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MOS Chair’s Column

July 1, 2011. For the few sorry spirits who, misguided by the gen-

eral state of the world, thought that mathematical optimization was

in theoretical decline or too remote from applications in the real

world, the SIOPT Conference on Optimization in Darmstadt in May

was a real and vivid counterexample. Indeed this very well attended

meeting (600+ participants) was a resounding success in terms of

interest and quality of the talks. As has been so far the case in this

series of meetings, the focus was mainly on continuous problems:

in particular, problems arising from continuous mechanics, fluids and

control were prominent, showing the very healthy state of not only

optimization in those domains, but also the German industry’s inter-

est in optimization in general. The significant presence of discrete

optimization was also noticeable, with several interesting sessions

and plenary talks in this area. As optimizers, all were delighted that,

once more, a high quality conference has been organized by SIAM

in addition to the major events organized by the Mathematical Op-

timization Society.

If mathematical optimization is turning today into one of the major

branches in applied mathematics, this is due not only to our present

efforts as scientists, but also to those of the founding fathers of our

research domain. One of them, Charles Broyden (the B in BFGS)

unfortunately passed away on Friday 20th May, at the age of 78 (see

the obituary published in this issue on page 10). His memory will

stay with us for long, and his work will undoubtedly continue to

inspire.

The beginning of 2011 was also the time to start thinking about

the various prizes sponsored by MOS, which will be awarded in the

International Mathematical Programming Symposium in Berlin in Au-

gust 2012. It may be useful to recall that the MOS currently awards

five scientific prizes and a named lectureship. These are the Dantzig,

Lagrange, Beal-Orchard-Hays, Fulkerson and Tucker prizes, and the

Paul Tseng Lectureship, whose more complete description, scope

and past winners can be found on the MOS Website (http://www.

mathprog.org). The respective committees have now been estab-

lished for deciding to whom these distinctions must be given, and

I would like to take this opportunity to thank all of our colleagues

who kindly accepted to serve on these committees. I would also like

to call on all members to think about proposing high quality submis-

sions for these prizes. I am certain that their scientific value can only

be enhanced by friendly competition between high quality submis-

sions. I am personally looking forward to meeting you all at the the

award ceremony during the opening session of the Berlin ISMP.

This is also the time to start looking at possible sites that will host

ISMP in 2015. The call for proposal submission can be found in this

issue on page 12. And as always, do not forget to renew your MOS

membership.

Meanwhile, enjoy the summer (for the majority of us in the north-

ern hemisphere) and let us keep the abundance and quality of our

scientific activities at the present vibrant level.

Note from the Editors

The stable set problem in claw-free graphs is the main topic of this

issue of Optima. Much of the tremendous progress that has recently

been obtained on this generalization of the matching problem is

due to work of the authors Gianpaolo Oriolo, Gautier Stauffer, and

Paolo Ventura of the article you’ll find below and their co-workers.

In the discussion column, Manfred Padberg shares with us his mem-

ories of the historical context in which the interest in the stable set

problem in claw-free graphs arose and of how it traveled to Italy.
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Sam Burer, Co-Editor

Volker Kaibel, Co-Editor
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Gianpaolo Oriolo, Gautier Stauffer and Paolo Ventura

Stable Sets in Claw-Free Graphs: Recent

Achievements and Future Challenges

1 Introduction

A stable set in a graph G(V,E) is a set of vertices that are pairwise

non-adjacent. When G is the intersection graph of the edges of a

graph H – two edges intersect if they share an endpoint – a stable

set in G corresponds to a matching in H (and vice-versa). Hence

while the stable set problem is hard in general, the special case of

line graphs – the family of all such intersection graphs – can be han-

dled in polynomial time through matching.

Matching is a classic problem in combinatorial optimization and it

exhibits some remarkable properties. Many of those properties have

http://www.mathprog.org
http://www.mathprog.org
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been extended and led to very powerful tools and theories like for

instance matroid intersection or delta-matroids. In order to extend

the matching theory to the stable set setting, it appears that two

fundamental properties of matching are crucial: the augmenting path
property and the intersection property.

Petersen observed in 1891 (and Berge proved in 1952) that the

symmetric difference of two matchings is made of alternating paths

and even cycles. In particular, a matchingM is of maximum cardinality

in a graph G if and only if there does not exist any augmenting path

in G with respect to M . Moreover, as two matchings are adjacent on

the matching polytopeMATCH(G) – the convex hull of all incidence

vectors of matchings in a graph G – if and only if they have a con-

nected symmetric difference, one can easily show that MATCH(G)

has the intersection property: MATCH(G) ∩ {x :
∑
e∈E xe = k} is

integral for every integer k.

Interestingly those properties extend to the stable set setting be-

yond line graphs (alternating paths and cycles being defined in terms

of vertices here): they are also valid for stable sets in claw-free graphs
– a graph is claw-free if no vertex has a stable set of size three in

its neighborhood. This was observed by Berge in 1973 for the sym-

metric difference of stable sets in claw-free graphs and by Calvillo in

1979 for the intersection property. Remarkably, Berge and Calvillo

also proved the converse, i.e., a class of graphs exhibits one or the

other of those properties for the stable set problem if and only if

it is a subclass of claw-free graphs. Hence, with respect to stable

sets, claw-free graphs appear to be the right framework to extend

the aforementioned properties of matching. The problem of finding

a maximum weighted stable set in claw-free graphs has been there-

fore investigated by several people, and its theory has been develop-

ing for more than 40 years. The last 10 years have been particularly

productive, mainly due to new approaches that exploit results from

structural graph theory. The purpose of this paper is to help the in-

terested researchers to navigate through the various results in this

field and in particular to shed light on the latest achievements and

the current open questions.

For the sake of shortness, some theorems might be slightly imprecise.
In this case, a reference is given, and the reader should rely on that. Also
we often denote by V(G) and E(G) the vertex set and the edge set of a
graph G.

2 Stable Sets in Claw-Free Graphs: Some Classical

Results

In this section we survey a few classical results on the problem. We

first deal with some algorithmic results, and then move to some

polyhedral questions.

2.1 Algorithms for the Maximum Weighted Stable Set Problem
Given a claw-free graph G(V,E) and a weight function w : V ֏ R,

a maximum weighted stable set (MWSS) can be found in polynomial

time. We denote by α(G) the cardinality of such a stable set when

w is the all ones vector; α(G) is also called the stability number of G.

At the present time, there are several algorithms for the problem,

and we may recognize three different main approaches. A first class

of algorithms deals with augmenting paths techniques, and the algo-

rithms by Minty [35] and Sbihi [50], respectively, for the weighted

and the unweighted case, follow this approach. In fact, as we already

discussed, Berge’s augmenting path theorem for matching extends

to stable sets in claw-free graphs (a path P is augmenting with re-

spect to a stable set S if (V(P) \ S) ∪ (S \ V(P)) is a stable set of

size |S|+1):

Theorem 1 ([4]). A stable set S is maximum for a claw-free graph G
if and only if there are no paths that are augmenting with respect to S .

Sbihi’s algorithm builds upon this theorem while Minty’s builds

upon a cute extension to the weighted case (given an augmenting

path P with respect to a stable set S , the weight of this path is given

by w(V(P) \ S)−w(V(P) ∩ S)):

Theorem 2 ([35]). Let S be a MWSS of size k, and let P be an aug-
menting path of maximum weight with respect to S . Then (S \ V(P)) ∪
(V(P) \ S) is a MWSS of size k+ 1.

Minty’s idea is to detect those maximum weight augmenting paths

and proceed with at most |V | augmentations. Given two “exposed”

vertices u,v of V \ S , i.e., they are both adjacent to a single vertex

of S , Minty’s crucial idea is that of reducing the problem of finding

an u− v augmenting path with maximum weight to the problem of

finding a matching with maximum weight in an auxiliary graph H. The

construction of H is rather intricate. We simply mention here that

this graph has O(|V |) vertices. Hence the whole algorithm requires

the solution of O(|V |3) weighted matching problems in an auxiliary

graph with O(|V |) vertices.

