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Geometry in model-based algorithms for

derivative-free unconstrained optimization

Abstract. Derivative free optimization addresses general nonlin-

ear optimization problems in the cases when obtaining deriva-

tive information for the objective and/or the constraint functions

is impractical due to computational cost or numerical inaccu-

racies. Applications of derivative free optimization arise often

in engineering design such as circuit tuning, aircraft configura-

tion, water pipe calibration, oil reservoir modeling, etc. Tradi-

tional approaches to derivative free optimization until late 1990’s

have been based on sampling of the objective function, without

any attempt to build models of the function or its derivatives.

In the late 90’s model based trust region derivative free meth-

ods started to gain popularity, pioneered by Powell and further

advanced by Conn, Scheinberg and Toint. These methods build

linear or quadratic interpolation model of the objective func-

tion and hence can exploit some first and second oder informa-

tion. In the last several years the general convergence theory for

these methods, under reasonable assumptions, was developed

by Conn, Scheinberg and Vicente. Moreover, recently Scheinberg

and Toint have discovered the “self-correcting” property which

helps explain the good performance observed in these methods

and have shown convergence under very mild requirements.

1 What is derivative free optimization?

Derivative free optimization is a class of nonlinear optimization

methods which usually comes to mind when one needs to apply

optimization to complex systems. The complexity of those systems

manifests itself in the lack of derivative information (exact or approx-

imate) of the functions under consideration. What usually causes the

lack of derivative information is the fact that the function values are

a result of a black-box simulation process or a physical experiment.

The situation is often aggravated by the high cost of the function

evaluations and the numerical noise in the resulting values. Thus

the use of finite difference derivative approximation is typically pro-

hibitive.

The numerous applications of derivative free optimization can be

found in engineering design, geological modeling, finance, manufac-

turing, biomedical applications and many other fields. As the avail-

able computational power grows the simulation processes become

routine and using optimization of complex systems becomes possi-

ble and desirable. Thus the number of applications of derivative free

optimization grows continuously, which partially explains the contin-

uing growth of the field itself. Another reason for the growth of the

field is the recent development of relatively sophisticated algorithms

and theory which address the specific needs of the derivative free

problems. Here we will discuss some of the recent developments

in the theory of model based derivative free methods. We would

like to note that the purpose of this article is to focus on the issue

of the maintenance of the geometry of the sample sets in model

based derivative free methods. Since this is not a survey the list of

references is very limited.

2 The role of geometry

When it comes to the derivative free optimization, it is clear that

most standard optimization approaches do not apply since they rely

on Taylor type models and hence require derivatives. Instead vari-

ous methods of sampling the objective function have been proposed.

The most widely used and well-known of them is the Nelder-Mead

algorithm [12], popular for its simplicity and effectiveness, but at the

same time notorious for its failure to converge even in simple cases.

Roughly speaking, what Nelder-Mead does is the following (for

description and analysis of the method see [9] and [23]): the objec-

tive function is evaluated at n + 1 affinely independent points and

the point with the worst function value is selected. The worst point

is then reflected with respect to the hyperplane formed by the re-

maining n points. Depending on the function value achieved at this

new sample point the original simplex may be contracted or new

simplex may be expanded or contracted along a certain direction

and a possible new sample point may be produced and evaluated.

The contraction and reflection steps are designed to find progress

along a (hopefully) descent direction. In the process the shape of

the simplex changes, often adapting itself to the curvature of the

objective function. This observed behavior of Nelder-Mead method

is what makes it often so successful in practice. However, it is also

the cause of its failure to converge (in theory and in practice) – the

simplex may change the shape until it becomes “flat” and the fur-

ther progress is impossible because the sample points are no longer

affinely independent and the sample space may become orthogonal

to the gradient direction.
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In the early 90s a new class of derivative free methods emerged

– the pattern search methods, suggested by Torczon ([21], [22]).

As opposed to the Nelder-Mead method the pattern search meth-

ods evaluate the objective function on a pattern of a fixed shape.

The pattern can contract or expand, but the shape and, hence, the

affine independence of the sample points never change. With this re-

striction comes the benefit of a global convergence theory, but also

the loss of the ability to use the curvature information. The pattern

search methods and also a related class of direct search methods,

[1], have since grew in variety and sophistication allowing a use of

different patterns and incorporating other sampling techniques in-

cluding the use of interpolation models. However the convergence

theory essentially relies on the predetermined geometry of a pat-

tern.

In the mid to late 90s some of the more classical methods from

the derivatives based literature found their analogue in the deriva-

tive free world. Specifically, pioneered by Powell ([13], [14], [15],

[17], [18]), and also developed by Conn, Scheinberg and Toint [10],

[4] [5], a class of trust-region methods based on quadratic interpo-

lation, rather than Taylor models, was introduced. Quadratic inter-

polation models are built based on sample sets of points, preferably

in reasonably close proximity to the current best iterate. Due to

the expense of the function evaluations, the sample sets typically

consist of past iterates, recent unsuccessful steps and possibly some

additional sample points. It was understood early on that, unlike the

Taylor model, whose accuracy depends entirely on the properties

of the approximated function and the distance to the center of the

Taylor expansion, the interpolation model’s quality depends also on

the geometry of the sample set. It was also understood that, if no

special care is taken, the sample set may deteriorate, just as in the

Nelder-Mead algorithm, and produce incorrect or inaccurate mod-

els. It was, thus, believed that the geometry of the sample set needs

to be maintained throughout the progress of the algorithm by the

means of special “geometry steps”.

We will now explain the effect of the geometry on the conver-

gence properties of model-based derivative free methods.

3 Interpolation models and trust-region methods

We consider the unconstrained minimization problem

min
x∈IRn

f(x) (3.1)

where the first derivatives of the objective function f(x) are as-

sumed to exist and be Lipschitz continuous. However, explicit eval-

uation of these derivatives is assumed to be impossible, either be-

cause they are unavailable or because they are too costly.

3.1 Polynomial interpolation and Lagrange polynomials

Let us consider Pdn, the space of polynomials of degree ≤ d in IRn

and let p1 = p + 1 be the dimension of this space. One knows that

for d = 1, p1 = n+ 1 and that for d = 2, p1 =
1
2
(n + 1)(n + 2). A

basis Φ = {φ0(x),φ1(x), . . . ,φp(x)} of Pdn is a set of p1 polynomi-

als of degree ≤ d that span Pdn. For any such basis Φ, any polynomial

m(x) ∈ Pdn can be written as

m(x) =

p∑

j=0

αjφj(x),

where the αj ’s are real coefficients. We say that the polynomial

m(x) interpolates the function f(x) at a given point y if m(y) =

f(y).

