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MOS Chair’s Column

August 1, 2012. While preparing this column and in my periodic

and frantic search for material of interest, I stumbled on this most

appropriate motto: Optimum is maximum at a minimum – due to the

nu-jazz artist Mr Gaus (no, this is not made up). In view of the com-

ing ISMP festivities, this sounded a marvelous quote, at least if prop-

erly interpreted. Indeed, it would be completely wrong to suggest

that “Optimum is maximum at a minimum in Berlin”, with the im-

plication that the next ISMP is a minimum! In fact it is truly the

opposite: a global maximum in the history of major MOS meetings.

The latest numbers sent to me by Martin Skutella, the very active

chair of the organization committee, show that the next ISMP will

feature more than 1700 talks and about 600 invited and contributed

sessions in 24 program clusters! The downside of this resounding

success is that 40 parallel tracks will be necessary . . . You will also

be approximately 2000 participants from more than 60 countries

from all over the world. ISMP 2012 will thus be the biggest ISMP so

far, and I am of course looking forward to meeting so many of you

there very soon.

The end of the “inter-ISMP” period is also bringing some changes

in the organization of the Society, with the renewal of the Council

and the election of a new chair-elect and treasurer. It is my very

great pleasure to announce that the new chair elect is Bill Cook,

who will serve as MOS Vice-Chair up to August 31st, 2013, after

that he will be taking over from me as MOS Chair for three years.

Juan Meza, our present efficient treasurer, has been reconducted for

a second term. On the Council side, new Council members will start

their term after the ISMP 2012. These are Miguel Anjos, Sam Burer,

Volker Kaibel and Alejandro Joffre. I wish to congratulate them all

for their election and I am truly looking forward to work with them

in the coming year.
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This is also the occasion of many thanks. First, I wish to express

my deep gratitude to Steve Wright, whose term as Vice-Chair is

ending this summer, after many years at the service of our Soci-

ety. Steve’s help and advice have been invaluable in the conduct of

MPS and then MOS. His experience, memory and judgement have

helped me, the Executive Committee and the Council very signifi-

cantly. Many many thanks, dear Steve.

Real thanks are also due to Kurt Anstreicher, who will pass on the

job of Editor in Chief of Mathematical Programming A to Alexander

Shapiro on September 1st, 2012. Kurt has been very instrumental

in keeping our flagship journal at the top of our scientific field, a

“strong hand in a velvet glove”. His action at MPA has been unani-

mously appreciated. I am glad to say that Kurt will continue to serve

the Society as Chair of the Executive Committee, where he is al-

ready of very great help. Thank you, Kurt. And also thank you Alex

for accepting the responsibility of being the new MPA EIC.

Due to these various nominations, some change has also become

necessary in the MOS Publications Committee. Alex Shapiro is step-

ping down as chairman and member of this committee (again many

thanks, Alex) and Nick Gould will take this position on from Septem-

ber 1st, with the help of Christoph Helmberg, Jie Sun, Robert Weis-

mantel and Darinka Dentcheva, who has just accepted to join. Thank

you in advance to Nick and Darinka for their new commitment.

My final thanks go to the Council members whose term is ending:

Jeff Linderoth, Claudia Sagastizabal, Martin Skutella and Luis Vicente.

Their continued advice and input have been of great help over the

past three years.

Unfortunately, this column also contains very sad news. We

learned with stupor that Alberto Caprara, one of our distinguished

and brilliant colleagues, died in April in a hiking accident in the

Dolimiti. Alberto served the Society as an Optima co-editor and

will be deeply missed by many of us.

To conclude on a positive mood, the MOS members may have no-

ticed that the Society is reaching its 40 years! Indeed, according to

the history notes available on the MOS website, 366 Charter Mem-

bers were enrolled in early 1972, who then adopted a Constitution

of what became the Mathematical Programming Society and later the

Mathematical Optimization Society. So, happy birthday MOS and you

all!

Note from the Editors

We introduce our latest issue of Optima dedicated to the topic of

copositive programming, an interesting and fast-growing topic in op-

timization. The main article is an extensive survey by Immanuel M.

Bomze, Mirjam Dür, and Chung-Piaw Teo. The accompanying discus-

sion column is by Monique Laurent.

This issue is scheduled to be published on the eve of ISMP 2012

in Berlin and will be followed by Optima@ISMP – an exciting and
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entertaining daily publication established at the last ISMP 2009 in

Chicago.

We cannot conclude without mentioning the extremely sad event

of Alberto Caprara’s passing last April, which is by now known by

many colleagues and is particularly noted by the Optima team since

Alberto was a past Optima editor. While his obituary will be pub-

lished in one of the issues of Optima@ISMP we wanted to announce

our plans to publish in the near future an issue of this regular Optima

newsletter dedicated to Alberto’s extensive contributions.

Sam Burer,

Volker Kaibel

and Katya Scheinberg

Optima editors

Immanuel M. Bomze, Mirjam Dür, and Chung-Piaw Teo

Copositive Optimization

1 Introduction

Copositive optimization means minimizing a linear function in ma-

trix variables subject to linear constraints and the constraint that

the matrix should be in the convex cone Cn of copositive matrices

Cn = {S ∈ Sn : x⊤Sx ≥ 0 for all x ∈ Rn+}.

Here Sn denotes the set of symmetric matrices, and Rn+ the nonneg-

ative orthant. Associated to such a problem is a dual problem which

involves the constraint that the dual variable lies in the dual cone

of Cn, that is, the convex cone Cn∗ of completely positive matrices:

Cn∗ = conv{xx⊤ : x ∈ Rn+}.

The concept of copositivity goes back to Motzkin [39] in 1952. Since

then, both copositivity and complete positivity have been investi-

gated in great detail by matrix theorists, see [1] or [27] for surveys.

The use of the two cones in optimization has been discovered only

recently, starting with a paper by Quist et al. [44] from 1998 who

suggested that semidefinite relaxations of quadratic problems may

be tightened by looking at the (dual of the) copositive cone.

Bomze et al. [5] were the first to establish an equivalent copos-

itive formulation of an NP-hard problem, namely the standard

quadratic problem. Their paper from 2000 also coined the term

“copositive programming”. Since then, a number of other quadratic

and combinatorial problems have also been studied from the copos-

itive viewpoint which has opened a completely new way to deal with

these problems. In 2009, Burer gave a fundamental representation

result [12] which states that any problem with a quadratic objective,

linear constraints and possibly binary variables can equivalently be

formulated as a copositive optimization problem. This representa-

tion result gave a real boost to the field and has opened a whole new

approach to many quadratic and combinatorial problems, yielding

both a better theoretical understanding and often stronger bounds

on the problems.

In this paper, we highlight some recent developments in this young

but highly active and promising field. We discuss how to model a

quadratic or combinatorial problem as well as problems involving

data uncertainty as copositive problems; we list known properties

of the copositive cone as well as several open questions; and we

discuss algorithmic approaches and a variety of approximation hier-

achies.

We also mention that several more detailed surveys on copositive

optimization have appeared recently, see [3, 13, 23].

2 Modelling problems as copositive or completely

positive problems

In this section, we discuss how copositivity can be used to model

various NP-hard optimization problems. We begin with determinis-

tic problems.