In 2001 the algorithm of Minty was slightly revised by Naka-

mura and Tamura [36], as they realized that, in the weighted case,

the algorithm could fail for some special configurations. Subse-

quently, Schrijver [51], elaborating on Minty’s algorithm, proposed

an elegant alternative using a slightly different edge-weighted aux-

iliary graph H. The algorithm can be implemented to run in time

O(|V |5 log |V |+|V |4|E|) in the weighted case and in time O(|V |5) in

the unweighted one (however, Sbihi claimed that her algorithm, for

the unweighted case, can be implemented to run in time O(|V |3).

An entirely different approach, based on reduction techniques,

was taken by Lovász and Plummer [34], for solving the problem in

the unweighted case. The crucial idea here is that of performing a

series of graph reductions that preserve the stability number, as to

end up with a line graph, where one has to solve a single matching

problem. The resulting algorithm is very elegant, much less intricate

than the previous algorithms, and, as Lovász and Plummer point out,

with some care it can be implemented as to run in O(|V |4). Unfor-

tunately, in spite of some efforts, it is not clear how to extend this

algorithm to the weighted case.

However, recently Nobili and Sassano [39] were able to combine

ideas from both the algorithm of Minty and that of Lovász and Plum-

mer to provide a new algorithm for the weighted case that runs in

O(|V |4 log |V |)-time. If we compare (very roughly!) their algorithm

with Minty’s algorithm, we see that, on one hand Nobili and Sas-

sano are able to reduce the number of matching problems that have

to be solved to O(|V |2), while on the other they are able to solve

each of these problem in O(|V |2 log |V |)-time, thanks to a weighted

reduction, inspired from that of Lovász and Plummer.

A latter solution approach to the MWSS problem in claw-free

graphs is based on decomposition techniques and has been taken

by Oriolo, Pietropaoli and Stauffer [41] first, and by Faenza, Oriolo,

and Stauffer [19] later. The latter algorithm can be implemented to

run in time O(|V |(|V | log |V | + |E|)). We postpone the discussion

about these algorithms to Section 4.1, as it is first convenient to deal

with some structural decomposition results for claw-free graphs.

2.2 Stable Sets in Claw-Free Graphs: Polyhedral Issues
The stable set polytope STAB(G) of a graph G(V,E) is the convex

hull of the characteristic vectors of stable sets in G, i.e., STAB(G) =

conv{x ∈ {0,1}|V || xu+xv ≤ 1,∀{u,v} ∈ E}. Since the seminal

paper by Padberg [43], this polytope has been carefully investigated

by several authors (see e.g. [12, 37, 38]).

Because the MWSS problem in claw-free graphs can be solved in

polynomial time, exact separation over this polytope also can be

done in polynomial time [28], and hence the stable set polytope of
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claw-free graphs is somewhat “under control”. However no com-

plete linear description is known at the time of writing, despite the

fact that the problem is “officially” open for more than a quarter of

a century [29]: “in spite of considerable efforts, no decent system

of inequalities describing “STAB(G)” for claw-free graphs is known”.

Such a description would possibly result in a nice minmax character-

ization of the problem.

A neat description is at hand for the stable set polytope

of line graphs. Indeed, Edmonds [15] proved that the match-

ing polytope MATCH(H) of a graph H(V,E) – i.e., conv{x ∈

{0,1}|E||
∑
e∈δ(v) xe ≤ 1,∀v ∈ V} – can be described by non-

negativity inequalities, degree inequalities (as usual, we denote by

δ(v) the set of edges incident to a node v), and odd sets inequal-

ities, where, for an odd set S ⊆ V , we denote by E(S) the set of

edges between vertices of S .

Theorem 3 ([15]). The matching polytope of a graph H(V,E) can
be characterized as MATCH(H) = {x ∈ R|E|| x ≥ 0;

∑
e∈δ(v) xe ≤

1,∀v ∈ V ;
∑
e∈E(S)xe ≤ ⌊

|S|
2 ⌋}, for every odd set S ⊆ V}.

But since MATCH(H) = STAB(L(H)), where L(H) denotes the

line graph of H, it follows that the stable set polytope of line graphs

can be described by non-negativity inequalities, clique inequalities

and Edmonds’ inequalities, the counterpart of odd set inequalities in

the stable set setting. More formally:

Definition 2.1. For a graph G(V,E) and an odd set of cliques K, let
V≥2(K) be the set of vertices covered by at least 2 cliques of K. The
Edmonds’ inequality associated with K is:

∑
v∈V≥2(K) xv ≤ ⌊

|K|
2 ⌋.

From Definition 2.1 it follows that Edmonds’ inequalities are de-

rived as Chvátal-Gomory cuts from the clique relaxation of the stable

set polytope QSTAB(G) := {x ∈ R|V | : x ≥ 0;x(K) ≤ 1, for every

clique K of G} [17], i.e., they can be obtained by first taking a non-

negative combination of the inequalities describing QSTAB(G), and

then rounding down the right hand side of the combination.

Lemma 2.1 ([15]). For a line graph G, non-negativity inequalities,
clique inequalities and Edmonds’ inequalities are enough to describe the
stable set polytope.

Unfortunately, Lemma 2.1 does not hold true for claw-free

graphs. In fact, consider a 5-wheel, i.e., a graph with vertex set

{w,v1, v2, v3, v4, v5} and edge set {(w,vi), (vi, vi+1) for all i =

1, ..,5} with v6 ≡ v1, then the 5-wheel inequality
∑5
i=1 xvi+2xw ≤ 2

is a facet of its stable set polytope. This shows that non-rank in-

equalities are needed in order to define the stable set polytope

of claw-free graphs. An inequality is rank if it only involves {0,1}-

valued coefficients in the left hand side, i.e., if it is of the form∑
v∈S xv ≤ α(G[S]) for S ⊆ V .

In 1978 Maurras, inferring that 5-wheels and, more generally,

odd-antiwheels (i.e., a graph made of a vertex totally joined to the

complement of an odd hole) were the problem, introduced the class

of quasi-line graphs, i.e., claw-free graphs without odd-antiwheels. He

also conjectured that for quasi-line graphs all facets of STAB(G) are

rank. Building upon Maurras’ conjecture, Sbihi conjectured that for

claw-free graphs all facets of STAB(G) have only {0,1,2}-valued co-

efficients. Both conjectures were proven false by Giles and Trotter

[27] in 1981 (see Figure 2 and 1, respectively). We know now that

for claw-free graphs with stability number 3 there exist facets with

arbitrarily many coefficients [46] and that for any integer a there ex-

ist quasi-line graphs whose stable set polytopes involve facets with

coefficient a and a + 1 [27, 33]. While Maurras’ conjecture was

wrong, his intuition on the relevance of the class of quasi-line graphs

was correct. Indeed, in contrast with general claw-free graphs,
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Figure 1. The complement of a claw-free graph G. The graph G induces the
facet: 2x1 + 2x2 + 2x3 + 2x4 + 2x5 + x6 + x7 + 3x8 + 3x9 + 3x10 ≤ 4. Note
that G is not quasi-line and that α(G) = 3. (The picture is a courtesy of Tristram
Bogart, Annie Raymond and Rekha Thomas.)

the nature of the inequalities needed for quasi-line graphs was

grasped first by Ben Rebea [49] and later by Oriolo [40] who named

a conjecture after him: the Ben Rebea conjecture.

The Ben Rebea Conjecture 1 (Oriolo [40]). For a quasi-line graph
G, non-negativity inequalities, clique inequalities and clique family inequal-
ities are enough to describe STAB(G).

