of a 
sufficient improvement in link technology. 

Corollary 4.4 ([66]) Let (G, r, c) be an 
instance and define the modified cost function 
c̃e by c̃e(x) =    ce(x/2)/2 for each edge e. Let f̃ be 
a Wardrop equilibrium for (G, r, c̃ )  
with cost  C̃( f̃  ), and f* a feasible flow for  
(G, r, c) with cost C( f*). Then  C̃( f̃ ) ≥ C( f*).

Simple calculations show that Theorem 
4.2 and Corollary 4.4 are equivalent; 
for details, see [66] or [70].

Corollary 4.4 takes on a particularly nice 
form in instances in which all cost functions 
are M/M/1 delay functions (Example 2.11). 
In this case, if the cost function ce of edge 
e is ce(x) = (ue − x)−1, then the modified 
function c̃e is c̃e(x) = 1/2(ue − x/2) = 
1/(2ue − x). Corollary 4.4 thus offers the 
following advice for networks where cost 
functions are M/M/1 delay functions and 
capacity is cheap: to outperform optimal 
routing, just double the capacity of every edge.

4.2 Stackelberg Routing
A second approach to reducing the price of 
anarchy, also explored in [66], is to allow a 
small portion of the network traffic to be 
routed centrally. We will call this Stackelberg 
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routing, after a concept from noncooperative 
game theory called Stackelberg games 
[83]. In the interest of space, we only 
describe our model of Stackelberg 
routing informally, via two examples.

Example 4.5 To understand the potential 
power of Stackelberg routing, consider 
the nonlinear variant of Pigou’s example 
(Figure 1(b)) with p large. Suppose we are 
granted the ability to route a γ ∈ [0, 1] 
fraction of the traffic as we wish, knowing 
that the other (1 −γ) fraction of the traffic 
will then choose routes selfishly, as usual. 
(Definition 2.1 thus governs the routes 
chosen by selfish traffic, but not by the 
centrally routed traffic.) We will call a 
routing of the centrally controlled traffic a 
Stackelberg strategy. Observe that for every 
Stackelberg strategy, the selfish traffic 
will use the lower edge—the upper route 
is never attractive to selfish users, even if 
the lower one is fully congested. On the 
other hand, if we route some traffic on the 
upper edge ourselves, the cost of the overall 
solution decreases. In particular, if γ is 
sufficiently large, we can mimic the optimal 
flow on the upper edge (routing excess 
traffic on the lower edge) and induce the 
optimal flow. Thus Stackelberg routing can 
decrease, or even eradicate, the inefficiency 
of selfish routing in this example.

Example 4.6 Stackelberg routing also has 
its limitations. Suppose we modify Example 
4.5 by replacing the cost function c(x) = 
xp of the lower edge in Figure 1(b) by the 
cost function c(x) = xp/(1−γ )p, where γ is 
the fraction of traffic that we are permitted 
to route centrally. The key observation is 
that no matter how the centrally controlled 
traffic is routed, there is enough selfish 
traffic to fully congest the lower edge. 
Therefore, Stackelberg strategies that 
route at most γ units of traffic cannot 
produce a flow with cost less than 1. On 
the other hand, the optimal flow, which 
routes γ + ε units of flow on the upper 
edge and the rest on the lower edge, has 
cost approaching γ as p → ∞ and ε → 0.

Stackelberg routing was first proposed 
by Korilis, Lazar, and Orda [42], who 
were motivated by so-called virtual 
private networks (see e.g. Birman [9] for 
a discussion of VPNs). The main goal in 
[42] was to characterize the instances in 

which some Stackelberg strategy induces 
an optimal flow (as in Example 4.5). 
This problem has also been studied more 
recently by Kaporis, Politopoulou, and 
Spirakis [38]. Here we follow Roughgarden 
[69] and seek worst-case bounds on the 
ratio between the cost of the best flow 
possible with Stackelberg routing and 
that of an optimal flow. Example 4.6 
shows that, for each γ ∈(0, 1], this ratio 
can be arbitrarily close to 1/γ, even in 
two-node, two-link networks. One of the 
main results of [69] is a matching upper 
bound for networks of parallel links.