Assume now we are given a set Y = {y0, y1, . . . , yp} ⊂ IRn of

interpolation points, and let m(x) denote a polynomial of degree

d in IRn that interpolates a given function f(x) at the points in Y.

The interpolation polynomial exists and is unique if and only if the

set Y is poised. If the set is poised then one can define the basis of

Lagrange polynomials ([16]).

Definition 3.1. Given a poised set of interpolation points Y =

{y0, y1, . . . , yp}, a basis of p1 = p + 1 polynomials ℓj(x), j =

0, . . . , p, in Pdn , is called a basis of Lagrange polynomials if

ℓj(yi) = δij =

{
1 if i = j,

0 if i ≠ j.

Lagrange polynomials have a number of useful properties. In partic-

ular, we are interested in the crucial fact that, if m(x) interpolates

f(x) at the points of Y, then, for all x,

m(x) =

p∑

j=0

f(yi)ℓj(x). (3.2)

For more details and other properties of Lagrange polynomials

see Section 3.2 in [9].

From (3.2) it is relatively easy to derive the relation between the

value of Lagrange polynomials and the accuracy of the interpolation

at a given point. Specifically,

|m(x)− f(x)| ≤M

p∑

j=0

‖yj −x‖
d+1|ℓj(x)|, (3.3)

where M is a constant which depends only on the Lipschitz constant

of ∇f(x). See [2] for a comprehensive treatment of interpolation

error bounds expressed via Lagrange polynomials.

It is clear from (3.3) that the absolute values of the Lagrange poly-

nomials is the key indicator of the “geometry” of the interpolation

set that we discussed above. If we consider now a ball B of ra-

dius ∆ which contains Y, then, in general, the smaller the maximum

absolute value of the Lagrange polynomials on B the better m(x)

approximates f on B. In fact we can see that the bound (3.3) is simi-

lar to the Taylor expansion. However, unlike in the Taylor expansion

case, to obtain a better agreement between f(x) and m(x) one

has to consider not only the ball of a smaller radius, but a new in-

terpolation set Y which fits into such a ball, while the maximum

absolute value of the Lagrange polynomials has to remain bounded

by the same constant.

We will make use of the following concept (borrowed from [7]

and [9]) of Λ–poisedness of an interpolation set.

Definition 3.2. Let Λ > 0 and a set B ∈ IRn be given. A poised set

Y = {y0, y1, . . . , yp} is said to be Λ–poised in B if and only if, for the

basis of Lagrange polynomials associated with Y, one has that

Λ ≥ max
j=0,...,p

max
x∈B

|ℓj(x)|.

The following lemma [20] (see also [9]) is central to the use of La-

grange polynomials in geometry maintenance that we discuss here.

Lemma 3.3. Given a closed bounded domain B, any initial interpola-

tion set Y ∈ B and a constant Λ > 1, consider the following procedure:

find j ∈ {0, . . . , p} and a point x ∈ B such that |ℓj(x)| ≥ Λ (if such

a point exists), and replace yj by x to obtain a new set Y. Then this

procedure terminates after a finite number of iterations with a sample set

which is Λ–poised in B.

3.2 Fully linear and quadratic models

We have observed that an interpolation model based on a Λ-poised

sample set provides a Taylor-like approximation of the objective

function. For the purposes of the algorithmic framework we may



May 2009 3

want to abstract from the specifics of Lagrange polynomials and in-

terpolation models (we will return to them later).

In [8] and [9] general concepts of fully-linear and fully-quadratic

models were introduced.

Loosely speaking we call a model m(x) to be a fully-linear model

of f(x) in B(x,∆) if

– the error between the gradient of the model and the gradient of

the function satisfies

‖∇f(y) −∇m(y)‖ ≤ κeg ∆, ∀y ∈ B(x;∆),

and

– the error between the model and the function satisfies

|f(y)−m(y)| ≤ κef ∆2, ∀y ∈ B(x;∆),

with constants κef and κeg independent of y .

Analogously we call m(x) fully quadratic in B(x,∆) if

• the error between the Hessian of the model and the Hessian

of the function satisfies

‖∇2f(y) −∇2m(y)‖ ≤ κeh∆, ∀y ∈ B(x;∆),

• the error between the gradient of the model and the gradient

of the function satisfies

‖∇f(y) −∇m(y)‖ ≤ κeg ∆2, ∀y ∈ B(x;∆),

and

• the error between the model and the function satisfies

|f(y) −m(y)| ≤ κef ∆3, ∀y ∈ B(x;∆),

with constants κef , κeg and κeh independent of y .

It is then required that there exists an algorithm which in a fi-

nite effort either certifies that a given model is fully-linear (or fully-

quadratic), on a given B(x,∆) and for given constants, or constructs

such a model, if it exists.

It is then shown in [9] that by means of Lagrange polynomials and

Lemma 3.3 or other similar mechanisms such algorithms exist for

polynomial interpolation. The proof of the fact relies on Lemma 3.3.

In the framework that we describe below the abstract concept of

fully-linear and fully-quadratic models is utilized.

3.3 A trust-region framework

Let m(x) define a local model of the objective function f(x) of

(3.1) in the framework of trust-region algorithms. Such algorithms

are iterative and build, around an iterate xk, a model mk(xk + s)

of the objective function which is assumed to represent this latter

function sufficiently well in a “trust region” B(xk,∆k), where ∆k is

known as the radius of the trust region. The model is then mini-

mized (possibly approximately) in B(xk,∆k) to define a trial step

x+k , and the value f(x+k ) is then computed. If this value achieves (a

fraction of) the reduction from f(xk) which is anticipated on the

basis of the model reduction mk(xk)−mk(x
+
k ), then the trial point

is accepted as the new iterate, the model is updated and the trust-

region radius is possibly increased: this is a “successful iteration”. If,

on the contrary, the reduction in the objective function is too small

compared to the predicted one, then the trial point is rejected and

the trust-region radius is decreased: this is an unsuccessful iteration.

(See [3] for an extensive coverage of trust-region algorithms.)

Thus we can roughly describe the following trust region algorith-

mic framework.

Algorithm 3.1.

Step 0: Initialization. Choose an initial trust region radius ∆0, an ini-

tial poised interpolation set Y0 and a starting point x0. This in-

terpolation set defines an (at most quadratic) interpolation model

m0 around x0. Chose appropriate constants for the description

that follows.