2.1 Deterministic quadratic and combinatorial problems

We start by illustrating the connection between copositive and

quadratic optimization by means of the so called standard quadratic

problem (with e = [1, . . . ,1]⊤ ∈ Rn)

(StQP)

min x⊤Qx

s. t. e⊤x = 1,

x ∈ Rn+ .

This optimization problem asks for the minimum of a (not neces-

sarily convex) quadratic function over the standard simplex ∆n ={
x ∈ Rn+ : e⊤x = 1

}
. It is known that this problem is NP-hard, since

it contains the maximum clique as a special case: consider a graph G

with adjacency matrix AG and denote its clique number by ω(G). It

was shown by Motzkin and Straus [35] that then

1

ω(G)
= min{x⊤(E −AG)x : x ∈ ∆n} ,

where E = ee⊤ is the n×n matrix of all ones.

Easy manipulations show that the objective function of (StQP)

can be written as x⊤Qx = 〈Q,xx⊤〉 where 〈X,Y 〉 = trace(XY)

for {X,Y} ⊂ Sn. Analogously the constraint e⊤x = 1 transforms to

〈E,xx⊤〉 = 1. Hence, the problem

min 〈Q,X〉

s. t. 〈E,X〉 = 1,

X ∈ Cn∗
(1)

is obviously a relaxation of (StQP). Since the objective is now lin-

ear, an optimal solution must be attained in an extremal point of the

convex feasible set. It is not difficult to show that these extremal

points are precisely the rank-one matrices xx⊤ with x ∈ ∆n. To-

gether, these results imply that (1) is in fact an exact reformulation

of (StQP), as was shown in [5].

The remarkable point in this representation is that we have trans-

formed the NP-hard standard quadratic problem into a linear prob-

lem with an additional convex constraint (recall that Cn∗ is a convex

set!). And in contrast to the countless SDP relaxations out there,

this copositive formulation is not a relaxation but an exact refor-

mulation in the sense that (StQP) and (1) have the same optimal

values, and any optimal solution X̄ of (1) is in the convex hull of the

matrices x̄x̄⊤, where x̄ is an optimal solution of (StQP). This imme-

diately shows that the complexity must now be hidden in the cone

constraint, and indeed checking membership in both Cn and Cn∗ is

NP-hard, see [18, 36].

Burer [12] extended the above and gave a celebrated represen-

tation result which states that every quadratic problem of the form

min x⊤Qx + 2c⊤x

s. t. a⊤i x = bi (i = 1, . . . ,m)

x ∈ Rn+

xj ∈ {0,1} (j ∈ B ⊆ {1, . . . , n})

(2)
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can equivalently be reformulated as the following completely positive

problem:

min 〈Q,X〉 + 2c⊤x

s. t. a⊤i x = bi (i = 1, . . . ,m)

〈aia
⊤
i , X〉 = b

2
i (i = 1, . . . ,m)

xj = Xjj (j ∈ B)
[

1 x⊤

x X

]
∈ Cn+1∗,

provided that (2) satisfies the so-called key condition, i.e.,

a⊤i x = bi for all i and x ∈ Rn+ implies xj ≤ 1 for all j ∈ B .

This condition can always be enforced by introducing slack variables

if necessary. A weaker version of this condition is studied by Bomze

and Jarre in [6].

Copositive formulations have been proposed and used also for

many combinatorial problems. For these, we refer to the sur-

veys [3, 23] and references there; see also the clustered bibliography

on copositivity in [8].

2.2 Modelling uncertainty

Burer’s result can be extended to stochastic mixed-binary linear op-

timization problems with objective uncertainty. We review the re-

sults and some recent applications in this section.

Consider a mixed-binary linear problem in maximization form:

Z(c) = max
{
c⊤x : x ∈ F

}
(3)

where the feasible region F is described as:

F =
{
x ∈ Rn+ : a⊤j x = bj , for j = 1, . . . ,m,

xi ∈ {0,1}, for i ∈ B
} (4)

with B ⊆ {1, . . . , n} designating a fixed subset indexing the binary

variables. We assume further that the constraints in F are such that

the only solution in F when bj = 0 for all j is xi = 0 for all i.

Consider the following problem that arises in probabilistic analysis

of mixed binary linear problems:

Given the mixed binary linear problem (3) and a probability measure θ for

the random objective coefficient vector c̃, compute the expected optimal

value:

(Mean) Eθ [Z(c̃)] =

∫
Z(c)dθ(c) .

Clearly, computing (Mean) is at least as hard as solving the deter-

ministic optimization problem. It is computable in time polynomial

in the size of the problem if the deterministic problem is solvable

in polynomial time and θ is a discrete distribution with a polyno-

mial number of support points. However, in the general case, the

exact computation of (Mean) can be significantly more challenging

than solving the deterministic problem. Lovász [32] showed that a

bound for this problem can be obtained via solving a related con-

vex program, using the fact that the marginal distributions are log-

concave, for certain classes of polyhedra. However, Natarajan, Teo

and Zheng [38] were able to extend Burer’s result to mixed-binary

linear problems with objective uncertainty, and obtained a more gen-

eral bound, using a copositive formulation. This bound is weaker

than Lovász’ for the class of log-concave marginal distributions on

certain polyhedra, since it uses only the first and second moments

information.

Theorem 1. Let Θ be the set of distributions for a nonnegative ran-

dom vector c̃ with prescribed first moment vector µ, and second moment

matrix Π. Then sup
θ∈Θ

Eθ

[
max
x∈F

c̃⊤x

]
can be obtained by solving

max

n∑

i=1

Yii

s. t. aTj x = bj for j = 1, . . . ,m

aTj Xaj = b
2
j for j = 1, . . . ,m

Xii = xi for i ∈ B ⊆ {1, . . . , n}



1 µ⊤ x⊤

µ Π Y⊤

x Y X


 ∈ C2n+1∗ .

(5)

The decision variables in this formulation are defined as:

x = E [x(c̃)]

Y = E
[
x(c̃)c̃⊤

]

X = E [x(c̃)x(c̃)⊤] .

The objective function is expressed as:

E [Z(c̃)] =
n∑

i=1

E [c̃ixi(c̃)] =
n∑
i=1

Yii

The first two constraints in formulation (5) are from taking the ex-

pectation of the equality constraints:

E

[
a⊤j x(c̃)

]
= a⊤j x = bj

E

[(
a⊤j x(c̃)

)2
]

= a⊤j Xaj = b2
j .

The third constraint is from taking the expectation of the equality

constraint xi(c̃)
2 = xi(c̃) for the binary variables:

Xii = E

[
xi(c̃)

2
]

= E [xi(c̃)] = xi .

The validity of the cone constraint follows from {x(c̃), c̃} ⊆ Rn+ and

from the moment representation



1 µ⊤ x⊤

µ Π Y⊤

x Y X


 =




1 [E(c̃)]
⊤

E [x(c̃)]
⊤

E(c̃) E
(
c̃c̃⊤

)
E [c̃x(c̃)⊤]

E [x(c̃)] E
[
x(c̃)c̃⊤

]
E [x(c̃)x(c̃)⊤]




= E




1 c̃⊤ x(c̃)⊤

c̃ c̃c̃⊤ c̃x(c̃)⊤

x(c̃) x(c̃)c̃⊤ x(c̃)x(c̃)⊤


 ∈ C2n+1∗ .