Definition 2.2. Given a graph G, a family of cliques K and an integer
p ≥ 2, define V≥p(K) and Vp−1(K) as the set of vertices covered by
at least p cliques and exactly p − 1 cliques, respectively. The following
inequality is valid for STAB(G) and is called the clique family inequality

associated with K and p:
∑
v∈V≥p(K) xv +

p−r−1
p−r ·

∑
v∈Vp−1(K) xv ≤

⌊ |K|p ⌋, where r = |K| mod p.

Clique family inequalities generalize Edmonds’ inequalities,

and their validity can easily be derived by the disjunction∑
v∈V≥p(K)∪Vp−1(K) xv ≤ ⌊

|K|
p ⌋ ∨

∑
v∈V≥p(K)∪Vp−1(K) xv ≥ ⌊

|K|
p ⌋+

1 applied to QSTAB(G).

The Ben Rebea conjecture suggested that the stable set polytope

of quasi-line graphs has a neat description. As for claw-free graphs,

in 1991 Galluccio and Sassano [26] provided an elegant characteri-

zation of rank minimal facets, i.e., rank facets that are minimal with

respect to lifting and complete join operations [11, 43].

We close this section by illustrating the result of Calvillo [5] that

we mentioned before. Calvillo proved the following nice property of

the stable set polytope of claw-free graphs. A polytope P ⊆ Rn has

the intersection property if P ∩ {x ∈ Rn :
∑n
i=1 xi = k} is integral for

all integer k.

Theorem 4 ([5]). STAB(G) has the intersection property if and only
if G is a claw-free graph.

Figure 2. A quasi-line graph inducing the facet
∑
v∈◦ xv + 2 ·

∑
v∈• xv ≤ 6. On

the right, the cliques involved in the derivation of the inequality as a clique family
inequality.
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3 A Breakthrough: Decomposition of Claw-Free and

Quasi-Line Graphs

In a long series of paper, Chudnovsky and Seymour (see e.g.

[8, 9, 10, 6]) elucidate the structure of claw-free graphs and de-

fine a decomposition result for them. For this purpose, they have

introduced a new composition operation.

3.1 The Composition of Strips
In order to better grasp this operation, it is convenient to first deal

with an algorithmic procedure that can be used to build line graphs.

The rationale of this latter operation is the following. Given a graph

G, each vertex in G can be associated with a clique in the line graph

H = L(G) (all edges incident to this vertex are pairwise adjacent in

H). If we let F denote the family of cliques of H that are associated

with vertices of G, we observe that F has the following properties:

(i) every edge of H is covered by some clique of F ; (ii) every vertex

of H is covered by exactly two cliques of F .

Suppose now that we are given a (general) graph H. We call a

family F of cliques of H a Krausz family if it satisfies the above prop-

erties. Krausz [32] proved the following:

Theorem 5 ([32]). A graph is the line graph of a multi-graph if and
only if it admits a Krausz family.

This theorem gives an algorithmic procedure to build line graphs.

This procedure requires as input a set of vertices V and a par-

tition P = P1, ..., Pq of the multi-set V ∪ V . It then associates

to the pair (V,P) the graph G with vertex set V and edge set

E := {{u,v} : u ≠ v and both u,v ∈ Pi, for some 1 ≤ i ≤ q}.

Chudnovsky and Seymour generalized the above construction, es-

sentially by replacing vertices with strips. We borrow (but slightly

change) some definitions of theirs.

Definition 3.1. A strip (G,A) is a graph G (not necessarily con-
nected) with a multi-family A of either one or two designated non-empty
cliques (possibly identical) of G. The cliques in A are called the extremi-

ties of the strip.

Let H = {(Gi,Ai), i = 1, ..., k} be a family of vertex disjoint

strips. Let A(H ) denote the multifamily of the extremities of those

strips, i.e., A(H ) =
⋃
i=1..kA

i, and let P = P1, P2, ..., Pq be the

classes of a partition ofA(H ). We associate to the pair (H ,P) the

graph G that is made of the disjoint union of the graphs G1, . . . Gk,

with additional edges E := {{u,v} : u ≠ v and u and v belong to

different extremities in a same class Pi, for some 1 ≤ i ≤ q}. G is

called the composition of the strips H with respect to partition P.

Note that, for line graphs, this composition reduces to the above

construction, as soon as each graph Gi is made of a single vertex vi
and the corresponding strip is ({vi}, {{vi}, {vi}}).

Even though the operation of composition of strips builds graphs

that are in general non-line, such graphs indeed inherit a “line struc-

ture” from its similarity with Krausz composition. Say that a strip

H = (G,A) is line if G admits a Krausz family K with A⊆K. Then,

as soon as all strips are line, the composition is a line graph. The

proof of this fact is straightforward. We will make heavy use of this

fact in the following.

Lemma 3.1. Let G be the composition of a family of line strips
Hi = (Gi,Ai), i = 1, ..., k with respect to a partition P. Then G is
a line graph.

3.2 Decomposition Results for Claw-Free and Quasi-Line Graphs
In [8] Chudnovsky and Seymour overview a series of papers in which

they prove a structure theory for claw-free graphs. The theory is too

complex to describe in detail here, so we just outline two of their

results.

Theorem 6 ([10]). Let G(V,E) be a connected claw-free graph. Then
one of the followings holds: i) α(G) ≤ 3 and G belongs to a small set of
basic graphs; ii) G is a fuzzy circular interval graph; iii) G is the compo-
sition of strips, that are either fuzzy linear interval strips or they belong
to one of a small number of family of strips, all with stability number at
most 3.

Circular interval graphs are defined by a set of vertices, a circle and

a set of arcs. Vertices are mapped to the circle and two vertices are

adjacent if and only if they are covered by an arc. Those graphs are

also known as proper circular arc graphs. Linear interval graphs are

constructed in the same way as circular interval graphs, but on a line

rather than on a circle. In a linear interval strip (G,A), G is a linear

interval graph and the cliques in A are made of contiguous vertices

at the end of the line segment. Fuzzy circular/linear interval graphs are

a slight generalization of circular/linear interval graphs.

The results considerably simplify for the subclass of quasi-line

graphs.

Theorem 7 ([8]). Let G(V,E) be a connected quasi-line graph. One
of the followings holds: G is a fuzzy circular interval graph; G is the com-
position of fuzzy linear interval strips.

We point out that while the two above results are not algorith-

mic, lighter versions of those have been recently algorithmized by

Hermelin, Mnich, van Leeuwen and Woeginger [30].

A different algorithmic decomposition theorem for claw-free

graphs was recently given by Faenza, Oriolo and Stauffer. From a

structural point of view, this result is much weaker than Theorem 6;

however, it is particularly useful when dealing with the MWSS prob-

lem, as we discuss in Section 4.1.

Theorem 8 ([19]). Let G(V,E) be a claw-free graph. In time
O(|V ||E|), one can find out whether α(G) ≤ 3, or G is almost nearly dis-
tance simplicial, or G is the composition of O(|V |) strips that are distance
simplicial strips or strips with stability number at most 3 and containing a
5-wheel (and provide the decomposition).

We denote by N(S), with S ⊂ V , the set of nodes of V \ S that

are adjacent to some node in S (we also use the notation N(v) for

N({v})). A connected graph G is distance simplicial with respect to
a clique K if, for every j, α(Nj(K)) ≤ 1, i.e., each neighborhood

Nj(K) of K is a clique; if there exists a vertex v such that G is

distance simplicial with respect to {v}, we simply say that G is dis-
tance simplicial. A distance simplicial strip is a strip (G,A), such that

G is distance simplicial with respect to each clique in A. A graph is

nearly distance simplicial if, for each v ∈ V , G \ (N(v)∪ {v}) is dis-

tance simplicial. Almost nearly distance simplicial graphs are a slight

generalization. When G is quasi-line, Theorem 8 reads as follows:

Theorem 9 ([19]). Let G(V,E) be a quasi-line graph. In time
O(|V ||E|), one can find out whether G is the composition of O(|V |)
distance simplicial strips, or G is almost nearly distance simplicial (and
provide the decomposition).