Step 1: Criticality Step. If the current model gradient is much

smaller than the radius of the ball containing the sample set and

xk then recompute a fully-linear model based on another sample

set which is closer to xk until the radius and the gradient are com-

parable. Set the trust region radius to be comparable to the size of

the gradient as well.

Step 2: Compute a trial point. Compute x+k such that ‖x+k −

xk‖ ≤ ∆k and mk(x
+
k ) is “sufficiently small compared to

mk(xk)”.

Step 3: Evaluate the objective function at the trial point.

Compute f(x+k ) and

ρk =
f(xk)− f(x

+
k )

mk(xk)−mk(x
+
k )
.

Step 4: Define the next iterate.

Step 4a: Successful iteration. If ρk ≥ η, define xk+1 =

x+k and choose ∆k+1 ≥ ∆k. Obtain Yk+1 by exchanging

one of the interpolation points with {x+k }.

Step 4b: Unsuccessful iteration. If ρk < η, then define

xk+1 = xk and reduce ∆k by a constant factor if mk(x)

is fully-linear, otherwise keep ∆k the same. Possibly update

Yk+1 to include xk+1.

Step 5: Update the sample set and the model. If the model

mk is not fully-linear, then make at least one step of the model

improving algorithm. Increment k by one and go to Step 1.

This algorithmic framework is theoretical and leaves many options

open. For instance, what we meant by “sufficiently small’ compared

to mk(xk)” (in Step 1) is not specified. The first order convergence

analysis merely requires that

mk(xk)−mk(x
+
k ) ≥ κC‖gk‖min

[
‖gk‖

1+ ‖Hk‖
,∆k

]
,

where we define gk = ∇mk(xk) and Hk = ∇
2mk(xk), and where

κC is some constant in (0,1) – the condition well-known in trust-

region analysis under the name of “Cauchy condition”.

The trust region maintenance is flexible in Step 4, while in Step 5,

all is required is that an algorithm is used which can construct a

fully-linear model in a finite number of steps.

The fully-quadratic models can also be used if ∇2f(x) is Lipschitz

continuous and second order conditions are used in Steps 1 and 2

(see [3] and [8] for formal statements and details of second order

conditions).

In [8] it is shown that an algorithm based on this framework

(with some additional flexibility) converges to first order station-

ary point(s) in the case of fully-linear models and to second-order

stationary point(s) in the case of fully-quadratic models and second

order conditions in Steps 1 and 2.

The theory provides foundation for some existing and possible

future model-based DFO algorithms, but it strongly depends on the

model improvement steps (in Steps 1 and 5) where some (hope-

fully not many) extra sample points need to be introduced and their

function values computed. Although such extra points are also com-

puted in practical implementations of the DFO algorithms (such as

NEWUOA [19] and DFO [6]) the question still remained how nec-

essary these extra steps are.
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4 Is it necessary to consider geometry?

4.1 Geometry-free framework

In particular, at the same time as the development of the conver-

gence theory for model-based DFO methods, Fasano, Nocedal and

Morales in [11] proposed an implementation of a model-based trust

region method which avoided all geometry considerations entirely.

Here is rough outline of the algorithm they proposed:

Algorithm 4.1.

Step 0: Initialization. Choose an initial trust region radius ∆0, an ini-

tial poised interpolation set Y0 and a starting point x0. This in-

terpolation set defines an (at most quadratic) interpolation model

m0 around x0. Chose appropriate constants.

Step 1: Compute a trial point. Compute x+k such that ‖x+k −

xk‖ ≤ ∆k and mk(x
+
k ) is “sufficiently small compared to

mk(xk)”.

Step 2: Evaluate the objective function at the trial point.

Compute f(x+k ) and

ρk =
f(xk)− f(x

+
k )

mk(xk)−mk(x
+
k )
.

Step 3: Define the next iterate.

Step 3a: Successful iteration. If ρk ≥ η, define xk+1 =

x+k and choose ∆k+1 ≥ ∆k. Define the new interpolation

set Yk+1 by including x+k and by removing from Yk the

point yk which is the furthest away from xk.

Step 3b: Unsuccessful iteration. If ρk < η, then define

xk+1 = xk and reduce ∆k by a constant factor. If x+k is

closer to xk than any of the points in Yk then replace the

furthest point in Yk with x+k .

Step 4: Update the sample set and the model. If Yk changed,

update the model mk. Increment k by one and go to Step 1.

This algorithm computes only one sample point per iteration and

each such point is computed in the hope of reducing the objective

function, hence it seems the least wasteful in terms of function evalu-

ations. Indeed the computational results produced by the implemen-

tation were quite encouraging. However we have to note that the

results were obtained by using a complete quadratic interpolation

models, which require (n+1)(n+2)/2 sample points. If is possible

that even if quadratic models become quite inaccurate they still con-

tain valuable curvature information (see the column by J. Nocedal in

this issue).

So do we need to be concerned about the geometry of sample

sets or not?

4.2 Why considering geometry is necessary

In [20] it is shown, by two examples, that some geometry consid-

erations are necessary in order to guarantee global convergence.

Below we present one of the examples on which the algorithm pro-

posed in [11] (and discussed in the previous subsection) produces a

nonpoised set of points and converges to a nonstationary point.

Consider the following starting set of interpolation points:

Y =

{ (
11

1

)
,

(
11

0

)
,

(
10

−1

)
,

(
10

1

)
,

(
10

0

)
,

(
9

0

) }
.

This set is Λ–poised, in a ball of radius 2 around x = (10,0)T ,

with Λ < 2.25. Assume that we are given a function f(x) for

x = (x1, x2)T with the following function values on Y0:

{121+α, 121, 100+α, 100+α, 100, 81},

for some fixed α > 0. Also assume that along the x2 = 0 subspace

the function f(x) reduces to x2
1 and has a minimum at x1 = 0. For

instance the simple function

f(x) =

{
x2

1 +α(x
2
2 + (10− x1)x2) if x1 < 10;

x2
1 +αx

2
2 if x1 ≥ 10,

has such properties. Note that this function has a discontinuous

Hessian, however, ∇f(x) is Lipschitz continuous, so convergence

to a first order stationary point is possible. Also observe that it is

possible to construct a function in C2 with the same properties as

f(x).

Now let us consider a quadratic model based on Y. It is easy to

see that the model is

m(x) = x2
1 +αx

2
2 .

Choose now a trust region of radius ∆ = 2 centered around

y4 = (10,0)T .

The iterates produced by the algorithm are shown in Figure 1. At

the end the interpolation set is completely aligned with the direction

x2 = 0 and the model degenerates into m(x) = x2
1 . The algorithm

then terminates at the point x = (0,0), which is obtained at the

next iteration and which is a non-stationary point for the original

function f(x).