Theorem 4.7 ([69]) For every instance 
(G, r, c) with a network of parallel links 
and every γ ∈(0, 1], there is a Stackelberg 
strategy that routes γr units of traffic and 
yields a flow with cost at most 1/γ times 
the cost of an optimal flow for (G, r, c).

Theorem 4.7 provides a smooth trade-
off between optimal flows and Wardrop 
equilibria, as a function of the fraction of 
centrally controlled traffic. When γ = 0, 
we are stuck with a Wardrop equilibrium, 
which can cost arbitrarily more than an 
optimal flow in a network with arbitrary 
cost functions. When γ = 1 and we control 
all of the traffic, we can of course route the 
traffic optimally. Example 4.6 and Theorem 
4.7 precisely quantify the inefficiency of 
selfish routing for all intermediate values 
of γ (in networks of parallel links).

Remark 4.8 The proof of Theorem 
4.7 is constructive, and uses a simple 
iterative algorithm to compute a good 
Stackelberg strategy. This algorithm runs 
in polynomial time as long as the network 
cost functions satisfy a mild convexity 
condition (see [69] for details). While this 
algorithm is sufficient to obtain the best-
possible worst-case guarantee in Theorem 
4.7, it does not compute the optimal 
Stackelberg strategy in every instance. 
Indeed, the optimization problem of 
computing an optimal Stackelberg strategy 
is NP-hard [69], though it can be closely 
approximated in polynomial time [44].

Theorem 4.7 applies only to networks of 
parallel links, and the power of Stackelberg 
routing in more general networks is not 
fully understood. The 1/γ upper bound of 
Theorem 4.7 does not hold in general single-
commodity networks, and no interesting 

bounds are possible in multicommodity 
networks [70]. Very recently, Swamy [81] 
proved an analogue of Theorem 4.7, with 
1/γ replaced by a somewhat larger function 
of γ, for a wide class of networks, including 
series-parallel networks and the Braess 
graphs of Subsection 3.1. The question 
of whether or not such a result holds for 
general single-commodity networks is open.

4.3 Pricing Network Edges
We conclude with a third, very natural 
approach to reducing the price of anarchy of 
selfish routing: influencing selfish behavior 
with edge taxes. While not discussed in 
[66], this idea has been extensively studied 
since the earliest papers on selfish routing. 
The literature on pricing selfish routing 
networks is vast, and we will confine our 
attention to only one classical result and 
two currently active research directions. 
See Yang and Huang [88], for example, 
for an introduction to this research area.

Pigou [58] suggested what are often 
called marginal cost taxes or Pigouvian 
taxes. The idea of marginal cost pricing is 
to charge each network user on each edge 
for the additional cost its presence causes 
for the other users of the edge. To discuss 
this idea formally, we now allow each edge 
e of a selfish routing network to possess 
a nonnegative tax τe. We denote a selfish 
routing instance (G, r, c) with edge taxes τ 
by (G, r, c + τ). A Wardrop equilibrium for 
such an instance (G, r, c+ τ) is defined as in 
Definition 2.1, with all traffic traveling on 
routes that minimize the sum of the edge 
costs and edge taxes. Equivalently, it is a 
Wardrop equilibrium for the instance  
(G, r, cτ), where the cost function cτ is a 
shifted version of the original cost function 
ce: c

τ
e (x) = ce(x) + τe for all x ≥ 0.

Mathematically, the principle of marginal 
cost pricing asserts that for a flow f  feasible 
for an instance (G, r, c), the tax τe assigned 
to the edge e should be τe = fe · c'e( fe ), where 
c'e denotes the derivative of ce. (Assume 
for simplicity that the cost functions are 
differentiable.) The term c'e( fe  ) corresponds 
to the marginal increase in cost caused by 
one user of the edge, and the term fe  is the 
amount of traffic that suffers from this 
increase. Pigou [58] suggested that these 
taxes should eliminate all of the inefficiency 
of selfish routing, and Beckmann, McGuire, 
and Winsten [6] made this idea rigorous.
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Proposition 4.9 ([6, 58]) Let (G, r, c) 
be an instance with differentiable cost 
functions, admitting an optimal flow f *. 
Let τe = f*e · c'e(f*e ) denote the marginal 
cost tax for edge e with respect f *. Then f * 
is a Wardrop equilibrium for (G, r, c + τ).