4 Following the Breakthrough: Stable Sets in Claw-Free

Graphs Revisited

4.1 Faster Algorithm for Claw-Free Graphs
Suppose that we are interested in solving the MWSS problem on

a graph G that is the composition of some strips H1, . . . ,Hk and

that, in particular, we are able to solve the same problem on each

strip. Building upon Lemma 3.1 we may reduce the former problem

to a matching problem. This goes as follows: we replace each strip

Hi, i = 1, ..., k with suitable, simple, line strips Hi, i = 1, ..., k, and
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consider the graph G obtained by substituting Hi with Hi in the

composition. Following Lemma 3.1, G is a line graph, and therefore

a MWSS of G can be found by solving a matching problem. Finally,

from a MWSS of G we then recover a MWSS of G. We have in fact:

Theorem 10 ([41]). The maximum weighted stable set problem on a
graph G that is the composition of some strips (G1,A1), . . . , (Gk,Ak)

can be solved in O(|V(G)|2 log |V(G)| +
∑
i=1,...,k pi(|V(G

i)|))-time,
if each Gi belongs to some class of graphs, where the same problem can
be solved in time O(pi(|V(Gi)|)).

Faenza, Oriolo and Stauffer [19] recently proposed a strongly

polynomial algorithm for solving the MWSS problem in a claw-free

graph G(V,E) that runs in O(|V |(|E| + |V | log |V |))−time, dras-

tically improving the previous best known complexity bound. This

algorithm builds upon Theorem 8, and, in the following, we sketch

how it deals with the different cases arising from that theorem. Let

G be a claw-free graph. If α(G) ≤ 3, then a MWSS can be found by

enumeration. If G is the composition of strips, then the result fol-

lows from Theorem 10, as soon as we observe that we can find a

MWSS in a distance simplicial strip by dynamic programming, follow-

ing a construction and an algorithm from Pulleyblank and Shepherd

[48] for distance-claw-free graphs. The latter construction can be

used also when G is almost nearly distance simplicial. Without using

any sophisticated data structures, the algorithm can be implemented

as to run in O(|V |(|E| + |V | log |V |))−time.

4.2 The Stable Set Polytope of Quasi-Line Graphs
When studying the polyhedral aspect of a composition of graphs, it

is standard to substitute some of the graphs with “gadgets” and to

derive the polyhedral description of the composition from the poly-

hedral descriptions of the composition of the simpler graphs [2, 3].

For the composition of strips, Chudnovsky and Seymour observed

[7, 53] that paths of length one or two were the appropriate gadgets

to prove the following:

Theorem 11 ([7, 53]). The stable set polytope of a quasi-line graph
G that is not a fuzzy circular interval graph can be characterized by non-
negativity inequalities, clique inequalities and Edmonds’ inequalities.

On one hand this theorem shows that the Ben Rebea conjecture

holds for such class of quasi-line graphs (Edmonds’ inequalities are

particular clique family inequalities). On the other, with the help of

Theorem 7, it shows that all non-rank facet inducing inequalities for

quasi-line graphs appear in fuzzy circular interval graphs.

Eisenbrand, Oriolo, Stauffer and Ventura [17] were able to pro-

vide a linear description of STAB(G), when G is a fuzzy circular in-

terval graph. As fuzziness can be handled easily, in the following we

simply deal with circular interval graphs. For such graphs, let A be

the clique incidence matrix, when one restricts to cliques stemming

from the intervals. Then the stable set problem can be formulated

as: max {
∑
v∈V cvxv : Ax ≤ 1 ; xv ∈ {0,1},∀v ∈ V}. What is

crucial is that the matrix A has the so-called circular one property,

i.e., there is an ordering of the columns such that, on each row, the

ones appear consecutively, under the convention that the first col-

umn is consecutive to the last. But then the linear relaxation P =

{x ∈ Rn |
(
A
−I

)
x ≤

(
1
0

)
} is such that Pk = P ∩ {x :

∑
v∈V xv = k}

is integral for any integer k (using the equation
∑
v∈V xv = k, the

system
(
A
−I

)
x ≤

(
1
0

)
can be rewritten as a consecutive one system

and so Pk is described by a totally unimodular system). This result

shows that the only missing inequalities are disjunctive cuts of the

form
∑
v∈V xv ≤ k ∨

∑
v∈V xv ≥ k + 1 from QSTAB(G). Careful

analysis of those disjunctive cuts allows one to prove that they are

clique family inequalities and therefore the Ben Rebea conjecture

holds true [17].

Theorem 12 ([17]). Conjecture 1 holds true.

4.3 The Stable Set Polytope of Claw-Free Graphs with α ≥ 4 and No
Clique Cutsets

Galluccio, Gentile and Ventura [22] extended Theorem 11 to deal

with the stable set polytope of a graph that is the composition

of arbitrary strips. Let G be the composition of a family of strips

Hi = (Gi,Ai), i = 1, .., k. Strips with only one extremity can be

easily handled because of a result of Chvátal [12]. Therefore assume

without loss of generality that each strip has two extremities. We

denote by Giz the graph obtained from Gi by adding a new node z

with N(z) = Ai1 ∪ A
i
2, and by Giuv the graph obtained from Gi by

adding two new nodes u and v such that N(u) = Ai1 ∪ {v} and

N(v) = Ai2∪{u}. In [22] it is proved that the inequalities needed to

describe STAB(G) can be obtained by (appropriately) replacing the

inequalities defining STAB(Giuv) and STAB(Giz) in the stable set

polytope of a certain line graph Ḡ, derived from G by substituting

each Hi with a line strip.

In the following, we apply this result to claw-free graphs. Galluc-

cio, Gentile and Ventura [24, 25] managed to provide a descrip-

tion of the stable set polytope of the graphs Giz and Giuv associ-

ated with the strips (Gi,Ai) arising from Theorem 6: in particular,

they showed that non-negativity inequalities, rank inequalities, se-

quential liftings [43] of 5-wheel inequalities and sequential liftings of

geared inequalities are sufficient to describe both STAB(Giz) and

STAB(Giuv). We have therefore:

Theorem 13 ([25]). The stable set polytope of a claw-free graph with
stability number at least 4, non-fuzzy circular interval and with no clique-
cutset is defined by: non-negative inequalities, sequential liftings of multi-
ple geared inequalities, rank inequalities and sequential liftings of 5-wheel
inequalities. In particular, all inequalities are {0,1,2}-valued.

We recall that a description of rank inequalities in claw-free

graphs follows from the characterization of rank minimal facets in

[26]. As for (multiple) geared inequalities [21, 23], in claw-free graphs

they are {0,1,2}-valued facet defining inequalities that are “pro-

duced” from rank inequalities, by substituting one or multiple edges

with a gear, a graph that is made of two intertwined 5-wheels (see

Figure 3).

Combining Theorem 6, Theorem 12 and Theorem 13, we have:

Theorem 14 ([25]). The stable set polytope of any claw-free graph
G without a clique-cutset and such that α(G) ≥ 4 is defined by: non-
negativity inequalities, clique-family inequalities, rank inequalities, sequen-
tial liftings of 5-wheel inequalities, and sequential liftings of multiple geared
inequalities.

x◦ ≤ 3 x◦ + 2x• ≤ 5 x◦ + 2x• ≤ 7

Figure 3. A rank, a geared and a multiple geared facet defining inequality

4.4 Extended Formulation and Separation for the Stable Set Polytope
of Claw-Free Graphs

Faenza, Oriolo and Stauffer [19] gave a characterization of

STAB(G), G claw-free, in an extended space. Their result builds

upon a suitable extended description of STAB(G) for a graph G
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that is the composition of a family of strips Hi = (Gi,Ai), i = 1, .., k.