We see here that, if the gradient of the model converges to zero,

it does not imply that so does the gradient of the true function,

unless the poisedness of the interpolation set is maintained.

5 The new algorithm

It is indeed necessary to consider geometry of the sample set to

guarantee convergence of the trust-region model-based DFO meth-

ods, however, it turns out that it is not necessary to compute extra

sample points unless the gradient of the model becomes small.

The final algorithm that we present here relies on a remarkable

“self-correcting” property of the trust-region framework. Recall the

bound (3.3). Assume that the trust region step is not successful, this

implies that the error |f(x+k )−m(x
+
k )| is relatively large (if it were

not, then the good agreement between the model reduction and the

objective function reduction would have caused the step to be suc-

cessful). Due to (3.3) |f(x+k )−m(x
+
k )| can be relatively large only if

either one of the ||x+k −yi|| is relatively large or if one of the values

|ℓi(x
+
k )| is relatively large, which in turn means that replacing one of

the yi’s by x+k will improve the sample set (see Lemma 3.3). In [20]

this intuition is supported by rigorous derivation and the following

algorithm is proposed.

Algorithm 5.1.

Step 0: Initialization. Choose an initial trust region radius ∆0, an ini-

tial poised interpolation set Y0 and a starting point x0. This in-

terpolation set defines an (at most quadratic) interpolation model

m0 around x0. Chose appropriate constants.

Step 1: Criticality Step. If the current model gradient is smaller

than some threshold ǫk then build a fully-linear model based on

a sample set which is sufficiently close to xk (so that the inter-

polation radius and the gradient are comparable). Set the trust

region radius to be comparable to the size of the gradient as well.

Decrease ǫk by a constant factor.

Step 2: Compute a trial point. Compute x+k such that ‖x+k −

xk‖ ≤ ∆k and mk(x
+
k ) is “sufficiently small compared to

mk(xk)”.

Step 3: Evaluate the objective function at the trial point.

Compute f(x+k ) and

ρk =
f(xk)− f(x

+
k )

mk(xk)−mk(x
+
k )
.
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Figure 1. From left to right and top to bottom: the successive iterates of the algorithm on the associated models, where the current iterate is marked by a diamond and

surrounded by its circular-shaped trust region. The final convergence point is indicated by a star.

Step 4: Define the next iterate.

Step 4a: Successful iteration. If ρk ≥ η, define xk+1 =

x+k and choose ∆k+1 ≥ ∆k. Update the interpolation set

to obtain Yk+1 by swapping x+k with the point yj,k in

Yk which is either far away or for which |ℓk,j(x
+
k )| is the

largest.

Step 4b: Unsuccessful iteration. If ρk < η, then define

xk+1 = xk and

(i) if there is a far away point in Y then replace it with

x+k ,

(ii) if for some j |ℓk,j(x
+
k )| is larger than some fixed

Λ > 1, replace yj,k with x+k ,

(iii) otherwise reduce ∆k by a constant factor.

Step 5: Update the sample set and the model. If the interpo-

lation set Yk changed, then update the model mk. Increment k

by one and go to Step 1.

In [20] the detailed mechanism of Step 4 is derived in a way which

guarantees that there can only be a finite number of consecutive

unsuccessful steps while the model gradient is bounded away from

zero. The proof relies on Lemma 3.3. Using this fact it is then shown

(under the usual and reasonable conditions) that this algorithm has

at least one limit point which is the first order stationary point for

f(x).

It is important to note that without Step 1 this algorithm will also

fail on the example in the previous section, since the outcome of

the example does not depend on the order in which interpolation

points are removed from the interpolation set.

The maintenance of Lagrange polynomials does not add extra

computational cost since it is the same as the cost of maintaining

the quadratic model [16]. This means that aside from the iterations

which invoke Step 1, each iteration of this algorithms is essentially

the same in terms of computational cost as the steps of algorithm

in [11]. We also note that in fact this new algorithm is the closest

theoretically convergent algorithm to the practical implementations

in [19] and [6] that exist so far.

It remains to be seen if stronger theoretical results can be ob-

tained for this (or a similar) algorithm.

Katya Scheinberg, Department of Industrial Engineering and Operations Re-

search, Columbia University, New York. katyascheinberg@gmail.com
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Discussion column

Jorge Nocedal

Finding the middle ground between first

and second-order methods

In the last few years, we have witnessed the emergence of first-

order methods for a variety of nonlinear optimization applications.

The advocacy of first-order methods is, however, in stark contrast

with much of the algorithmic practice of the last 30 years that has

emphasized methods based on quadratic models to achieve faster

convergence. Therefore, it is reasonable to ask whether this shift in

emphasis is well justified.

Several arguments have been advanced in favor of first-order

methods.

1. For very large and data-intensive problems, inexpensive first-

order methods are more efficient than more rapidly convergent,

but more expensive, methods. Furthermore, in cases where ap-

proximate solutions are adequate the benefits of second-order

methods are not realized since the optimization is terminated

early.

2. In some applications, derivatives are not available, and approxi-

mating Hessian matrices is very costly in methods for derivative-

free optimization.

3. For non-smooth problems, quadratic approximations may not be

appropriate.

4. One can establish complexity results for first-order methods on

certain challenging problem classes. To establish similar results

for higher-order methods requires unrealistic assumptions.

5. First-order methods are more than adequate for problems that

contain uncertainty in the data.

Undoubtedly, there are some cases when first-order methods are

the right tool for the job. But in many contexts, some of the argu-

ments given above are not well justified and lead to algorithms that

are unnecessarily slow. The key observation of this note is that sim-

ple quadratic models that do not attempt to accurately approximate

the Newton model often give rise to very attractive algorithms for

many of the situations listed above. Indeed, the judicious use of se-

lective second-order information can bring dramatic savings in com-

puting time.

The article by Katya Scheinberg in this issue deals with derivative-

free optimization, one of the areas in which the use of (low qual-

ity) quadratic models has proved surprisingly effective. Her arti-

cle explores the limits of inaccuracy in model-based methods for

derivative-free optimization, a class of methods pioneered by Powell

and by Scheinberg and her collaborators; see [1]. Numerical experi-

ence has shown that quadratic models give rise to much more effec-

tive methods than linear models, even though they require O(n2) vs

O(n) function values to define the model via interpolation. Further-

more, Powell [10] has recently proposed a framework for updating

quadratic models using only O(n) interpolation points, which al-

lows the method to solve much larger problems than in the past.