As a (limit of) convex combination(s) of completely positive matri-

ces, this matrix is itself completely positive. While the number of

constraints and variables are polynomial size, the difficulty lies in the

cone constraint. The proof of tightness can be found in [38]. Note

that the model constructed this way also gives us the estimates of

E [xi(c̃)] for the worst case distribution. This provides an estimate

to P(xi(c̃) = 1) in Z(c̃), when i ∈ B. This is the persistency prob-

lem studied in [2] and [37], using only the marginal moments and

distributional information.

As an immediate application, consider the case when

F =
{
x ∈ ∆n : xi ∈ {0,1} for all i ∈ {1, . . . , n}

}
,

where sup
θ∈Θ

Eθ

[
max
x∈F

c̃⊤x

]
reduces to a classical order statistics

problem of finding sup
θ∈Θ

Eθ [max{c̃1, . . . , c̃n}]. For this class of prob-

lems, the matrix X in (5) can be assumed to be diagonal. Interestingly,

for this problem, using a result in [20], it follows that



1 µ⊤ x⊤

µ Π Y⊤

x Y X


∈ Cd∗ ⇔




1 µ⊤ x⊤

µ Π Y⊤

x Y X


∈ Pd ∩N d, (6)
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where Pd denotes the cone of all positive-semidefinite (psd) sym-

metric d × d matrices, and N d all symmetric d × d matrices with

no negative entry, and d = 2n+ 1 here.

The upper bound on the order statistics problem can now be

solved as a semidefinite optimization problem (SDP). We give an

illustration of this result (see [34], where the problem is cast as

an SDP termed CMM): Suppose Xi are i.i.d. random variables with

mean µi and standard deviation σi. Let

Sk = X1 + . . .+Xk, k = 1, . . . , n,

with S0 = 0. The goal is to estimate the probability that the random

walk attains its maximum value at step k, i.e., find

P

[
Sk = max

0≤j≤n
Sj

]
.

If the Xi’s are independent, this probability can be rewritten as:

P

[
Sk = max

0≤j≤n
Sj

]

= P


Xk ≥ 0,

k∑

j=k−1

Xj ≥ 0, . . . ,

k∑

j=1

Xj ≥ 0


×

× P


Xk+1 ≤ 0, . . . ,

n∑

j=k+1

Xj ≤ 0




= P [S1 ≥ 0, S2 ≥ 0, . . . , Sk ≥ 0]× P [S1 ≤ 0, . . . , Sn−k ≤ 0] .

Let α = 1
n

∑n
i=1 P(Si > 0). Then the classical arcsine law states

that the probability

P

[
Sk = max

0≤j≤n
Sj

]
∼

1

nπ
sin(απ)

(
k

n

)α−1(
1−
k

n

)−α
for large n.

Contrary to popular intuition, the two end points (k = 0 or k = n)

have the highest probability of attaining the maximum.

The above is identical to an order statistics problem, where the

kth measurement is given by the summand Sk =
∑k
j=1Xk. We can

obtain the choice probability estimates using the completely positive

cone (and solving an SDP), with µk = E(Sk) =
∑
j≤k
µj and

Πij = E(SiSj) =
∑

a≤i,b≤j,a≠b

µaµb +
∑

a≤i,j

(µ2
a + σ

2
a).

The CMM formulation from [34] is able to approximately return the

arcsine law behaviour of the choice probabilities, with slight over-

estimation for the more probable alternatives (k = 0 and k = n),

and under-estimation for the less probable alternatives (k ≈ n/2).

The method has also been applied to a more complex class of ap-

pointment scheduling problem [28], where F corresponds to a class

of minimum cost flow solutions, and the challenge is to schedule the

arrival time of a given sequence of patients, each with random con-

sultation time, to minimize the total waiting time of the patients, and

the overtime of the doctor. Compared to a state-of-the-art two-

stage stochastic optimization method [16], the total waiting time

costs under the two schedules obtained by [28] using (single-stage)

copositive optimization are quite competitive, in a highly robust way

with varying cost structures and waiting time distributions.

3 The cones Cn and Cn∗

Now we have seen the potential of copositivity as a modeling tool,

let us review some properties of the cones Cn and Cn∗.

Both sets are full-dimensional closed, convex, pointed matrix

cones. They are non-polyhedral, and their boundaries contain both

flat parts and curved parts. See Figure 1 for a picture of C2.

a 1
2

2

0

−2

0

a11 1

2 0

1

2

a22

Figure 1. The cone of copositive 2× 2 matrices parametrized by the diagonal

elements a11 and a22 and the off-diagonal element a12 = a21. Points above the

depicted surface represent a copositive matrix.

We easily see from the definitions that

Cn∗ ⊆ Pn ∩N n ⊂ Pn +N n ⊆ Cn .

It is a surprising fact (cf. [33]) that for n ≤ 4, we have equality in

the relations Cn∗ ⊆ Pn ∩N n and Pn +N n ⊆ Cn, whereas for

n ≥ 5, both inclusions are strict. A counterexample that illustrates

Cn 6= Pn +N n is the so-called Horn-matrix, cf. [25]:

H =




1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1



∈ C5 \ (P5 +N 5). (7)

Figure 2 gives another illustration on the geometry of the cones

which has been studied in more detail by Dickinson [17].

3.1 Extremal (generating) rays

Note that by using the matrix inner product, we can rewrite the

definitions of our cones as follows:

Cn = {S ∈ Sn : 〈S,xx⊤〉 ≥ 0 for all x ∈ Rn+},

Cn∗ = conv{xx⊤ : x ∈ Rn+}.

This means that we have an outer description by means of sup-

porting hyperplanes for Cn, and an inner description of Cn∗ as the

convex hull of some set of matrices. It is well known that by dual-

ity the extremal matrices of a cone provide an outer description by

hyperplanes of its dual cone. From this, we immediately get that the

extremal rays of Cn∗ are given by the rank one matrices xx⊤ with

x ∈ Rn+.

Giving a full characterization of the extremal rays of Cn (or equiv-

alently, a complete “outer” description of Cn∗ in terms of support-

ing hyperplanes) is an open problem. Only recently has this question

been answered for the 5 × 5 case. Before we state this result, first

note that for any permutation matrix P and diagonal matrix D with

strictly positive diagonal we have equivalence of the following three

statements: (a) X is extremal for Cn; (b) PXP⊤ is extremal for Cn;

and (c) DXD is extremal for Cn. We refer to all matrices gener-

ated this way as the “orbit” of X. Now Hildebrand [26] proved the

following:

Theorem 2. A matrix X ∈ C5 generates an extremal ray for C5 if and

only if it is in the orbit of a matrix of one of the following forms:
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Semidefinite cone P2 Nonnegative cone N 2 Copositive cone C2 Completely positive cone C2∗

Figure 2. The picture illustrates the geometry of the cones for the case of symmetric 2× 2 matrices which have three parameters. Here a cross section of each of the

resulting cones in R3 is shown. This case is easy because of C2∗ = P2 ∩N 2 and C2 = P2 ∪N 2. In higher dimensions (even for n = 3,4), the geometry is much more

complex.

◦ Eij (the 5× 5 matrix having zeros everywhere except for ones in posi-

tions ij and ji)

◦ aa⊤ for some vector a ∈ R5 which contains both positive and negative

elements

◦ the Horn matrix from (7)

◦ a matrix of the form




1 − cosψ4 cos(ψ4+ψ5) cos(ψ2+ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ5+ψ1) cos(ψ3+ψ4)

cos(ψ4+ψ5) − cosψ5 1 − cosψ1 cos(ψ1+ψ2)

cos(ψ2+ψ3) cos(ψ5+ψ1) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3+ψ4) cos(ψ1+ψ2) − cosψ2 1



,

where the parameters fulfill
∑5
i=1ψi < π and ψi > 0.