In fact, Theorem 10 has a polyhedral interpretation in an extended

space. We proceed as in Section 4.1, and let G be the line graph

that arises by substituting each strip Hi with a suitable line strip Hi

in the composition. Given a polytope P = {x ∈ R
n : Ax ≤ b} in

R
n, we call {(x,λP ) ∈ Rn × R : Ax ≤ λPb,λP ≥ 0} the homoge-

nized cone associated with P and the system Ax ≤ λPb,λP ≥ 0 the

homogenization of the system Ax ≤ b.

Theorem 15 ([18]). An extended formulation for STAB(G) is
(mainly) given by the homogenization of the (possibly extended) lin-
ear descriptions of STAB(Gi), STAB(Gi[V(G) \ ∪A∈AiA]) and
STAB(Gi[V(G) \ A]) for all A ∈ Ai ; and STAB(G) where G is
a line graph with O(k) vertices.

(The reader should rely on [18] to find out what is behind the

word “mainly” in the previous statement.) We now sketch how to

apply this construction to a claw-free graph G(V,E). By Theorem 8,

we know that in time O(|V ||E|) we can distinguish if α(G) ≤ 3, if

G is almost nearly distance simplicial or if G is the composition of

distance simplicial strips and strips with stability number at most 3.

It is easy to write an extended formulation for a graph G with

small stability number. Indeed, let x1, . . . , xk be all the extreme

points of STAB(G) i.e., all stable set of size 0,1,2 or 3. The poly-

tope Q = {(x,λ) : x =
∑k
i=1 λixi, λ ≥ 0,

∑k
i=1 λi = 1} is an ex-

tended formulation of STAB(G). Nearly distance simplicial graphs

are distance claw-free graphs, a class of graphs for which Pulleyblank

and Shepherd [48] gave a compact extended formulation based on

a dynamic programming algorithm for the MWSS problem (note that

this class also includes graphs that are distance simplicial graphs with

respect to some clique). We are left with the case where G is the

composition of a family of strips Hi = (Gi,Ai), i = 1, .., k. In this

case, building upon Theorem 15, we just need to show that we are

able to derive extended formulations for the stable set polytopes

associated with the strips. In fact, if either Gi is a distance simplicial

graph with respect to some clique, or α(Gi) ≤ 3, then an extended

formulation for STAB(Gi) (or STAB(Gi[V(G)\∪A∈AiA]) etc.) fol-

lows from the above arguments.

We point out that the resulting extended formulation is simple

(a generalization of the union of polytopes [1]) and requires only

O(n) extra variables. Moreover, even though it might have expo-

nentially many Edmonds’ inequalities, they are separable in polytime

[44]. Thus one can write an explicit linear formulation of the prob-

lem that could also be used as a strong relaxation for the variation

of the stable set problem in claw-free graph with additional side con-

straints. One should also observe that if there would exist a compact

extended description of the matching polytope, a well-known open

problem, then also this formulation would be compact.

Faenza, Oriolo and Stauffer [18] gave another extended formula-

tion of STAB(G), G claw-free, that is better suited for projection, as

it requires only one additional variable per strip. They derived from

the projection of this formulation on the original space an alterna-

tive view to Theorem 14 and, more important, a polytime separation

routine for STAB(G) (in the original space).

Theorem 16 ([18]). Let G(V,E) be a claw-free graph. It is possible to
separate in polynomial time over STAB(G) using only a separation rou-
tine for matching and the solution of O(|V |) compact linear programs.

5 Open Questions

5.1 Complete Linear Description of STAB(G) in the Original Space
It follows from [12] and Theorem 14, that in order to provide a

linear description of the stable set polytope of any claw-free graph,
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Figure 4. The complement of a claw-free graph G. The graph G induces the
facet: 2(x14 + x15 + x16)+ 3(x1 + x2 + x3 + x4)+ 4(x5 + x6 + x7 + x9 +

x12)+ 5(x8 + x10 + x11)+ 6(x13 + x17) ≤ 8. Note that G is not quasi-line and
that α(G) = 3. (The picture is a courtesy of Tristram Bogart, Annie Raymond and
Rekha Thomas.)

we are left with characterizing the stable set polytopes of claw-free

graphs with stability number at most 3. In fact, following Theorem

12 we may restrict to claw-free, non-quasi-line graphs with stability

number at most 3. However, even as Cook [14, 52, 33] character-

ized the stable set polytope of any graph G with α(G) ≤ 2, it seems

that characterizing the stable set polytopes of graphs with stability

number at most 3, is quite challenging, even if we restrict to claw-

free non-quasi-line graphs. In fact, we already pointed out in Section

2.2 that for claw-free, but non quasi-line, graphs with stability num-

ber 3 there exist facets with arbitrarily many coefficients [46]; see

Figure 4 for a facet inducing inequality with 5 different coefficients.

This is not the case for quasi-line graphs (see Theorem 12) or claw-

free graphs with stability number at least four and no clique-cutsets

(see Theorem 13).

Pêcher and Wagler [45] worked on this question. While providing

some better understanding of affine independence for the remaining

difficult facets of SSP in claw-free graphs – the so-called co-spanning
forest structure – this work leaves the full characterization in the orig-

inal space still open. Indeed, Pêcher and Wagler [45] do not provide

a ‘proper’ construction to produce a valid inequality associated with

a given structure besides, basically, exploiting the polar of the poly-

tope.

Observe that, in case one can solve the question above, the

essence of the complete linear description for claw-free graphs will

be significantly different from that of the stable set polytope of quasi-

line graphs, for which inequalities are defined “algebraically”. This

suggests that, even if the case α(G) ≤ 3 was solved, additional in-

sight might still be needed to get an elegant description of the stable

set polytope of claw free graphs, if any. The next question proposes

another standpoint on the problem that might lead to a simpler de-

scription of the polytope.

5.2 Calvillo’s Theorem and the Intersection Property
Let STABk(G) := conv{x ∈ {0,1}|V | : xu + xv ≤ 1,∀{u,v} ∈

E and
∑
v∈V xv = k }. Theorem 4 shows that STABk(G) =

STAB(G) ∩ {x ∈ R
|V ||

∑
v∈V xv = k} and it might suggest that

the stable set polytope of claw-free graphs has a nicer interpretation

when intersected with the hyperplanes {x ∈ R
|V ||

∑
v∈V xv = k}

for all integer k. This is indeed the case for quasi-line graphs. In

fact, building upon Theorem 4, Theorem 7, Theorem 11 and some

arguments from [17], one can show that:

Lemma 5.1. Let G(V,E) be a quasi-line graph. For every integer k,
STABk(G) can be described by non-negativity inequalities, clique inequal-
ities, Edmonds’ inequalities and

∑
v∈V xv = k.
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Can we hope for a similar result for claw-free graphs? Because

of 5-wheel structure, one can easily show that, in contrast to quasi-

line graphs, for claw-free graphs rank inequalities are not enough

to describe STABk(G); however a complete characterization of

STABk(G) might still be simple.

5.3 Minimal Linear Description for the Stable Set Polytope of
Quasi-Line Graphs

For the matching polytope, Edmonds and Pulleyblank [16] gave a de-

scription of the facets of the polytope, giving necessary and sufficient

conditions for an odd set of vertices to induce a facet. While the

Ben Rebea theorem gives a linear description of STAB(G) when G

is quasi-line, it does not provide necessary and sufficient conditions

for a family of cliquesK and an integer p ≥ 2 to induce a clique fam-

ily inequality that is facet inducing. The question is open but there

are a few results in this direction [26, 53, 54, 42].

5.4 The Chvatal–Gomory Rank of the Stable Set Polytope of
Quasi-Line Graphs

Sbihi [50] reported that Edmonds conjectured in 1973 that the sta-

ble set polytope of any claw-free graph G had Chvátal-Gomory rank

(CG-rank in the following) one from QSTAB(G). This was proven

false by Giles and Trotter [27], who provided a facet-defining in-

equality for STAB(G) with CG-rank two. The result was strength-

ened by Chvátal [13] who showed that there exist graphs with

α(G) = 2, and therefore claw-free, with CG-rank unbounded. In-

terestingly this construction does not extend to quasi-line graphs, as

building upon Theorem 12 and results in [14, 52, 33], one may show

that the CG-rank of a quasi line graph G with α(G) = 2 is one.