In words, marginal cost taxes induce an 
optimal flow as a Wardrop equilibrium.

Much more recently, researchers have 
extended Proposition 4.9 to the setting of 
heterogeneous traffic, where different classes 
of traffic trade of the cost incurred; see [18, 
25, 40, 87] for work along these lines. In 
another research direction, Acemoglu and 
Ozdaglar [1], Hayrapetyan, Tardos, and 
Wexler [33], and Ozdaglar [54] study how 
edge pricing by profit-maximizing firms 
affects the price of anarchy. See Yang and 
Huang [88] for much more on the topic of 
pricing selfish routing networks.

5 Recent Related Work
This survey describes the basic results on the 
price of anarchy of selfish routing. However, 
we have only scratched the surface of a 
broader issue: quantifying the inefficiency 
of noncooperative equilibria in applications 
with selfish users. This fundamental problem 
has only recently been systematically 
studied, but there is already a large literature 
addressing many aspects of it. We conclude 
this survey by briefly discussing some of 
the recent work in this lively research area.

First, the price of anarchy has been 
analyzed in numerous variants and 
generalizations of the basic selfish routing 
model studied in this survey. Several recent 
papers have extended Theorem 2.17 to 
more general classes of games [14, 56, 75]. 
The price of anarchy of selfish routing has 
also been studied with objective functions 
other than (3) [21, 46, 64, 68, 86]; with 
edge capacities and other types of “side 
constraints” [22, 34, 39]; when the traffic 
rates can vary with the network congestion 
[14, 19]; when network users can have non-
negligible size [3, 4, 5, 17, 20, 23, 27, 41, 71, 
74, 80]; and with definitions of path cost   
cP (f  ) other than the sum of all edge costs 
[5, 19].

Second, the price of anarchy is a very 
general concept—applicable to every 
noncooperative game with a notion of 
equilibrium and a nonnegative objective 
function. In games where different equilibria 
can have different objective function values, 

the price of anarchy is usually defined as 
the ratio between the objective function 
value of the worst equilibrium and that 
of an optimal solution [43]. The related 
concept of the price of stability [3] instead 
considers the objective function value of 
the best equilibrium. The price of anarchy 
and price of stability have been successfully 
analyzed in a diverse array of applications 
with selfish users over the past few years. See 
[51, Chapters 17–21] for several surveys of 
this work.

Third, researchers have begun to study 
the inefficiency of different notions of a 
selfish outcome. For example, Goemans, 
Mirrokni, and Vetta [31, 48] have extended 
the concept of the price of anarchy to 
games in which equilibria need not exist. 
The work in [31, 48] is also motivated by 
the important problem of understanding 
when a small price of anarchy implies that 
selfish users can “learn”, by independent 
and repeated experimentation from an 
arbitrary initial state, an approximately 
optimal outcome. Another example is given 
by Christodoulou and Koutsoupias [16], 
who studied the inefficiency of correlated 
equilibria in scheduling games.

Finally, an emerging research direction 
is to use the price of anarchy as a measure 
for the performance of a network 
protocol that interacts with selfish users. 
This idea connects the analysis of the 
inefficiency of game-theoretic equilibria 
with mechanism design, a classical subfield 
of microeconomics that studies how to 
design games that possess equilibria with 
good properties (see e.g. [47, Chapter 23] 
or [53, Chapter 10]). For example, Johari 
[35, Chapter 5] considers a class of network 
resource allocation protocols, each of which 
can be viewed as a game with selfish users, 
and proves that a natural “proportional 
sharing” protocol minimizes the (worst-case) 
inefficiency of equilibria. A second example 
is the recent work by Chen, Roughgarden, 
and Valiant [15] that analyzes how the price 
of stability in a class of network design 
games [3] depends on the choice of an 
underlying cost-sharing protocol.