This characterization gives some insight into the complicated

structure of Cn. Observe that understanding better the extremal

rays of Cn would also be useful from an algorithmic point of view,

since this knowledge could be used to generate cutting planes: As-

sume we consider a combinatorial problem in its completely positive

formulation and relax this to an SDP. An optimal SDP solution will

usually not be in Cn∗, so adding a cut will tighten the SDP relax-

ation. Such cutting planes correspond to supporting hyperplanes of

Cn∗, or equivalently, extremal matrices of Cn. First attempts to ex-

plore this path have been made in [14, 22, 47]. This structure is also

exploited in a recent study of C5∗ [7].

4 Approximation hierarchies

Since optimization problems over Cn∗ and Cn can not be solved

directly, it is natural to study inner and outer approximations. Differ-

ent approaches to this end have been proposed: discretization meth-

ods, sum-of-squares conditions, and moment approaches. Whereas

the latter two provide uniform approximations (for a recent survey

consult [31]), discretization methods can potentially be tailored to

provide a good approximation only in the region of the cone that is

relevant for the optimization.

We start by discussing discretization methods.

4.1 Discretization methods

For an arbitrary (possibly finite) subset T ⊆ Rn+, define

Pos(T) :=
{
S ∈ Sn : y⊤Sy ≥ 0 for all y ∈ T

}
.

We start with the simple observation that any copositive matrix S

satisfies S ∈ Pos(T), so we get an outer approximation of Cn of the

type Cn ⊂ Pos(T). Note that Pos(T) is a polyhedral cone when-

ever T is a finite set, and that T1 ⊂ T2 implies Pos(T1) ⊇ Pos(T2)

so that increasing T will shrink Pos(T), hopefully tight enough to

approximate Cn well. Also note that for some infinite sets T , this

approximation becomes exact, e.g. for any base T of Rn+ in the sense

that R+T = Rn+ we have Pos(T) = Cn. Of course, polyhedrality is

then lost.

For example, we could use the standard simplex T = ∆n as such a

base. Note that also other (infinite and/or discrete) sets T may sat-

isfy Pos(T) = Cn, e.g., T = Nn (with N denoting the non-negative

integers; apparently this has been first noticed by the authors of [9];

this remark was contained in a related talk but is not made explicit

in [9]). A first outer approximation hierarchy is immediate from this:

let

N
n
r =


m ∈ Nn :

n∑

i=1

mi = r




and put End = Pos(Nnd+2) (the shift in d is introduced for consis-

tency with the following developments; note that S ∈ Pos(Nn1 ) if

and only if diagS ∈ R
n
+ while Pos(Nn0 ) = Sn is truly trivial). The

same hierarchy was introduced in [4] via the regular rational grid

∆nd = 1
d+2N

n
d+2 ⊂ ∆n, which has

(
n+d+1
d+2

)
elements:

End = Pos(∆nd), d ∈ N.

It is elementary to see that End ց C
n in the sense End+1 ⊂ End for

all d and
⋂∞
d=1E

n
d = C

n. Yıldırım [49] refined this to his outer ap-

proximation hierarchy Ynd = Pos(
⋃d
k=0∆nk ) based on a finer grid

which still has a polynomial order of cardinality in n. Since both

grids are finite, the resulting approximation cones are all polyhedral,

and membership of these can be tested by LP methods.

Bundfuss and Dür [10, 11] look at a hierarchy Hn ={
Hn
d : d ∈ N

}
of nested and exhaustive simplicial partitions Hn

d of

the standard simplex ∆n, now employing Pos(∆n) = Cn. For any

fixed level d ∈ N of the hierarchy, such a partition consists of finite

collection of subsimplices ∆ ∈ Hn
d such that their union gives ∆n

and their mutual intersections have zero relative volume. Each sub-

simplex ∆ = conv(v1, . . . , vn) is generated by its n vertices which

we collect in an n×n matrix V∆ = [v1, . . . , vn]. Then it is obvious

to see that Pos({v1, . . . , vn}) =
{
S ∈ Sn : diag(V⊤∆ SV∆) ∈ R

n
+

}
.

Even the union of all vertices of simplices in Hn
d is still finite, usu-

ally of cardinality polynomial in n. Thus it makes sense to define the

polyhedral cone

Bnd =
{
S ∈ Sn : diag(V⊤∆ SV∆) ∈ R

n
+ for all ∆ ∈Hn

d

}
,

which depends on the choice of partition hierarchy Hn. But if this is

well behaved, we have Bnd ց C
n. Realizing that diagS ∈ Rn+ is equiva-

lent to S ∈ Pos(Nn1 ) ⊃ C
n, one is led to the following generalization
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in the spirit of [46]: letM⊇ Cn be an arbitrary outer approximation

of Cn. Then, given the partition hierarchy Hn, define

Bnd(M) =
{
S ∈ Sn : V⊤∆ SV∆ ∈M

}
.

Bundfuss and Dür also introduced an inner approximation hierar-

chy: using Bezier-Bernstein representations, one quickly sees that

S ∈ Pos(∆) if and only if V⊤∆ SV∆ ∈ C
n. Of course, this equivalence

cannot be used directly. Instead, the requirement V⊤∆ SV∆ ∈ Cn

is relaxed by employing another (lower-level) inner approximation

V⊤∆ SV∆ ∈ M for some M ⊂ Cn, to arrive at the inner approxima-

tion

Dnd(M) =
{
S ∈ Sn : V⊤∆ SV∆ ∈M for all ∆ ∈Hn

d

}
,

which again depends on the choice of partition hierarchy Hn but

now also on the subset M. Bundfuss and Dür originally started with

M = N n. With this choice, Dnd(N
n) is again a polyhedral cone,

checking membership of which is of polynomial complexity in n

for fixed d. Later on, Sponsel et al. [46] extended this to general

M, noting that the choice M = Pn, the psd cone, is not useful

in general. Anyhow, for well-behaved partition hierarchies, we now

have Dnd(M) ր C
n in the sense Dnd+1(M) ⊃ D

n
d(M) for all d and

intCn ⊆
∞⋃
d=1

Dnd(M) ⊆ Cn. It may be even worthwhile to replace

the fixed class M by either a lower-level approximation of the same

hierarchy in a recursive way, or by another inner approximation hi-

erarchy (e.g., Ind′ , see below) for some d′ ≤ d varying with d, but

to our knowledge nobody has yet explored this avenue (neither the

analogous idea of Bnd(M) which apparently is introduced here for

the first time).

4.2 Parrilo’s approach and sum-of-squares conditions

A different approximation approach goes back to Parrilo’s the-

sis [40, 41] and has many contacts to semi-algebraic geometry and

positive polynomials, and is therefore closely related to the Posi-

tivstellensatz [43, 45, 48], an extension of Hilbert’s famous Null-

stellensatz. Parrilo squared the variables x2
i = yi to get rid of the

positivity constraint y ∈ Rn+, and arrived at a quartic

pS(x) =
∑

i,j

Sijx
2
i x

2
j = y

⊤Sy .