However, facet-defining inequalities with CG-rank two exist also for

quasi-line graphs, as shown by Oriolo [40]. This raises the follow-

ing questions: is the CG-rank unbounded for quasi-line graphs or is

it bounded? (Actually, despite some efforts, we could not produce

for quasi-line graphs facet-defining inequalities with CG-rank bigger

than two). We mention that Pêcher and Wagler [47] studied the

CG-rank of general clique family inequalities and gave some upper

bounds. Unfortunately they do not seem to be tight.

5.5 Improving the Complexity
The weighted matching problem in a graph H(W,F) can be solved

in O(|W |(|W |log|W | + |F|)−time [20]. It follows that we can find

a MWSS in a line graph G(V,E) in time O(|V |2 log |V |). Follow-

ing the algorithm by Faenza, Oriolo and Stauffer presented in Sec-

tion 4.1 a MWSS in a claw-free graph G(V,E) can be found in time

O(|V |(|V | log |V |+|E|)), i.e., slightly worse than for line graphs: can

we close this gap? We believe that this should be doable, in particular

for quasi-line graphs. Also note that the above algorithm uses only

elementary data structures, so one could try to lower its complexity

by using more sophisticated data structures.

5.6 A “Short” Proof of the Ben Rebea Theorem
One should note that Theorem 9 is quite close to Theorem 7. How-

ever, while the former theorem has a rather simple and direct proof,

the proof of the latter relies on the general structure of claw-free

graphs. We ask therefore whether it is possible to sharpen Theo-

rem 9 so as to prove the same characterization of Theorem 7. The

question of having a direct proof of Theorem 7 was raised already

by King [31]. Note that such a proof, together with the proof of

Theorem 11 and the proof that the Ben Rebea conjecture holds for

fuzzy circular interval graphs in [17], would provide a “short” proof

of Theorem 12.
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Discussion Column

Manfred W. Padberg

Node Packings in Graphs and Claw Free

Graphs

When Volker Kaibel called me a couple of weeks ago to ask me to

write a short historical note (as a discussion column to the article by

Gianpaolo Oriolo, Gautier Stauffer, and Paolo Ventura) about node

packings in graphs and especially in claw-free graphs, my reaction

was more or less: Boy, it has been something like forty years ago

that I’ve worked on that stuff! But I promised to do it and so here

it is. Most of what I have to say is about node packings in graphs

and the general context in which it happened, but some of it may

help to explain how the interest in claw-free graphs travelled from

Pittsburgh via Berlin, Bonn and New York to Rome.

1 Beginnings

Had you asked me back in 1969/1970 about node packing or vertex

packing in graphs (bull-free, claw-free or whatever), you would have

drawn a blank stare: I would not have known what you were talking

about. These terms may have existed in graph theory, but not in inte-

ger programming. In integer programming we were concerned with

linear programs with practical applications: airline crew scheduling

problems, knapsack problems (with their roots in capital rationing

in finance) and traveling salesman problems (TSPs with their roots

in K. Menger’s “Botenproblem” from the 1930’s), to name just three

favorite problems of mine in those days. The intimate connections

between graph theoretical and integer or zero-one programming

problems – that you young guys are all familiar with today – just

had not been established yet. All right, to understand TSPs you need

a modicum of graph theory, but that’s all. What got my interest in

this field were airline crew scheduling problems, perhaps because

in September 1968 I had left my native Westphalia in Germany to

fly to New York and then, by my ex-wife’s car, to Pittsburgh, PA,

where I had obtained a Ford Foundation Fellowship to complete my

doctoral studies at Carnegie-Mellon University’s GSIA and where I

specialized with Egon Balas, see my historical note “Mixed-integer Pro-
gramming – 1968 and thereafter” in Annals of Operations Research,
2007, 149: 163–175. Despite Dantzig, Fulkerson and S. Johnson’s

milestone 1954 paper Solution of a Large Scale Travelling Salesman Prob-
lem published in Operations Research – a world record as it solved a

problem in 1,128 zero-one variables to optimality – computational

integer programming had a bad name. Egon Balas’ 1965 paper An Ad-
ditive Algorithm for Solving Linear Programming Programs with Zero-One
Variables published in Operations Research had bettered the picture

somewhat, but all of this was “overshadowed” by Ralph Gomory’s

algebraic, some said “elegant”, algorithm for integer programming

(first abstracted in 1958 and published in 1963), which computa-

tionally just did not work. Of the many references in the literature

to this effect, let me just mention Don Knuth’s 1961 paper Minimiz-
ing Drum Latency Time in the Journal of the Association for Computing
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Machinery and some articles in the book edited by Muth and Thomp-

son Industrial Scheduling, Prentice-Hall, 1963. In any case, the recent

“revival” of Gomory’s mixed-integer cuts in computational integer

programming does not contradict what I’m saying because they are

based on “disjunctive” reasoning and thus different from the original

Gomory cuts developped in 1958 or so; see also my paper Classical
Cuts for Mixed-Integer Programming and Branch-and-Cut in Math. Meth.
Oper. Res. 2001, 53: 173–203 or its reprint in Annals of O.R. 2005,
139: 321–352. So much for the history as I found it back in 1968 in

Pittsburgh, PA.

2 Step I

By April/May of 1971 I had finished and defended my PhD thesis

Essays in Integer Programming at GSIA and prepared my return to

Germany, because of my obligation to do so under the conditions

of my Ford Foundation Fellowship. I wound up at the International

Institute of Management in Berlin with a three-year contract. On

March 25, 1970, Egon and I had submitted Chapter 2 of my thesis

On the Set-Covering Problem to Operations Research where it appeared

in the November-December 1972 issue. Chapter 3 of my thesis ’Sim-
ple’ Zero-One Problems: Set Covering, Matchings and Coverings in Graphs
was widely distributed as the Management Sciences Report No. 235 of

CMU’s GSIA and submitted to Mathematical Programming sometime

in late 1971. In it I had abstracted from Egon’s and mine results of

Chapter 2 a property of the said problems called ‘Simplicity’ of a

polytope (which I myself found in early 1972 to be erroneous).

In any case, my Chapter 3 contained the first results on the facets

of these polytopes, namely the clique and ‘lifted’ odd-cycle facets.

The pertaining correct results of it were published in somewhat im-

proved form in On the Facial Structure of Set Packing Polyhedra, Mathe-
matical Programming, 1973, 5: 199–215. Just for completeness, Chap-

ter 4 of my thesis Equivalent Knapsack-type Formulations of Bounded
Integer Linear Programs: An Alternative Approach appeared in Naval Re-
search Logistics Quarterly, 1972, 19: 699–708 and one of the technical

appendices A Remark on “An Inequality for the Number of Lattice Points
in a Simplex” in SIAM Journal of Applied Math., 1971, 20: 638–641.

Another technical appendix of my thesis contained some results on

“adjacent vertices cuts”, but these were just again “cuts” and not

“facet-defining cutting-planes” and thus I never published that stuff.

Voila, that was essentially the content of my 1971 thesis. So much

for those who still recently asked themselves what my thesis was all

about. Just read the published stuff.

3 Step II

I had wanted to test facet-defining cutting-planes for node and set

packing problems computationally in Berlin, but there were just no

adequate computing facilities in Berlin and also a lack of test prob-

lems. Karla Hoffman and I did so eventually in our paper Solving Airline
Crew Scheduling Problems by Branch-and-Cut published in Management
Science, 1993, 39: 657–682. Needless to say, it worked wonderfully,

but here I am jumping way ahead of time.