Acknowledgements
I have been lucky to benefit from the advice 
and assistance of many individuals while 
working on the research described in this 
survey. The list is too long to give here, but 
I must mention Éva Tardos, who supervised 

my doctoral thesis [66] and collaborated 
with me on much of the work described 
in this survey; Leonard Schulman, who 
introduced me to selfish routing; and 
Christos Papadimitriou, who asked about 
the price of anarchy of selfish routing.

In addition, I thank José Correa, Henry 
Lin, David Shmoys, Mukund Sundararajan, 
and Greg Valiant for helpful comments on 
an earlier draft. Finally, I thank Alberto 
Caprara for inviting me to write this survey, 
and for his patience throughout the writing 
process.

References
[1] D. Acemoglu and A. Ozdaglar. Flow control, 

routing, and performance from service 
provider viewpoint. Technical Report 
WP-1696, MIT LIDS, 2003.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. 
Orlin. Network Flows: Theory, Algorithms, 
and Applications. Prentice-Hall, 1993.

[3] E. Anshelevich, A. Dasgupta, J. Kleinberg, 
É. Tardos, T. Wexler, and T. Roughgarden. 
The price of stability for network design 
with fair cost allocation. In Proceedings of 
the 45th Annual Symposium on Foundations 
of Computer Science (FOCS), pages 295–
304, 2004.

[4] B. Awerbuch, Y. Azar, and L. Epstein. 
The price of routing unsplittable flow. 
In Proceedings of the 37th Annual ACM 
Symposium on Theory of Computing (STOC), 
pages 57–66, 2005.

[5] R. Banner and A. Orda. Bottleneck routing 
games in communication networks. 
In Proceedings of the 25th INFOCOM 
Conference, 2006.

[6] M. J. Beckmann, C. B. McGuire, and C. 
B. Winsten. Studies in the Economics of 
Transportation. Yale University Press, 1956.

[7] D. P. Bertsekas and R. G. Gallager. Data 
Networks. Prentice-Hall, 1987. Second 
Edition, 1991.

[8] D. P. Bertsekas and J. N. Tsitsiklis. Parallel 
and Distributed Computation: Numerical 
Methods. Prentice-Hall, 1989. Second 
Edition, Athena Scientific, 1997.

[9] K. P. Birman. Building Secure and Reliable 
Network Applications. Manning, 1996.

[10] D. E. Boyce, H. S. Mahmassani, and A. 
Nagurney. A retrospective of Beckmann, 
McGuire, and Winsten’s Studies in the 
Economics of Transportation. Papers in 
Regional Science, 84(1):85–103, 2005.

[11] D. Braess. Über ein Paradoxon aus der 
Verkehrsplanung. Unternehmensforschung, 
12:258–268, 1968. English translation in 
[12].

[12] D. Braess. On a paradox of traffic planning. 
Transportation Science, 39(4):446–450, 
2005.



O P T I M A 7 4 May 2007 page 13

[13] D. G. Cantor and M. Gerla. Optimal 
routing in a packet-switched computer 
network. IEEE Transactions on Computers, 
23(10):1062–1069, 1974.

[14] C. K. Chau and K. M. Sim. The price of 
anarchy for non-atomic congestion games 
with symmetric cost maps and elastic 
demands. Operations Research Letters, 
31(5):327–334, 2003.

[15] H. Chen, T. Roughgarden, and G. Valiant. 
Designing networks with good equilibria. 
Submitted, 2007.

[16] G. Christodoulou and E. Koutsoupias. 
On the price of anarchy and stability of 
correlated equilibria of linear congestion 
games. In Proceedings of the 13th Annual 
European Symposium on Algorithms (ESA), 
pages 59–70, 2005.

[17] G. Christodoulou and E. Koutsoupias. The 
price of anarchy of finite congestion games. 
In Proceedings of the 37th Annual ACM 
Symposium on Theory of Computing (STOC), 
pages 67–73, 2005.