Now this polynomial of degree 4 in x is for sure nowhere negative

if and only if the same holds for the polynomial of degree 2(d + 2)

of the form

p
(d)
S (x) = ‖x‖2dpS(x) ,

which again involves only even powers of the xj variables. There

are many sufficient conditions which guarantee p(d)S (x) ≥ 0 for all

x ∈ R
n. One is that this polynomial has no negative coefficients

(coeffp
(d)
S ≥ 0) which, again, is a condition linear in S . Another one

is that p(d)S can be written as a sum of squares (s.o.s.) of polynomi-

als hi, i.e.,

p
(d)
S (x) =

∑

i

[hi(x)]
2 for some polynomials hi .

The former requirement coeffp
(d)
S ≥ 0 gives an inner approxi-

mation hierarchy with, again, polyhedral cones. Indeed, it can be

shown [4, 15] that, defining Θnd =
{
zz⊤ −Diag(z) : z ∈ Nnd+2

}
, we

get

Ind =
{
S ∈ Sn : coeffp

(d)
S ≥ 0

}

=
{
S ∈ Sn : 〈Z, S〉 ≥ 0 for all Z ∈ Θnd

}
.

Again, the number of linear constraints is a polynomial in n for

fixed d, so we arrive at a tractable approximation. As in [49] with

Ynd , one could refine this by replacing Ind with
⋃d
k=0 I

n
k without los-

ing polynomiality.

Returning to the s.o.s. representation p(d)S (x) =
∑
i[hi(x)]

2 , one

can show that the polynomials hi can be assumed to be homoge-

neous of degree (d + 2), i.e., hi(x) = â
⊤
i x̂ where x̂ = [xm]m∈Nnd+2

is the vector of all monomials xm =
n∏
i=1

x
mi

i of degree d + 2 in x,

and âi is a suitably long vector. It follows that

p
(d)
S (x) =

∑

i

[
âi
⊤
x̂
]2
= x̂

⊤
M
(d)
S x̂ ,

whereM(d)S is a symmetric matrix of large order r =
(
n+d+1
d+2

)
, which

obviously must be psd. Conversely, any such M(d)S ∈ Pr (the choice

is not unique) gives rise to a s.o.s. representation of p(d)S . This matrix

M
(d)
S can be found by comparing coefficients. These conditions de-

termine an affine subspace of matrices in Sr , the defining constraints

depend linearly on S . Thus we arrive at a linear matrix-inequality

(LMI) description of this approximation hierarchy:

Kn
d =

{
S ∈ Sn :M

(d)
S ∈ Pr

}
with r =

(
n+ d+ 1

d+ 2

)
.

Again it can be established [15] that Kn
d ր C

n and also Ind ր C
n.

Furthermore, Ind ⊂ K
n
d for all d, e.g.,

In0 =N
n ⊂ Pn +N n = Kn

0 ⊆ C
n.

The cone Kn
0 is often viewed as the standard zero-order approxi-

mation of Cn. Passing to the dual cones, we arrive at the zero-order

approximation(s) of Cn∗:

Cn∗ ⊆ Pn ∩N n = [Kn
0 ]
∗ ⊂N n = [In0 ]

∗.

The dual cone [Kn
0 ]
∗ is often called the doubly nonnegative cone

for obvious reasons.

Peña et al. [42] construct a hierarchy which has the advantage that

it requires a slightly more compact LMI description: they consider

Qnd =
{
S ∈ Sn :

(e⊤x)d x⊤Sx =
∑

m∈Nnd

xmx⊤Qmx with Qm ∈Kn
0 ,m ∈ Nnd

}
.

The right-hand side in particular includes all homogeneous polyno-

mials with no negative coefficients (just take all Qm ∈ N n). So we

get Ind ⊆ Q
n
d , and by a similar argumentQnd ⊆ Q

n
d+1. For any S ∈ Qnd ,

we have p(d)S (x) =
∑

m x
2mpQm

(x) which obviously is a s.o.s. (re-

call the definition of Kn
0 ), so that also Qnd ⊆K

n
d holds for all d ∈ N.

Hence we finally get the inclusions

Ind ⊆ Q
n
d ⊆ K

n
d ⊆ C

n

and therefore Qnd ր C
n. There is also a recursive way to define Qnd

(see [42]) and a tensor description of the higher-order duals [Qnd]
∗,

and [Ind ]
∗ was recently provided in [21]. Note that by dualization,

one gets an outer approximation hierarchy for Cn∗ from an inner

one for Cn, and vice versa.

4.3 Lasserre’s moment approach

We now turn to a third approximation approach for Cn using mo-

ment matrices which was introduced by Lasserre [29]. Let T be

a (compact) base of Rn+, let µ be an arbitrary Borel measure, and

f an arbitrary function defined on R
n
+. We start with the ele-

mentary observation that
∫
T f(x)µ(dx) ≥ 0 if f takes no neg-

ative values over T and if the integral exists. Now suppose that
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f(x) =
∑

m∈Nnq amx
m = â

⊤
x̂ is a (homogeneous) polynomial of

degree q, and that µ possesses all T -moments

ym(µ, T) =

∫

T
xm µ(dx), m ∈ Nnq .

Then the condition

0 ≤

∫

T
f(x)µ(dx) =

∑

m∈Nnq

γm

∫

T
xm µ(dx) = â

⊤
y(µ,T)

defines a half-space linear in the coefficients of f . Of course,

this condition is only necessary for non-negativity of f over

T . Even multiplying with positive integrable factors (assume now

that ym(µ, T) exists for all m), and requiring, for instance,∫
T [g(x)]

2f(x)µ(dx) ≥ 0 for all other polynomials g of degree

d is, in general, only necessary for non-negativity of f over T . How-

ever, the gap between necessity and sufficiency decreases with in-

creasing d, and in fact, vanishes if µ (and T ) is chosen properly.

Applying this to the quadratic form f(x) = fS(x) = x⊤Sx, and

using Pos(T) = R
n
+, we arrive at an outer approximation hierar-

chy of Cn which can again be expressed by LMIs: first observe

that for g(x) =
∑

k∈I(d,n)
γkx

k with I(d,n) =
d⋃
k=0

N
n
d containing

s(d,n) =
(
n+d
d

)
elements, and defining the moment matrix

Md(µ, T) =
[
yk+m(µ, T)

]
(k,m)∈I(d,n)2

as well as ĉ = [γm]m∈I(d,n) , we see that

∫

T
[g(x)]2 µ(dx) =

∑

k∈I(d,n)

∑

m∈I(d,n)

γkγmyk+m(µ, T)

= ĉ
⊤
Md(µ, T) ĉ ,

which admittedly does not involve f . However, by the same reason-

ing we get

∫

T
[g(x)]2f(x)µ(dx) = ĉ

⊤
Md(fµ, T) ĉ ,

where the localizing matrix Md(fµ, T) (think of fµ as the signed

measure with Radon-Nikodym density d(fµ)
dµ over T ) is given by

Md(fµ, T) =

[∑
n

anyk+m+n(µ, T)

]

(k,m)∈I(d,n)2
.

Since Md(fµ, T) depends linearly on the coefficients of f , we end

up with the LMI condition

0 ≤

∫

T
[g(x)]2f(x)µ(dx) = ĉ

⊤
Md(fµ, T) ĉ for all ĉ ∈ Rs(d,n)

or equivalently Md(fµ, T) ∈ Ps(d,n) . Thus we can define the class

Lnd(µ, T) =
{
S ∈ Sn :Md(fS µ,T) ∈ P

s(d,n)
}
.