I landed a job at New York University’s Graduate School of Busi-

ness as of September 1974 when my obligation to the Ford Foun-

dation to stay in Germany was over. On my way from Berlin to

New York I “stopped” for about half a year at Bernhard Korte’s

then new Institute for Operations Research and Econometrics at

Bonn University, where I met Martin Groetschel. I don’t think that

it is necessary to recall our joint work on the traveling salesman

polytope here. Besides the theoretical work, Martin’s 1976 thesis

contained the solution to optimality of a 120-city TSP using only

facet-defining cutting-planes – that’s a linear program in 7,140 zero-

one variables and thus another world record! Wunderbar, because

that is exactly what I had in mind when I started out in 1970 to

look for facet-defining cutting-planes, rather than arbitrary “cuts”

with no proven mathematical properties other than “validity” for

the problem in question. I won’t recall either in detail my compu-

tational work on the TSP (with S. Hong, then with H. Crowder

and later with Giovanni Rinaldi) as well as on other problems pur-

sued with the same goal – to prove “empirically” the value of facet-

defining cutting-planes in actual computation. But I will recall my

work with M. Ram Rao Odd Minimum Cut-Sets and b-Matchings, Math-
ematics of Operations Research, 1982, 7: 67-80, which we presented

at the 1979 Mathematical Programming Symposium in Montreal. For

in the meantime, the late Leonid Khachian had proved that linear

programming problems could be solved in polynomial time by the

ellipsoid method and his result had traveled to the West just around

1979. After my presentation, Jack Edmonds and Laslo Lovasz con-

jectured that Ram and I had just given another poly-time algorithm

for b-matchings in graphs. This turned out to be true and Ram and

I were delighted when Martin Groetschel and Olaf Holland showed

in A cutting-plane algorithm for minimum perfect 2-matching, Computing,
1987, 39: 327–344, that our pure cutting-plane algorithm (using the

simplex method, of course, instead of the ellipsoid algorithm) out-

performed Edmonds’ graphical algorithm in practical computation. I

should add that purely graphical problems occur only rarely in prac-

tice and are frequently complicated by additional constraints such as

capacity and/or capital constraints which necessitates a cutting-plane

approach.

The major consequence of Khachian’s ellipsoid method was the

equivalence of optimization and separation in terms of poly-time solv-

ability, a result that was obtained in early 1980 independently by

three different groups of researchers: Groetschel, Lovasz and Schri-

jver, Karp and Papadimitriou and Padberg and Rao. (You’ll find a

proof of this equivalence, e.g., in Chapter 9 of my book Linear Op-
timization and Extensions, 1995, 2nd ed. 1999, Springer Verlag). This

equivalence generalized, of course, Edmonds and Lovasz’s conjec-

ture mentioned above. But it also reinforced the “hunt” for facet-

defining cutting-planes that had followed my initial findings that facets
of the convex hull of the integer solutions could indeed be found

for (some) integer and mixed-integer programs, like node covering,

node packing, set packing problems and then knapsack problems,

TSPs, etc.

4 Step III

Also in or around 1979 I learned that the late George Minty had

generalized Edmonds’ matching algorithm and found a poly-time al-

gorithm for vertex packings in claw-free graphs, see Journal of Com-
binatorial Theory B, 1980, 284-304, and independently of him Najiba

Sbihi, see Algorithme de Recherche d’un Stable de Cardinalite Maximum
dans un Graphe sans Etoile, Discrete Mathematics, 1980, 29: 53–76,

as well. Once the equivalence of optimization and separation had

been established, given the poly-time solvability of weighted vertex

packing in K1,3-free graphs, the separation problem for the associ-

ated convex hull of node packings in such graphs had to be solvable

in poly-time as well. Being an eternal optimist, I put the problem of

finding a complete minimal linear description for this problem on my

list of things to do, but never came around to attacking this problem

alone.

Sometime in 1981/1982, the late Mario Lucertini of Rome’s Uni-
versita Tor Vergata invited me to do a two-week intensive course on

combinatorial optimization in Rome – it must have been in August

of 1982, because it was awfully hot and the class room had no air-

conditionning. I met through Lucertini Giovanni Rinaldi and Antonio

Sassano, who had just re-joined the Italian CNR after having worked
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for a while in their own company. After one of my courses, the four

of us discussed over a cool beer in one of the shady squares of

Rome a possible visit of Antonio and Giovanni with me at New York

University. Antonio Sassano came in 1983/1984 to work with me at

NYU, Giovanni came a little while later. I suggested to Antonio to

work on the facial structure of the polytope of vertex packings in

K1,3-free graphs, but perhaps due to the relatively short time that

Antonio stayed with me in New York, we did not get enough sub-

stantial results on the problem to write a joint paper on it. When

he returned to Rome, he took the problem along with him and the

desire to solve it; just look at Sassano’s homepage at the Universita
La Sapienza, where several papers on this topic (with various coau-

thors) are listed. I am sure that Antonio Sassano has a lot to do with

the progress made in Italy on this problem like the new algorithm by

Faenza, Oriolo, and Stauffer and the new polyhedral results by Gal-

luccio, Gentile, and Ventura. Personnally, what I find very interesting

is, of course, a pure cutting-plane algorithm for this problem, like

the one that Ram Rao and I found for b-matchings in graphs and that

(simplex method or ellipsoid method, I don’t care) is computationally

efficient and permits other complicating constraints to be added. I

am happy to hear that the separation routine via the new extended

formulation due to Faenza, Oriolo, and Stauffer provides this.

Manfred W. Padberg, Emeritus Professor, New York University, Stern School

of Business, 17 rue Vendôme 13007 Marseille, France

manfred4@wanadoo.fr

Obituary

Oleg Burdakov, John Dennis, and Jorge Moré

Charles G. Broyden, 1933–2011

Charles George Broyden,
Sweden, 2002 (Photo:
Oleg Burdakov)

Charles George Broyden was born

February 2nd, 1933, in England. He

received his degree in Physics from

Kings College London in 1955. He

spent the first ten years of his ca-

reer in industry. In 1967, he moved

to the University of Essex where

he became a professor and, later,

dean of the School of Mathemat-

ics. In 1986, he decided to retire

early to become a traveling scholar,

but in 1990, he accepted an ap-

pointment as a professor of nu-

merical analysis at the University of

Bologna.

Charles received international

recognition for his seminal 1965

paper in Mathematics of Computa-

tion, in which he proposed two methods for solving systems of equa-

tions. They later became known as Broyden’s methods. Another of

his most important achievements was the derivation of the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) updating formula, one of the key

tools used in optimization. Moreover, Charles was among those who

derived the symmetric rank-one updating formula, and his name is

also attributed to the Broyden family of quasi-Newton methods.

At Bologna, Charles shifted the focus of his research to numerical

linear algebra and, in particular, to conjugate gradient methods and

to the taxonomy of these methods. Some of the main results of that

period are summarized in his 2004 book with M.T. Vespucci Krylov
Solvers for Linear Algebraic Systems.

In recognition of his fundamental contributions to the develop-

ment of optimization and numerical mathematics, the journal Opti-
mization Methods and Software (OMS) established the Charles Broy-

den prize. It is awarded yearly for the best paper published in

OMS.

When Charles learned about the prize, he modestly noted that

“I discovered my algorithms because I was in the right place at the

right time”. Being in the right place at the right time once could be

good luck, but if this happens several times, this clearly indicates tal-

ent. Indeed, one can hardly find a book on numerical optimization

where the discoveries of Charles Broyden are not mentioned.

Charles Broyden died on May 20, 2011. We will remember him as

a highly dedicated, modest, and honest researcher, respected by his

many friends and collaborators around the world. We express our

sympathy to his wife Joan, his children and grandchildren.

Announcements

Call for Nominations for the 2012

Beale-Orchard-Hays Prize

Nominations are invited for the 2012 Beale-Orchard-Hays Prize for

excellence in computational mathematical programming that will be

awarded at the International Symposium on Mathematical Program-

ming to be held in Berlin in August 2012.