Needless to say, such an approach does not aim to generate a good

approximation of the Hessian matrix – and there is no hope of ob-

taining superlinear convergence – but the method constitutes a su-

perior approach for derivative-free optimization. Some remarkable

numerical experiments by Moré and Wild [8] indicate that Pow-

ell’s model-based method is very effective (and clearly outperforms

a leading pattern search method) even for certain classes of nons-

mooth problems. This efficiency is achieved in spite of the very low

accuracy of their quadratic approximations. As Scheinberg discusses

in this issue of Optima, one needs to impose only minimal quality

controls to promote convergence and ensure good performance.

Equally surprising is the recent study by Lewis and Overton [5] on

general-purpose methods for the minimization of locally Lipschitz

nonsmooth functions. They observe that the BFGS quasi-Newton

method is far more effective than more conservative techniques,

such as bundle methods. Since locally Lipschitz functions are differ-

entiable almost everywhere, the BFGS iteration (with an appropri-

ate line search) is normally well defined and is able to approximate

solutions even when they occur at a point of nondifferentiability 1.

As is the case in Powell’s method for derivative-free optimization,

the quadratic models become extremely ill conditioned, but this

does not prevent the methods from moving along fruitful search

directions. Lewis and Overton do not provide convergence results

(except for very simple special cases) but offer good insights; for

example they report that the BFGS matrix often provides a good

approximation of the so-called U and V spaces associated with the

objective function. One cannot yet claim that the BFGS method rep-

resents a general-purpose algorithm for non-smooth optimization

because it typically breaks down close to the solution and is there-

fore unable to provide a certificate of optimality. Nevertheless, the

renewed interest in the use of second-order information is yet to be

fully developed in non-smooth optimization.

Two of the most popular methods for smooth large-scale opti-

mization, the inexact (or truncated) Newton method and limited

memory BFGS method, are typically implemented so that the rate



May 2009 7

of convergence is only linear. They are good examples of algorithms

that fall between first and second-order methods. Let me mention

three specific application areas where significant progress has been

made by designing new methods of this kind.

Rigid body simulations for computer game simulations often lead

to linear complementarity problems (LCP) that must be solved very

quickly because graphics operate at 60 frames per second. Unlike

studio animation movies, computer game animations need not be

of very high quality, and therefore the solution of the linear com-

plementarity problem is terminated quite early. Game developers

typically use the projected Gauss-Seidel (or projected SOR) method

to compute very approximate solutions of the linear complemen-

tarity problems. This prototypical first-order method has been ad-

vocated by the gaming community because the use of second-order

methods is not practical (interestingly, interior-point methods are

not well suited in this case).

Kocvara et al. [3] and Morales et al. [7] have shown that, by inter-

lacing a subspace improvement iteration with the projected Gauss-

Seidel iteration, it is possible to compute very accurate solutions

in less time. When the LCP is symmetric, the subspace improve-

ment space amounts to the minimization of an associated quadratic

program over a set of active free variables, and [7] shows that it

is effective to use exact second order information on this subspace.

The key observation is that the subspace improvement phase greatly

accelerates the identification of the optimal constraints – it does not

simply provide a higher rate of convergence once this identification

has been made. These advances might not be altogether surprising

given that Polak [9] demonstrated long ago that the gradient pro-

jection method benefits greatly from a subspace minimization phase.

Nevertheless, it is often not straightforward to translate general de-

sign principles from one context to another one.

In fact, essentially the same approach that proved effective in com-

puter game simulations has recently been applied by Wen et al. [11]

in compressive sensing applications, and by Feng et al. [2] in the pric-

ing of American options. In these two papers the subspace minimiza-

tion phase uses an iterative approach (CG or BFGS for compressive

sensing, GMRES with ILU preconditioner, for options pricing). Signif-

icant speedups are obtained with respect to first-order methods.

It is difficult to explain precisely why a minimal use of second-

order information can bring substantial benefits. In the case of BFGS

for nonsmooth optimization, approximate Hessians provide much

needed information of curvature of functions, but also, more impor-

tantly, information about changes in the function due to discontinu-

ities in first-order derivatives. All the new methods I have mentioned

in this column, can be seen as occupying a middle ground between

first and second-order methods. This is fertile territory.

Jorge Nocedal, Department of Electrical Engineering and Computer Science,

Northwestern University, Evanston, IL, USA. nocedal@eecs.northwestern

edu
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Steve Wright

MPS Chair’s Column

April 16, 2009. I welcome the new Optima! As would be evident

by the time you read these words, our society’s newsletter is now

being designed and produced under new arrangements. The designer

and typesetter is Christoph Eyrich, who is also in charge of the de-

sign and production of the German Mathematical Society (DMV)

newsletter. These new arrangements represent the next major step

in our drive to renew Optima by publishing it on a regular schedule,

speeding up the production/distribution process, and re-conceiving

the content. I thank the many people in MPS who have contributed

to this process, most especially editor Andrea Lodi.

It’s time to recognize the tremendous contributions of Don

Hearn, who was the founding editor of Optima (in 1980) and who

has served continuously as editor and then publisher since that time.

Don and his publication team at U. Florida have played a central role

in sustaining Optima (and thus MPS) over three decades, and we

thank them for their dedicated service.

All past issues of Optima can be found on the MPS web site

http://www.mathprog.org. A column by Michael Held (then Publi-

cations Committee Chair) in Issue 1 (1980) explains the origins of

Optima, which grew out of discussions among the MPS leadership

of the time, including MPS chair Phil Wolfe, George Nemhauser and

Michael Powell.

The new MPS web site went live in January 2009 after an ex-

tended and careful redesign. The new site is much easier to maintain

and (we hope) easier to navigate. Special thanks to webmaster Marc

Pfetsch for his initiative and hard work during this process. If you

have optimization-themed photos for including in the album, or any

other comments, on the site, please contact Marc.

Also newly available on http://www.mathprog.org are the issues of

the COAL Newsletter published between 1979 and 1993. Thanks to

Trond Steihaug for supplying the scans of these newsletters, which

were influential during a key period in algorithm and software devel-

opment for optimization. COAL – the Committee on Algorithms –

was formerly a standing committee of MPS.

Mathematical Programming Studies, the predecessor of Mathe-

matical Programming, Series B, which was published in 31 volumes

between 1974 and 1987, is now available free to MPS members on

the SpringerLink web site. If you log in with your personal MPS iden-

tifier for SpringerLink, you should have full-text access to all papers.