Since Md(fµ, T) is a principal submatrix of Md+1(fµ, T), it is evi-

dent that Lnd+1(µ, T) ⊆ L
n
d(µ, T) holds for all d ∈ N. Furthermore,

it can be shown [29] that whenever the support of µ equals T ,

and if T is compact or else T = R
n
+ and µ has not too heavy

tails, i.e., satisfies Nussbaum’s multivariate extension of Carleman’s

condition [30], then indeed Lnd(µ, T) ց Cn. All we need to im-

plement this approximation is a closed-form expression for the

moments ym(µ, T) =
∫
T x

m µ(dx). For example, for the multi-

variate exponential distribution µ is readily available and we have

ym(µ,R
n
+) =

∏
i(mi)!.

A related approximation hierarchy, with a focus on stable set and

graph coloring problems, is constructed in [24]. Very recently, it has

been observed [19] that S ∈ Cn even implies that Md(fS µ,T) ∈

Cs(d,n)∗ for all d ∈ N. Indeed, fS(x) ≥ 0 over T ⊆ Rn+ implies that

Md(fS µ,T) =

∫

T
fS(x) x̂x̂

⊤
µ(dx)

is the limit of convex combinations of rank-one matrices built upon

vectors x̂ ∈ R
s(d,n)
+ with entries x̂m = xm ≥ 0 as m ∈ I(d,n),

since x ∈ Rn+ as the integration ranges over T . Hence, as suggested

in [19], one could tighten this hierarchy by taking a tighter outer ap-

proximation, say As(d,n)
d′ ⊇ Cs(d,n)∗, to have a generic symbol, and

refine Lnd(µ, T) to

Lnd(µ, T ;Ad′) =
{
S ∈ Sn :Md(fS µ,T) ∈A

s(d,n)
d′

}
⊆ Lnd(µ, T).

A possible choice is As(d,n)
d′ = [K

s(d,n)
0 ]∗ = Ps(d,n) ∩ N s(d,n).

Also d′ could vary with d. Furthermore, Dickinson and Povh looked

at how different choices of µ could effect the approximation. It

is also instructive to see what happens if simply Ad′ = N s(d,n).

Of course, this coarsens the hierarchy again, but depending on the

choice of µ and T and possibly combining different such choices,

one arrives at a new approximation hierarchy of polyhedral cones,

again of a complexity polynomial in n for fixed d. However, all these

approaches have yet to be explored for their practicality.

Table 1. Summary of approximation hierarchies for the cone Cn.

Symbol Mode Method Remarks Ref.

End outer LP rational grid for ∆n [4, 15]

Ynd outer LP Ynd ⊂ E
n
d , grid [49]

Bnd outer LP simplicial partition [10, 11]

Bnd(M) outer LP M⊃ Cn new

Dnd inner LP simplicial partition [10, 11]

Dnd(M) inner LP M⊂ Cn∗ [46]

Ind inner LP coeffp
(d)
S ≥ 0 [40, 41]

Knd inner LMI p
(d)
S is a s.o.s. [40, 41]

Qnd inner LMI Ind ⊂ Q
n
d ⊂ K

n
d [42]

Lnd(µ, T ) outer LMI µ-moments over T [29]

Lnd(µ, T ;A) outer LMI A⊃ Cs(d,n)∗ [19]

5 Perspectives, future research directions, and open

questions

Burer’s result shows that the complexity of many NP-hard discrete

problems can be hidden in the copositive cone structure. The re-

verse problem appears to be open – for problems with simple dis-

crete structure, is the copositive formulation solvable in polynomial

time ? For instance, in the order statistics problem, where the dis-

crete constraint reduces to e⊤x = 1 and all xi ∈ {0,1}, the copos-

itive problem obtained by Burer is essentially an SDP, after adding

the constraints that X is diagonal, see (6). Are there other “natural”

classes of discrete problems where the corresponding copositive

optimization can be solved in polynomial time? Another issue is the

above addressed option to letM, and likewiseA, vary with d and/or

n in the hierarchies Bnd(M), D
n
d(M), or likewise Lnd(µ, T ;A). We

leave these and other issues, like rational arithmetic questions for

copositivity detection and related complexity issues, for future re-

search.
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Discussion Column

Monique Laurent

Copositive vs. moment hierarchies for

stable sets

A fundamental problem in combinatorial optimization is how to

optimize a linear objective function over the 0/1-valued points ly-

ing in a given set K or, equivalently, over the convex hull P of

K ∩ {0,1}n. Typically, K is a polytope or, more generally, a semi-

algebraic set defined by polynomial equations and inequalities and

the goal is to find tight, tractable relaxations of P . A well-studied

class of methods, from the 1990’s, is ‘lift-and-project’, where a hier-

archy P ⊆ · · · ⊆ K2 ⊆ K1 ⊆ K of convex relaxations is constructed,

http://dx.doi.org/10.1007/s10107-012-0534-y
http://www.optimization-online.org/DB_HTML/2011/05/3041.html
http://www.optimization-online.org/DB_HTML/2011/05/3041.html
http://www.optimization-online.org/DB_HTML/2012/06/3490.html
http://www.optimization-online.org/DB_HTML/2012/06/3490.html
http://www.optimization-online.org/DB_HTML/2010/11/2791.html
http://www.optimization-online.org/DB_HTML/2010/11/2791.html
http://dx.doi.org/10.1007/s10107-011-0485-8
http://dx.doi.org/10.1007/s10107-011-0485-8
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having some nice properties: Each Kt is obtained as projection of

some convex set Qt lying in higher dimension, but with the prop-

erty that linear optimization over Qt can be done in polynomial time

for any fixed order t. Moreover, finite convergence holds: P = Kt at

some order t. Several constructions have been proposed, where the

sets Qt are defined by linear (lp) or by semidefinite (sdp) conditions.

This includes the RLT method of Sherali and Adams, the N or N+
operators of Lovász and Schrijver, and the most recent moment ap-

proach of Lasserre (details and references can be found in [4]). As

shown in [4], it turns out that the moment hierarchy refines the

other lift-and-project hierarchies.

A different approach, which has become very popular in the re-

cent years, is copositive programming, as nicely highlighted in this

Optima featured article. The starting point is to reformulate the dis-

crete optimization problem as a linear optimization problem over

the copositive cone Cn (or its dual) and then to approximate Cn by

a hierarchy of lp or sdp subcones.

Here we zoom in on these two approaches based on moment

theory and on copositive programming, when they are applied to

the problem of computing the maximum cardinality α(G) of a sta-

ble (independent) set in a graph G = (V = [n], E). This is one of

the most basic, hard discrete optimization problems, for which the

various relaxation hierarchies have been studied in great detail. Al-

though the two approaches may seem quite different at first sight, it

turns out that the moment based hierarchy also refines the coposi-

tive based hierarchy. Here we highlight these links and discuss some

open questions.