[18] R. Cole, Y. Dodis, and T. Roughgarden. 
Pricing network edges for heterogeneous 
selfish users. In Proceedings of the 35th 
Annual ACM Symposium on Theory of 
Computing (STOC), pages 521–530, 2003.

[19] R. Cole, Y. Dodis, and T. Roughgarden. 
Bottleneck links, variable demand, and the 
tragedy of the commons. In Proceedings of 
the 16th Annual ACM-SIAM Symposium 
on Discrete Algorithms (SODA), pages 
668–677, 2006.

[20] R. Cominetti, J. R. Correa, and N. E. 
Stier Moses. Network games with atomic 
players. In Proceedings of the 33rd Annual 
International Colloquium in Automata, 
Languages, and Programming (ICALP), 
volume 4051 of Lecture Notes in Computer 
Science, pages 525–536, 2006.

[21] J. R. Correa, A. S. Schulz, and N. E. Stier 
Moses. Computational complexity, fairness, 
and the price of anarchy of the maximum 
latency problem. In Proceedings of the 
10th Conference on Integer Programming 
and Combinatorial Optimization (IPCO), 
volume 3064 of Lecture Notes in Computer 
Science, pages 59–73, 2004.

[22] J. R. Correa, A. S. Schulz, and N. E. 
Stier Moses. Selfish routing in capacitated 
networks. Mathematics of Operations 
Research, 29(4):961–976, 2004.

[23] J. R. Correa, A. S. Schulz, and N. E. Stier 
Moses. On the inefficiency of equilibria 
in congestion games. In Proceedings of the 
11th Conference on Integer Programming and 
Combinatorial Optimization (IPCO), pages 
167–181, 2005.

[24] P. Dubey. Inefficiency of Nash equilibria. 
Mathematics of Operations Research, 11(1):1– 
8, 1986.

[25] L. K. Fleischer, K. Jain, and M. Mahdian. 
Tolls for heterogeneous selfish users in 
multicommodity networks and generalized 

congestion games. In Proceedings of the 
45th Annual Symposium on Foundations of 
Computer Science (FOCS), pages 277–285, 
2004.

[26] S. Fortune, J. E. Hopcroft, and J. Wyllie. 
The directed subgraph homeomorphism 
problem. Theoretical Computer Science, 
10(2):111–121, 1980.

[27] D. Fotakis, S. C. Kontogiannis, and P. 
G. Spirakis. Selfish unsplittable flows. 
Theoretical Computer Science, 348(2-3): 
226–239, 2005.

[28] E. J. Friedman. Genericity and congestion 
control in selfish routing. In Proceedings 
of the 43rd Annual IEEE Conference on 
Decision and Control (CDC), pages 4667–
4672, 2004.

[29] R. G. Gallager. A minimum delay routing 
algorithm using distributed computation. 
IEEE Transactions on Communications, 
25(1):73–85, 1977.

[30] M. R. Garey and D. S. Johnson. Computers 
and Intractability: A Guide to the Theory of 
NP-Completeness. Freeman, 1979.

[31] M. X. Goemans, V. S. Mirrokni, and A. 
Vetta. Sink equilibria and convergence. In 
Proceedings of the 46th Annual Symposium 
on Foundations of Computer Science (FOCS), 
pages 142–151, 2005.

[32] A. Haurie and P. Marcotte. On the 
relationship between Nash-Cournot and 
Wardrop equilibria. Networks, 15(3):295–
308, 1985.

[33] A. Hayrapetyan, É. Tardos, and T. Wexler. 
A network pricing game for selfish traffic. 
In Proceedings of the 24th ACM Symposium 
on Principles of Distributed Computing 
(PODC), pages 284–291, 2005.

[34] O. Jahn, R. Möhring, A. S. Schulz, and 
N. E. Stier Moses. System-optimal routing 
of traffic flows with user constraints in 
networks with congestion. Operations 
Research, 53(4):600–616, 2005.

[35] R. Johari. Efficiency Loss in Market 
Mechanisms for Resource Allocation. PhD 
thesis, MIT, 2004.