These volumes contain many influential papers in the development

mailto:nocedal@eecs.northwestern.edu
mailto:nocedal@eecs.northwestern.edu
http://www.mathprog.org
http://www.mathprog.org
http://www.mathprog.org
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of our field, along with interesting historical information about lead-

ing figures in mathematical programming, in the dedications of some

volumes. To get to the right page on SpringerLink, you can follow

the link from the mathprog.org web site, or else use the “Find” box

in SpringerLink. Speaking of SpringerLink, it is a good idea to add

the pages for Mathematical Programming, Mathematical Program-

ming Computation, and Mathematical Programming Studies to your

list of saved items on this site, for easy access each time you log

in.

We look forward to the 20th ISMP (August 23–28, 2009; www.

ismp2009.org), which returns to Chicago for the first time since the

“Zeroth ISMP” in 1949 (sixty years ago!) and the 4th ISMP in 1962.

This symposium will be held at a particularly exciting time for our

field. Optimization is playing a vital role in more and more areas of

science and engineering, and awareness continues to grow of the key

contributions that optimization can make to many interdisciplinary

projects. Our field is revitalized by the new paradigms and formu-

lations that arise in these applications, which are often extremely

challenging because of their size, their complexity, the need for ap-

proximate solutions in real time, and the need to incorporate risk

and uncertainty in the models. Recent failures in economic/financial

systems present us with new opportunities to influence public pol-

icy through better risk models and better algorithms. We face the

challenges of finding credible collaborators in the financial and eco-

nomic fields, and of interacting with decision-makers to identify poli-

cies that are politically and socially feasible, as well as near-optimal

by some measure.

As I write, abstract submission for ISMP 2009 has just closed and

indications are that attendance will be high, despite challenging eco-

nomic times. If you submitted an abstract, please remember to regis-

ter by the author registration deadline of May 29 to ensure that your

talk is scheduled. I also recommend to book accommodation early

(see the conference web site for information) and to book early

for the banquet if you wish to attend. The banquet will be held on

Wednesday evening at the Field Museum, Chicago’s famous natural

history museum, and tickets are strictly limited.

Committees have been working hard to select winners of the

prizes to be awarded during the ISMP opening ceremony, to be held

on August 23 at Chicago’s Orchestra Hall. Please also reserve the

Tuesday evening of ISMP, after sessions conclude, for the MPS busi-

ness meeting. Here, we will have a membership vote on the new MPS

constitution, present the new officers and council, and announce the

location of ISMP 2012.

Steve Wright, MPS Chair

New Constitution and Bylaws for MPS

A few years ago, MPS was advised that its bylaws were not quite in

the standard form expected for non-profit organizations under US

tax law. The bylaws had been drafted with the help of an attorney

when the society was founded in 1970, but amendments in later

years had taken place generally without legal advice. We decided to

do a thorough redrafting of the bylaws, bringing them into line with

current MPS practice, adding a new section to account for ICCOPT,

incorporating the Prize rules, and adding precision in many places.

Our aim was not merely to satisfy the legal requirements but also to

provide a reference document for future MPS officers, editors, and

conference organizers. Naturally, we consulted with the society’s at-

torney to ensure that the final document could pass legal muster.

We hope that it will serve the society, with minor amendments and

additions as needed, for at least the next 20 years. The new bylaws

were approved by vote of MPS Council on 23 Feb. 2009, and can be

found on the MPS web site at www.mathprog.org.

We took this opportunity to amend the Society’s constitution as

well. The changes are intended to modernize and clarify the doc-

ument. They are minor, but too numerous to be detailed here; I

urge you to read the proposed new version which is printed below

and which can also be found on the web site. Amendments to the

constitution require approval by the full membership of the Society.

Council recommends a vote in favour of the new constitution. A

vote of the membership will be held at the MPS business meeting

during ISMP, where a simple majority will suffice to approve, provid-

ing a quorum is present.

Thanks to all those who contributed to the final versions, es-

pecially David Gay, who worked on various drafts and handled the

communications with our attorney.

Constitution of the Mathematical

Programming Society*

I Name

The society is an international organization to be called “Mathemat-

ical Programming Society, Inc.” It will henceforth be referred to as

the Society.

II Objectives

The objectives of the Society are the communication of knowledge

of the theory, applications, and computational aspects of mathemat-

ical programming and related areas and the stimulation of their de-

velopment. To realize these objectives, the Society publishes sev-

eral journals, holds International Symposia and sponsors such other

activities consistent with the objectives as may be directed by the

Council.

III Membership

The membership of the Society consists of individual members and

of corporate members. Members join the Society by application in a

form prescribed by the Council.

IV Council

1. The elected members of the Council of the Society are the

Chair, the Vice-Chair, the Treasurer, and four at-large members.

The Chair of the Executive Committee, the chair of the Publica-

tions Committee, and the Editors-in-Chief of the journals shall be

invited to all Council meetings and shall be included on all Council

correspondence. All must be members of the Society.

2. The Chair chairs the meetings of the Council. The Council

votes by majority of the elected members present, with the Chair

having a casting vote.

3. The Chair will submit a report on the activities of the Society

when he** relinquishes the office. This report will be published in a

journal or newsletter of the Society. The Chair will chair a business

meeting on the occasion of any International Symposium held during

his term of office.

4. The Vice-Chair replaces the Chair whenever the necessity

arises.

5. The Treasurer is responsible for the administration of the

funds of the Society, as directed by the Council. The Treasurer shall

make a financial report to the Society at the International Sympo-

sium held within his term of office.

6. The Editors-in-Chief of the journals are appointed by the

Council subject to the terms of the contract in force with publishers

www.ismp2009.org
www.ismp2009.org
http://www.ismp2009.org
www.mathprog.org
http://www.mathprog.org
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of the journals. They are responsible for implementing the directives

of the Council, in the organization of the journals, and for carrying

out its policy.

7. At each International Symposium there will be a combined

meeting of the outgoing Council and the incoming Council.

Additional meetings must be held when requested by at least three

members of the Council. The place of such meetings is decided by

the Chair. The Chair makes arrangements for the taking of minutes

at meetings of the Council and business meetings of the Society.

8. The policies of the Council are carried out by the Executive

Committee. The chair of the Executive Committee is appointed by

the Council, following a nomination by the Chair, which the Coun-

cil may approve or disapprove, and thereafter serves until the Chair

nominates a replacement candidate for the office. The chair of the

Executive Committee is responsible for executing the executive di-

rectives of the Council and for advising the Council. The Chair, Vice-

Chair and Treasurer are ex-officio members of the Executive Com-

mittee. The Chair may appoint additional members of the Executive

Committee, as necessary to allow the Executive Committee to carry

out its purpose. Such members serve at the pleasure of the Chair.