Let us first start with the following classical formulation for α(G):

α(G) =max



∑

i∈V

xi : xixj = 0 ∀{i, j} ∈ E, x ∈ {0,1}n


 ,

so that the convex hull of the feasible region is the stable set

polytope STAB(G). For t ∈ N, Pt(V) denotes the collection of

subsets of V with cardinality at most t. We introduce new vari-

ables yI =
∏
i∈I xi for products of variables over sets I ∈ P2t(V)

(this is the lift step) and we define the combinatorial moment ma-

trix Mt(y) = (yI∪J) indexed by Pt(V). Then the sdp condition

Mt(y) � 0 combined with the linear conditions y∅ = 1, yij = 0

({i, j} ∈ E), and yI ≥ 0 (I ∈ Pt+1(V)) define a convex set Qt ,

whose projection Kt gives the Lasserre moment relaxation of order

t of STAB(G). Denoting by las(t)(G) the bound obtained by opti-

mizing the linear objective function
∑
i∈V yi over Qt , we get the

following hierarchy of bounds:

α(G) ≤ las(t)(G) ≤ · · · ≤ las(1)(G).

The bound las(1)(G) strengthens the theta number of Lovász [6] by

adding nonnegativity.

Finite convergence holds: las(t)(G) = α(G) if t ≥ α(G). This is an

easy consequence of the following elementary properties of com-

binatorial moment matrices (Fourier analysis on the boolean cube).

Let Z be the 0/1 matrix indexed by Pn(V), with entry ZI,J = 1 if

I ⊆ J and 0 otherwise. Its inverse has entry (Z−1)I,J = (−1)|J\I| if

I ⊆ J and 0 otherwise; Z is known as the Zeta matrix of the poset

Pn(V) and Z−1 as its Möbius matrix. It is an easy exercise to verify

that Mn(y) = Z Diag(Z−1y)ZT . This implies:

Mn(y) � 0 ⇐⇒ Z−1y ≥ 0 ⇐⇒ y ∈ R+{ζ
J : J ⊆ V};

here ζJ denotes the J-th column of Z, which contains the indica-

tor of the set J at the positions of the n singleton subsets of V .

The edge conditions yij = 0 ({i, j} ∈ E) guarantee that the above

decomposition of y uses only sets J ⊆ V that are stable sets of G.

We now use the formulation for α(G) of Motzkin and Straus [7]:

1/α(G) =min{xT(In +AG)x : x ∈ Rn+, e
Tx = 1}, (1)

where AG is the adjacency matrix of G, e is the all-ones vector and

In is the identity matrix. Using (1), de Klerk and Pasechnik [1] obtain

the following copositive programming reformulation for α(G):

α(G) =min{λ : λ(In +AG)− ee
T ∈ Cn} (2)

and, using conic duality, the completely positive reformulation:

α(G) =max{〈eeT, X〉 : 〈In +AG , X〉 = 1, X ∈ Cn
∗
}, (3)

where Cn is the cone of copositive matrices and Cn∗ is the dual

cone of completely positive matrices.

Given a symmetric n × n matrix S and t ∈ N, define the poly-

nomial p(t)S (x) = (
∑n
i=1 x

2
i )
t(
∑n
i,j=1 Sijx

2
i x

2
j ). Following [1, 8, 9],

the cone Kn
t consists of the matrices S for which p(t)S is a sum

of squares of polynomials, Int is the subcone of the matrices S for

which all coefficients of p(t)S are nonnegative, and Qnt is a cone

nested between Int and Kn
t . By a result of Pólya [10], any strictly

copositive matrix lies in some cone Int for t large enough. Thus

Kn
t ,Q

n
t , I

n
t ր Cn as t → ∞. Replacing Cn by Kn

t in (2) and Cn∗

by Kn
t
∗ in (3), we obtain two semidefinite programs with the same

optimum value, denoted ϑ(t)(G), and the sdp hierarchy:

α(G) ≤ ϑ(t)(G) ≤ · · · ≤ ϑ(0)(G)

of [1]. Analogously, using Qnt (resp., Int ) instead of Kn
t , we get the

sdp hierarchy ν(t)(G) of [9] (resp., the lp hierarchy ζ(t)(G) of [1]).

Thus, α(G) ≤ ϑ(t)(G) ≤ ν(t)(G) ≤ ζ(t)(G) for all t ∈ N.

As Kn
0 = {P + N : P � 0,N ≥ 0}, ϑ(0)(G) coincides with

las(1)(G). Moreover, it is shown in [3] that the Lasserre hierarchy

refines the copositive based hierarchy:

las(t)(G) ≤ ϑ(t−1)(G)

for any t ≥ 1. The proof relies on the dual formulation (3) and on the

explicit characterization of the dual coneKn
t
∗ in terms of (arbitrary,

non-combinatorial) moment matrices. The fact that moment matri-

ces occur in the description of both bounds las(t)(G) and ϑ(t−1)(G)

explains why it is possible to relate them. An additional ingredient in

the proof is introducing the relaxation P t of STAB(G), which con-

sists of all vectors x ∈ R
n that can be realized as the diagonal of

a matrix X ∈ Kn
t
∗ satisfying 〈AG, X〉 = 0 and X − xxT � 0. The

following inequalities are shown in [3]:

las(t)(G) ≤ max
x∈P t−1

∑

i∈V

xi ≤ ϑ
(t−1)(G).

It is an open question whether the inclusion Kt ⊆ P t−1 holds be-

tween the moment and copositive based relaxations of STAB(G).

What about the convergence of the copositive based hierarchies?

By Pólya’s result, the lp hierarchy ζ(t)(G) converges asymptotically

to α(G). Moreover, α(G) = ⌊ζ(t)(G)⌋ for t ≥ α(G)2 − 1 (see [1]),

but finite convergence does not hold: If G is not a clique, then

α(G) < ζ(t)(G) for all t (see [9]). For the sdp hierarchy ϑ(t)(G),

de Klerk and Pasechnik [1] conjecture that there is finite conver-

gence, at the same order as for the hierarchy las(t)(G):

Conjecture 1. [1] ϑ(t)(G) = α(G) if t ≥ α(G)− 1.

This conjecture has turned out to be surprisingly difficult. Gvozde-

nović and Laurent [3] can prove it for the graphs with α(G) ≤ 8,

moreover they show that the result still holds for the weaker sdp

hierarchy ν(t)(G) (extending results of [1, 9]). The technical details

for this partial convergence result are however considerably more

involved than the convergence result for las(t)(G).
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Why is the parameter las(t)(G) much easier to handle than the

parameter ϑ(t)(G)? A reason might lie in the fact that the formu-

lation of the former bound incorporates in an explicit manner the

integrality 0/1 condition on the variables, while the latter bound

does not. Another reason lies in the cone Kn
t which appears to

be quite difficult to work with. For instance, for t ≥ 1, it is not in-

variant under some simple matrix operations like adding a zero row

and column to a matrix, or scaling by pre- and post-multiplying by a

positive diagonal matrix (two operations which obviously preserve

copositivity and positive semidefiniteness). Here is another related

open question.

Conjecture 2. [3] If u is an isolated node of G then, for all t ≥ 0,

ϑ(t)(G) ≤ ϑ(t)(G \u)+ 1.

It is shown in [3] that Conjecture 2 implies Conjecture 1. It is thus

interesting to note that the conjectured convergence result for the

hierachy ϑ(t)(G) is closely related to the behavior of the parameter

ϑ(t)(G) under the simple graph operation of deleting isolated nodes.