[36] R. Johari and J. N. Tsitsiklis. Efficiency 
loss in a network resource allocation 
game. Mathematics of Operations Research, 
29(3):407–435, 2004.

[37] H. Kameda. Private communication, June, 
2002.

[38] A. C. Kaporis, E. I. Politopoulou, and 
P. G. Spirakis. The price of optimum 
in Stackelberg games. Technical Report 
TR05-055, ECCC, 2005.

[39] G. Karakostas and S. G. Kolliopoulos. 
Selfish routing in the presence of side 
constraints. Technical Report CAS-03-
13-GK, Department of Computing and 
Software, McMaster University, 2003.

[40] G. Karakostas and S. G. Kolliopoulos. 
Edge pricing of multicommodity networks 
for heterogeneous selfish users. In 
Proceedings of the 45th Annual Symposium 

on Foundations of Computer Science (FOCS), 
pages 268–276, 2004.

[41] S. C. Kontogiannis and P. G. Spirakis. 
Atomic selfish routing in networks: A 
survey. In Proceedings of the First Annual 
International Workshop on Internet and 
Network Economics (WINE), volume 3828 
of Lecture Notes in Computer Science, pages 
989– 1002, 2005.

[42] Y. A. Korilis, A. A. Lazar, and A. 
Orda. Achieving network optima using 
Stackelberg routing strategies. IEEE/ACM 
Transactions on Networking, 5(1):161–173, 
1997.

[43] E. Koutsoupias and C. H. Papadimitriou. 
Worst-case equilibria. In Proceedings of 
the 16th Annual Symposium on Theoretical 
Aspects of Computer Science (STACS), 
volume 1563 of Lecture Notes in Computer 
Science, pages 404–413, 1999.

[44] V. S. Anil Kumar and M. V. Marathe. 
Improved results for Stackelberg scheduling 
strategies. In Proceedings of the 29th Annual 
International Colloquium on Automata, 
Languages, and Programming (ICALP), 
volume 2380 of Lecture Notes in Computer 
Science, pages 776–787, 2002.

[45] H. Lin, T. Roughgarden, and É. Tardos. 
A stronger bound on Braess’s Paradox. In 
Proceedings of the 15th Annual ACM-SIAM 
Symposium on Discrete Algorithms (SODA), 
pages 333–334, 2004.

[46] H. Lin, T. Roughgarden, É. Tardos, 
and A. Walkover. Braess’s Paradox, 
Fibonacci numbers, and exponential 
inapproximability. In Proceedings of the 
32nd Annual International Colloquium on 
Automata, Languages, and Programming 
(ICALP), volume 3580 of Lecture Notes in 
Computer Science, pages 497–512, 2005.

[47] A. Mas-Colell, M. D. Whinston, and J. 
R. Green. Microeconomic Theory. Oxford 
University Press, 1995.

[48] V. S. Mirrokni and A. Vetta. Convergence 
issues in competitive games. In Proceedings 
of the 7th International Workshop on 
Approximation Algorithms for Combinatorial 
Optimization Problems (APPROX), pages 
183–194, 2004.

[49] D. Monderer and L. S. Shapley. Potential 
games. Games and Economic Behavior, 
14(1):124–143, 1996.

[50] J. F. Nash. Non-cooperative games. Annals 
of Mathematics, 54(2):286–295, 1951.

[51] N. Nisan, T. Roughgarden, É. Tardos, and 
V. V. Vazirani, editors. Algorithmic Game 
Theory. Cambridge, 2007.

[52] A. Orda, R. Rom, and N. Shimkin. 
Competitive routing in multiuser 
communication networks. IEEE/ACM 
Transactions on Networking, 1(5):510–521, 
1993.

[53] M. J. Osborne and A. Rubinstein. A Course 
in Game Theory. MIT Press, 1994.



O P T I M A 7 4 May 2007 page 14

[54] A. Ozdaglar. Price competition with elastic 
traffic. Submitted, 2006.