9. The Council appoints such other committees as it finds nec-

essary to carry out the business of the Society or to further its

objectives. The Chair and the chair of the Executive Committee are

ex-officio members of all such committees, except for those com-

mittees formed for purposes of determining winners of the Society’s

prizes.

V International Symposia

1. International Symposia are sponsored by the Society at inter-

vals of approximately three years. The Chair nominates and the

Council elects the chair of the Organizing Committee and the

chair of the Program Committee of the next International Sym-

posium.

2. Fees for the International Symposium are fixed by the Organiz-

ing Committee, in consultation with the Chair. The Council shall

adopt guidelines regarding the financial obligations between the

Society and the Organizing Committee.

VI Elections

1. In this section, the word “term” is defined to be the period from

the end of one International Symposium to the end of the follow-

ing International Symposium.

2. Elections for the Offices of Chair, Treasurer and the four at-large

members of Council are concluded at least two months prior

to each International Symposium. The elected Chair serves on

Council for the two terms following his election. He is the Chair

from one year after the beginning of the first term until one year

after the beginning of the second term. He takes the office of

Vice-Chair during the remainder of his period of service. The

Treasurer takes office one year after the beginning of the term

following his election and he serves until one year after the be-

ginning of the next term. At-large members of Council serve for

the term following their election. If the office of Chair becomes

vacant, it is filled automatically by the Vice-Chair. The Chair, after

consultation with Council, may appoint a member of the Society

to fill any other office that becomes vacant until the next elec-

tion. No one may serve for more than two consecutive terms as

an elected at-large member of Council.

3. The Chair invites nominations for all elections, giving at least two

months notice through a journal or newsletter of the Society of

the closing date for the receipt of nominations. Candidates must

be individual members of the Society. They may be proposed ei-

ther by Council or by any six individual members of the Society.

No nomination that is in accordance with the constitution may be

refused, provided that the candidate agrees to stand. The Chair

decides the form of the ballot. -→

The 20th International Symposium on Mathematical Programming

will take place August 23–29, 2009 in Chicago, Illinois. The meet-

ing will be held at the University of Chicago’s Gleacher Center and

the Marriott Downtown Chicago Magnificent Mile Hotel. Festivities

planned for the conference include the opening session in Chicago’s

Orchestra Hall, home of the Chicago Symphony Orchestra, the con-

ference banquet at the Field Museum, Chicago’s landmark natural

history museum, and a celebration of the 60th anniversary of the

Zeroth ISMP Symposium.

The plenary and semi-plenary speakers are

– Eddie Anderson, University of Sydney

– Mihai Anitescu, Argonne National Lab

– Stephen Boyd, Stanford University

– Friedrich Eisenbrand, EPFL

– Matteo Fischetti, University of Padova

– Lars Peter Hansen, University of Chicago

– Jong-Shi Pang, University of Illinois at Urbana-Champaign

– Pablo Parrilo, MIT

– Andrzej Ruszczynski, Rutgers

– Martin Skutella, Technische Universität Berlin

– David Shmoys, Cornell

– Eva Tardos, Cornell

– Paul Tseng, University of Washington

– Shuzhong Zhang, The Chinese University of Hong Kong

Please plan on attending the opening session on Sunday evening,

where MPS prizes will be presented. Please also plan to attend the

MPS business meeting on Tuesday evening, which will include an an-

noucement of the site of the next ISMP and a vote on the proposed

new constitution.

Please keep checking the symposium web site www.ismp2009.org

during the coming months, where all developments will be posted.

In particular, you can register for the conference through the web

site and find out about accommodation options. We urge you to

book hotels as soon as possible.

One new feature at this symposium will be the daily newsletter Op-

tima@ISMP, which will contain news about each day’s events, inter-

views with MPS and ISMP personalities, and local information about

Chicago.

www.ismp2009.org
http://www.ismp2009.org
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VII Secretariat

1. The Council is assisted by a Secretariat, which is supervised by

the chair of the Executive Committee and Treasurer.

2. The Secretariat will keep an up-to-date list of members of the

Society and a list of past and present members of the Council,

with an indication of their functions.

VIII Fees

Membership fees are fixed by Council. A member who has not paid

his dues before the end of the current year will be deemed to have

left the Society.

IX Journals

Journals of the Society are distributed to all members of the Society,

free of any charge additional to the membership fee, to their last

known address.

X Agents

Council may approve the payments of membership fees, or of sub-

scription fees for the journal, in national currency, to local agents in

countries where the Council, in its sole discretion, determines it is

difficult for individual members to obtain convertible currency.

XI Other activities

In addition to International Symposia, the Society may sponsor

other conferences and seminars. The organization of such spon-

sored meetings is subject to directives by the Chair.

XII Amendment of the Constitution

If proposed by at least ten individual members of the Society, or by

vote of the Council, the constitution may be amended by a majority

of individual voters, either at a business meeting of the society on

the occasion of an International Symposium at which a quorum is

present, or by a written ballot. Proposals must reach the Chair at

least two months before the voting takes place.

XIII Bylaws

1. To carry out the obligation as set forth in this constitution and

to conduct the business of the Society, the Council shall adopt

bylaws. The bylaws may be adopted, annulled, or amended by an

affirmative vote of at least four members of the Council. The

bylaws also may be amended by the members of the Society at

any business meeting of the Society by a majority vote of those

present in person or by proxy, where such meeting was called in

whole or in part for that purpose and notice of such proposal

was given at least thirty (30) days prior to the date of the meet-

ing. The Council shall have the authority in its sole discretion to

interpret the bylaws.

2. Council shall adopt bylaws governing elections designed to pro-

mote and maintain international representation of the Council

and Executive Committee.

Notes
* MATHEMATICAL PROGRAMMING SOCIETY is a registered trademark of

the Mathematical Programming Society, Inc.
** Throughout this document, in accordance with standard English, no assump-

tion about gender is implied by the use of a male pronoun.

Announcement: MPS Election Results

Triennial elections have recently concluded for the Mathematical

Programming Society. The elected candidates are as follows:

– Chair: Philippe Toint (University of Namur)

– Treasurer: Juan Meza (Lawrence Berkeley National Laboratory)

– Council-Members-At-Large: Jeff Linderoth (University of Wis-

consin-Madison), Claudia Sagastizábal (Associação Instituto Na-

cional de Matemática Pura e Aplicada, Rio de Janeiro), Martin

Skutella (Technische Universität Berlin), and Luís Nunes Vicente

(Universidade de Coimbra).