The Prize is sponsored by the Mathematical Optimization Society,

in memory of Martin Beale and William Orchard-Hays, pioneers in

computational mathematical programming. Nominated works must

have been published between Jan 1, 2009 and Dec 31, 2011, and

demonstrate excellence in any aspect of computational mathemat-

ical programming. “Computational mathematical programming” in-

cludes the development of high-quality mathematical programming

algorithms and software, the experimental evaluation of mathemat-

ical programming algorithms, and the development of new methods

for the empirical testing of mathematical programming techniques.

Full details of prize rules and eligibility requirements can be found at

http://www.mathopt.org/?nav=boh.

The 2012 Prize Committee consists of Michael Ferris (Chair),

Philip Gill, Tim Kelley, and Jon Lee.

Nominations can be submitted electronically or in writing, and

should include detailed publication details of the nominated work.

Electronic submissions should include an attachment with the final

published version of the nominated work. If done in writing, submis-

sions should include four copies of the nominated work. Supporting

justification and any supplementary material are strongly encouraged

but not mandatory. The Prize Committee reserves the right to re-

quest further supporting material and justification from the nomi-

nees.

Nominations should be submitted to:

Prof. Michael Ferris, Computer Sciences Department, University

of Wisconsin, 1210 West Dayton Street, Madison, WI 53706, USA

Email: ferris@cs.wisc.edu

The deadline for receipt of nominations is January 15, 2012.

manfred4@wanadoo.fr
mailto:manfred4@wanadoo.fr
http://www.mathopt.org/?nav=boh
ferris@cs.wisc.edu
mailto:ferris@cs.wisc.edu
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ISMP 2012 in Berlin

The 21st International Symposium on Mathematical Programming (ISMP
2012) will take place in Berlin, Germany, August 19–24, 2012. ISMP

is a scientific meeting held every three years on behalf of the Math-

ematical Optimization Society (MOS). It is the world congress of

mathematical optimization where scientists as well as industrial users

of mathematical optimization meet in order to present the most re-

cent developments and results and to discuss new challenges from

theory and practice.

Conference Topics
The conference topics address all theoretical, computational and

practical aspects of mathematical optimization including:

◦ integer, linear, nonlinear, semidefinite, conic and constrained pro-

gramming

◦ discrete and combinatorial optimization

◦ matroids, graphs, game theory, network optimization

◦ nonsmooth, convex, robust, stochastic, PDE-constrained and

global optimization

◦ variational analysis, complementarity and variational inequalities

◦ sparse, derivative-free and simulation-based optimization

◦ implementations and software

◦ operations research

◦ logistics, traffic and transportation, telecommunications, energy

systems, finance and economics

Conference Venue
The Symposium will take place at the main building of TU Berlin in

the heart of the city close to the Tiergarten park.

The opening ceremony will take place on Sunday, August 19, 2012,

at the Konzerthaus on the historic Gendarmenmarkt which is con-

sidered one of the most beautiful squares in Europe. The opening

session will feature the presentation of awards by the Mathemati-

cal Optimization Society accompanied by symphonic music. This is

followed by the welcome reception with a magnificent view on Gen-

darmenmarkt.

The conference dinner will take place at the Haus der Kulturen

der Welt (“House of the Cultures of the World”) located in the

Tiergarten park with a beer garden on the shores of the Spree river

and a view on the German Chancellery.

Registration and Important Dates
The conference registration will open before December 2011. The

abstract submission deadline will be April 15, 2012, the early regis-

tration deadline June 15, 2012.

In accordance with the new MOS membership fees policy, ISMP

2012 will offer three early registration rates for regular attendees

(not students, not retired, and not lifetime members of MOS):

◦ Euro 340 including MOS membership for 2013

◦ Euro 390 including MOS membership for 2013 and 2014

◦ Euro 415 including MOS membership for 2013–2015

The early registration rates for retirees (not lifetime members of

MOS) are

◦ Euro 190 including MOS membership for 2013

◦ Euro 215 including MOS membership for 2013 and 2014

◦ Euro 230 including MOS membership for 2013–2015

The early registration rate for students is Euro 160. The early reg-

istration rate for lifetime members of MOS is Euro 280. The regis-

tration rates for late registration (after June 15, 2012) will be higher

(details to be announced).

Webpage etc.
More details (including registration rates, hotel prices, sponsorship

opportunities, exhibits etc.) can be found on the conference web

pages at www.ismp2012.org.

Main building of TU Berlin in the heart of the city close to the Tiergarten park
(Photo: TU Berlin/Dahl)

Haus der Kulturen der Welt (“House of the Cultures of the World”) located in the
Tiergarten park (Photo: Christoph Eyrich)

www.ismp2012.org
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Call for Site Pre-Proposals

ISMP 2015

The Symposium Advisory Committee of the Mathematical Opti-

mization Society issues a call for pre-proposals to organize and host

ISMP 2015, the triennial International Symposium on Mathematical

Programming.

ISMP is the flagship event of our society, regularly gathering over

a thousand scientists from around the world. The conference will be

held in or around the month of August, 2015. Hosting ISMP provides

a vital service to the mathematical optimization community and of-

ten has a lasting effect on the visibility of the hosting institution. It

also presents a significant challenge. This call for pre-proposals is

addressed at local groups willing to take up that challenge.

Preliminary bids will be examined by the Symposium Advisory

Committee (SAC), which will then issue invitations for detailed bids.

The final decision will be made and announced during ISMP 2012 in

Berlin. Member of the SAC are

Jeff Linderoth, Chair linderoth@wisc.edu,

Shabbir Ahmed, sahmed@isye.gatech.edu,

Kurt Anstreicher, kurt-anstreicher@uiowa.edu,

Anders Forsgren, andersf@kth.se,

Martine Labbe, mlabbe@ulb.ac.be,

Rüdiger Schultz ruediger.schultz@uni-due.de, and

Shuzhong Zhang, zhangs@umn.edu.

Preliminary bids should be brief and contain information pertain-

ing to the

(1) Location,

(2) Facilities,

(3) Logistics: Accommodation and transportation, and

(4) Likely local organizers.

Further information can be obtained from any member of the

advisory committee. Please address your preliminary bids until

September 15, 2011 to Jeff Linderoth linderoth@wisc.edu.

Conic Optimization – Special Issue for

Pacific Journal of OPTIMIZATION

Original research articles are solicited for a forthcoming issue of

Pacific Journal of OPTIMIZATION dedicated to Conic Optimization.

Potential articles may focus on (or relate to) any subset of the

theoretical, computational and practical aspects of Conic Optimiza-

tion.

Over the last two decades, there has been a significant advance

in the research of interior point methods and conic optimization.

Today conic optimization has emerged as a major computational

paradigm and has made significant impact on numerous problems

previously considered intractable or difficult to approximate. This

special issue aims to solicit papers that provide original research on

conic optimization theory and algorithms, including available soft-

ware. Also welcome are papers that deal with emerging, meaning-

ful applications; or that give friendly overviews of certain theoret-

ically advanced conic optimization techniques relevant to applica-

tions.

Examples of topics that will be addressed in this special issue in-

clude, but are not limited to:

– Theory and algorithms for large scale conic optimization

– Computational study of conic optimization algorithms

– Relaxation techniques based on conic optimization

– Applications of conic optimization in science and engineering

(e.g., image processing, compressed sensing, digital communica-

tions and networks)

Instructions for authors are available on the web:

http://www.ybook.co.jp/online/forauthors.htm

Please e-mail the pdf-file of your full manuscript with a cover mes-

sage in plain text to one of the guest editors by September 1, 2011.

Zhi-Quan Luo, University of Minnesota, luozq@umn.edu

Levent Tunçel, University of Waterloo, ltuncel@math.uwaterloo.ca

Naihua Xiu, Beijing Jiaotong University, nhxiu@center.njtu.edu.cn
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