[55] C. H. Papadimitriou. Algorithms, games, 
and the Internet. In Proceedings of the 
33rd Annual ACM Symposium on Theory of 
Computing (STOC), pages 749–753, 2001.

[56] G. Perakis. The price of anarchy when 
costs are non-separable and asymmetric. 
In Proceedings of the 10th Conference on 
Integer Programming and Combinatorial 
Optimization (IPCO), volume 3064 of 
Lecture Notes in Computer Science, pages 
46–58, 2004.

[57] A. L. Peressini, F. E. Sullivan, and J. J. 
Uhl, Jr. The Mathematics of Nonlinear 
Programming. Springer, 1988.

[58] A. C. Pigou. The Economics of Welfare. 
Macmillan, 1920.

[59] L. Qiu, Y. R. Yang, Y. Zhang, and S. 
Shenker. On selfish routing in Internet-
like environments. In Proceedings of 
SIGCOMM, pages 151–162, 2003.

[60] A. Rapoport and A. M. Chammah. 
Prisoner’s Dilemma. University of Michigan 
Press, 1965.

[61] A. Ronen. Private communication, March, 
2002.

[62] R. W. Rosenthal. A class of games 
possessing pure-strategy Nash equilibria. 
International Journal of Game Theory, 
2(1):65–67, 1973.

[63] T. Roughgarden. The price of anarchy in 
networks with polynomial edge latency. 
Technical Report 2001-1847, Cornell 
University, 2001.

[64] T. Roughgarden. How unfair is optimal 
routing? In Proceedings of the 13th Annual 
ACM-SIAM Symposium on Discrete 
Algorithms (SODA), pages 203–204, 2002.

[65] T. Roughgarden. The price of anarchy 
is independent of the network topology. 
In Proceedings of the 34th Annual ACM 
Symposium on Theory of Computing 
(STOC), pages 428–437, 2002. 
Preliminary version of [67].

[66] T. Roughgarden. Selfish Routing. PhD 
thesis, Cornell University, 2002.

[67] T. Roughgarden. The price of anarchy 
is independent of the network topology. 
Journal of Computer and System Sciences, 
67(2):341–364, 2003.

[68] T. Roughgarden. The maximum latency 
of selfish routing. In Proceedings of the 15th 
Annual ACM-SIAM Symposium on Discrete 
Algorithms (SODA), pages 973–974, 2004.

[69] T. Roughgarden. Stackelberg scheduling 
strategies. SIAM Journal on Computing, 
33(2):332–350, 2004.

[70] T. Roughgarden. Selfish Routing and the 
Price of Anarchy. MIT Press, 2005.

[71] T. Roughgarden. Selfish routing with 
atomic players. In Proceedings of the 16th 
Annual ACM-SIAM Symposium on Discrete 
Algorithms (SODA), pages 1184–1185, 
2005.

[72] T. Roughgarden. On the severity of Braess’s 
Paradox: Designing networks for selfish 
users is hard. Journal of Computer and 
System Sciences, 72(5):922–953, 2006.

[73] T. Roughgarden. Potential functions 
and the inefficiency of equilibria. In 
Proceedings of the International Congress of 
Mathematicians (ICM), volume III, pages 
1071–1094, 2006.

[74] T. Roughgarden and É. Tardos. How bad 
is selfish routing? Journal of the ACM, 
49(2):236–259, 2002.

[75] T. Roughgarden and É. Tardos. Bounding 
the inefficiency of equilibria in nonatomic 
congestion games. Games and Economic 

Behavior, 49(2):389–403, 2004.
[76] D. Schmeidler. Equilibrium points of 

nonatomic games. Journal of Statistical 
Physics, 7(4):295–300, 1973.

[77] Y. Sheffi. Urban Transportation Networks: 
Equilibrium Analysis with Mathematical 
Programming Methods. Prentice-Hall, 1985. 

[78] M. J. Smith. The existence, uniqueness and 
stability of traffic equilibria. Transportation 
Research, Part B, 13(4):295–304, 1979.

[79] M. A. So. Private communication, March, 
2005.
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