The newly elected At-Large Council members will be installed at the

20th ISMP this summer, in Chicago, and will hold office August 2009

– August 2012. The new Chair and Treasurer take office in August

2010 and will serve for the following three years. The current Chair,

Stephen Wright, will be Vice-Chair during the period August 2010

– August 2012. As is readily apparent, leadership of the Society will

continue to be in very good hands.

Alberto Caprara, Andrea Lodi and Katya Scheinberg

What’s new in Optima?

Optima was born in 1980 thanks to the idea of Don Hearn who

has continued to ensure its existence with endless dedication and

energy. At the beginning of its 30th year of life the time has come

for Optima to move out of its childhood home at the University of

Florida. It is moving to its new design and production site in Europe.

Needless to say, we are indebted to Don for his years of service and

specifically for his guidance during our own first two years as the

Optima team of service – a very short period with respect to his 29

years! Nevertheless, we felt bold enough to take on the decisions

necessary for the new production process of the MPS newsletter.

We are glad to present Optima 79 as the first issue of the new Op-

tima. With respect to the content we do not present big changes

but we hope the new design, a splash of red and the more accurate

LATEX-based mathematical layout will be appreciated by our readers.

We like to thank here the new designer Christoph Eyrich, and the

Optima Committee members Steve Wright, Jon Lee, Harvey Green-

berg and Mike Trick for their help in sorting out the future of the

newsletter.
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MOPTA 2009 
Bethlehem, PA, 19-21 August 2009

http://mopta.ie.lehigh.edu

The conference Invited speakers Modeling competition

The University Organizing committee

• Tamás Terlaky (Chair)

• Pietro Belotti

• Jitamitra Desai

• Imre Pólik

• Ted Ralphs

• Larry Snyder

• Robert H. Storer

• Aurélie Thiele

Practical information

Organized in collaboration with 
AIMMS, this competition challenges 
groups of students from around the 
world to model and solve a difficult, 
real-world Optimization problem. 

The finalists will present their work 
at MOPTA, where the prize for the 
best work will be awarded. 

June 6: abstract submission deadline
July 1: early registration deadline

Contact: ISE Dept, Lehigh University
200 W Packer Ave.
Bethlehem PA 18015
Phone: 610 758 3865
Email:  mopta2009@lehigh.edu

MOPTA is for people from both 
Discrete and Continuous 
Optimization, working on both 
theoretical and applied aspects.

Format: Six invited talks and many 
more contributed talks, spread over 
three days.

Ravindra K. Ahuja (UFL Gainesville)
Natalia Alexandrov (NASA)
Paul I. Barton (MIT)
John M. Mulvey (Princeton)
Pablo A. Parrilo (MIT)
Robert Weismantel (U. Magdeburg)

Located in the south of Bethlehem, 
PA, it is just an hour from New 
York City and an hour from 
Philadelphia.

Bus connections to Bethlehem are 
available from Newark, JFK, La 
Guardia, and Philadelphia airports.

Application for Membership

I wish to enroll as a member of the Society. My subscription is for my personal use

and not for the benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.

I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:

Mathematical Programming Society

3600 University City Sciences Center

Philadelphia, PA 19104-2688

USA

Cheques or money orders should be made

payable to The Mathematical Programming

Society, Inc. Dues for 2009, including sub-

scription to the journal Mathematical Pro-

gramming, are US $ 85. Retired are $ 40.

Student applications: Dues are $ 20. Have

a faculty member verify your student sta-

tus and send application with dues to

above address.

Faculty verifying status

Institution



MPS-SIAM Series on 

OPTIMIZATION
Philippe Toint, Editor-in-Chief
University of Namur, Belgium

BOOKS IN THE SERIES INCLUDE:

Introduction to Derivative-Free Optimization
Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente
2009 · xii + 277 pages · Softcover · ISBN 978-0-898716-68-9
List Price $73.00 · SIAM Member Price $51.10 · Code MP08

Linear Programming with MATLAB
Michael C. Ferris, Olvi L. Mangasarian, and Stephen J. Wright
2007 · xii + 266 pages · Softcover · ISBN 978-0-898716-43-6
List Price $45.00 · SIAM Member Price $31.50 · Code MP07

Variational Analysis in Sobolev and BV Spaces: 
Applications to PDEs and Optimization
Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille
2005 · xii + 634 pages · Softcover · ISBN 978-0-898716-00-9
List Price $140.00 · MPS/SIAM Member Price $98.00 · Code MP06

Applications of Stochastic Programming
Edited by Stein W. Wallace and William T. Ziemba
2005 · xvi + 709 pages · Softcover · ISBN 978-0-898715-55-2 
List Price $142.00 · MPS/SIAM Member Price $99.40 · Code MP05

The Sharpest Cut: 
The Impact of Manfred Padberg and His Work
Edited by Martin Grötschel
2004 · xi + 380 pages · Hardcover · ISBN 978-0-898715-52-1
List Price $106.00 · MPS/SIAM Member Price $74.20 · Code MP04

A Mathematical View of Interior-Point Methods 
in Convex Optimization
James Renegar
2001 · viii + 117 pages · Softcover · ISBN 978-0-898715-02-6
List Price $47.00 · MPS/SIAM Member Price $32.90 · Code MP03

Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications 
Aharon Ben-Tal and Arkadi Nemirovski
2001 · xvi + 488 pages · Softcover · ISBN 978-0-898714-91-3
List Price $121.50 · MPS/SIAM Member Price $85.05 · Code MP02

Trust-Region Methods
A. R. Conn, N. I. M. Gould, and Ph. L. Toint 
2000 · xx + 959 pages · Hardcover · ISBN 978-0-898714-60-9
List Price $146.50 · MPS/SIAM Member Price $102.55 · Code MP01

YOU ARE INVITED 

TO CONTRIBUTE

The goal of the MPS-SIAM series is to

publish a broad range of titles in the

field of optimization and mathematical

programming, characterized by the

highest scientific quality. 

If you are interested in submitting a

proposal or manuscript for publication

in the series or would like additional

information, please contact:

Philippe Toint

University of Namur

philippe.toint@fundp.ac.be

OR

Sara J. Murphy

Series Acquisitions Editor

SIAM

murphy@siam.org

SIAM publishes quality books with

practical implementation at prices

affordable to individuals.

Complete information about SIAM and its book program can be found at www.siam.org/books.
See summaries, tables of contents, and order online at www.siam.org/catalog.

Also of Interest:

Assignment Problems
Rainer Burkard, Mauro Dell’Amico,
and Silvano Martello
2009 · xx + 382 pages · Hardcover
ISBN 978-0-898716-63-4 · List Price $110.00
SIAM Member Price $77.00 · Code OT106

NEW

NEW