As briefly discussed here, the copositive programming approach

raises interesting open questions already for the well-studied maxi-

mum stable set problem. Many other aspects of copositive program-

ming are currently in the focus of attention, leading to fascinating

research questions. For example, the cp-rank of completely positive

matrices is closely related to the notion of nonnegative rank which

in turn ties to fundamental questions about the extension complex-

ity of polytopes, as shown in the seminal work of Yannakakis [11].

Going back to our starting point, lift-and-project methods aim to

represent a given 0/1 polytope P as projection of some higher di-

mensional, hopefully nicer, convex set Q. The smallest number of

facets that such a polytope Q can have is (roughly) the extension

complexity of P . The recent breakthrough result of [2] shows ex-

ponential extension complexity for the stable set polytope, the cut

polytope and the TSP polytope. This settles a long-standing open

question of [11] and rules out the existence of compact linear pro-

gramming extended formulations for these problems. The analogous

question of existence of compact semidefinite programming extended

formulations remains open.

Monique Laurent, CWI, Amsterdam, and Tilburg University, The Nether-

lands. monique@cwi.nl
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Charles Broyden Prize

The Charles Broyden Prize for the best paper published in the jour-

nal Optimization Methods and Software in 2011 is awarded to Didier

Henrion and Jerome Malick for the paper Projection Methods for conic

feasibility problems, applications to polynomial sum-of-squares decompo-

sitions published in Volume 26, No. 1, pp. 23–46.

This article will be freely available until the end of 2012 at

http://www.tandfonline.com/doi/pdf/10.1080/10556780903191165.

The paper was unanimously chosen by the prize committee, and in

their opinion represents an excellent contribution to the optimiza-

tion literature.
Michael Ferris (Chair), Frederic Bonnans, Masao Fukushima,

Nickolaos Sahinidis, Yinyu Ye (Prize Committee)

Call for Nomination/Submission

Best Paper Prize for Young Researchers in

Continuous Optimization

Fourth Mathematical Optimization Society International Conference on

Continuous Optimization, ICCOPT 2013 (Universidade Nova de Lisboa,

Lisbon, Portugal, July 27 – August 1, 2013)

Nominations/Submissions are invited for the Best Paper Prize by a

Young Researcher in Continuous Optimization.

The submitted papers should be in the area of continuous opti-

mization and satisfy one of the following three criteria:

(a) Passed the first round of a normal refereeing process in a jour-

nal;

(b) published during the year of 2010 or after (including forthcom-

ing);

(c) certified by a thesis advisor or postdoctoral mentor as a well-

polished paper that is ready for submission to a journal.

Papers can be single-authored or multi-authored, subject to the fol-

lowing criterion:

(d) Each paper must have at least one qualifying author who was un-

der age 30 on January 1, 2008 and has not earned a Ph.D before

that date. In case of joint authorship involving senior researchers

(i.e., those who fail both the age test and the Ph.D. test), one se-

nior author must certify the pivotal role and the relevance of the

contribution of the qualifying author in the work. The Selection

Committee will decide on questions on eligibility in exceptional

cases.

The selection criteria will be based solely on the quality of the paper,

including originality of results and potential impact.

The following items are required for submission:

A. The paper for consideration;

B. a brief description of the contribution (limited to 2 pages)

C. a statement about the status of the paper: not submitted, under

review, accepted, or published (when) in a journal;

D. a certification of the qualifying author’s eligibility in terms of

age and Ph.D. (by the qualifying author’s advisor or department

chair);

monique@cwi.nl
mailto:monique@cwi.nl
http://www.tandfonline.com/doi/pdf/10.1080/10556780903191165
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E. in case of joint authorship involving a senior researcher, a certifi-

cation by the latter individual about the qualifying author’s pivotal

role and relevance of the contribution.

The deadline for submission is April 1, 2013. Submission should be

sent electronically in Adobe Acrobat pdf format, to the Chair of

the Selection Committee, Professor Stefan Ulbrich, email address:

ulbrich@mathematik.tu-darmstadt.de.

Up to three papers will be selected as finalists of the competi-

tion. The finalists will be featured in a dedicated session at ICCOPT

2013, and the Prize Winner will be determined after the finalists ses-

sion. The Young Researcher Prize in Continuous Optimization will

be presented at the conference banquet. The finalists will receive

free registration to ICCOPT 2013 and to the conference banquet.

Their university or department should cover the travel costs. All the

three finalist will receive a diploma, and the winner will be presented

a $1000 USD award.

Selection Committee: Sam Burer (samuel-burer@uiowa.edu)

Jean-Baptiste Hiriart-Urruty

(jean-baptiste.hiriart-urruty@math.univ-toulouse.fr)

Stefan Ulbrich (Chair) (ulbrich@mathematik.tu-darmstadt.de)

Optimization Methods and Software

(OMS): Special Issue in Honor of

Prof. Florian Potra’s 60th birthday

Volume 27, Number 4–5 (August, 2012)

Guest-Editors: Mihai Anitescu and Goran Lesaja

· Neculai Andrei: An accelerated conjugate gradient algorithm with guaranteed

descent and conjugacy conditions for unconstrained optimization

· Kurt M. Anstreicher: Interior-point algorithms for a generalization of linear

programming and weighted centering

· Charles Audet, J.E. Dennis Jr. and Sebastien Le Digabel: Trade-off studies in

blackbox optimization

· Alexandru Cioaca, Mihai Alexe and Adrian Sandu: Second-order adjoints for

solving PDE-constrained optimization problems

· Thomas Davi and Florian Jarre: High accuracy solution of large scale semidef-

inite programs

· Xuan Vinh Doan, Serge Kruk and Henry Wolkowicz: A robust algorithm for

semidefinite programming

· Haw-ren Fang and Dianne P. O’Leary: Euclidean distance matrix completion

problems

· M. Seetharama Gowda, J. Tao and Roman Sznajder: Complementarity prop-

erties of Peirce-diagonalizable linear transformations on Euclidean Jordan alge-

bras

· Osman Guler and Filiz Gurtuna: Symmetry of convex sets and its applications

to the extremal ellipsoids of convex bodies

· Lanshan Han, M. Kanat Camlibel, Jong-Shi Pang and W.P.Maurice H.

Heemels: A unified numerical scheme for linear-quadratic optimal control prob-

lems with joint control and state constraints

· Meiyun Y. He and Andre L. Tits: Infeasible constraint-reduced interior-point

methods for linear optimization

· G. Lesaja, G.Q. Wang and D.T. Zhu: Interior-point methods for Cartesian

P∗(κ)-linear complementarity problems over symmetric cones based on the eli-

gible kernel functions

· Miles Lubin, Cosmin G. Petra and Mihai Anitescu: On the parallel solution

of dense saddle-point linear systems arising in stochastic programming

· Sanjay Mehrotra and Kuo-Ling Huang: Computational experience with a mod-

ified potential reduction algorithm for linear programming

· Yu. Nesterov: Towards nonsymmetric conic optimization

· Joanna M. Papakonstantinou and Richard A. Tapia: On the generation of

classes of symmetric rank-2 secant updates and the maximality of the Davidon

class

Forthcoming papers and complete table of contents for the journal

OMS: http://www.mai.liu.se/~olbur/contents

Instructions for authors and online sample copy: http://www.

tandfonline.com/goms

Polynomial Optimisation 2013

Isaac Newton Institute for

Mathematical Sciences

July 15 to August 9

Optimisation problems involving polynomials arise in a wide vari-

ety of contexts, including operational research, statistics, proba-

bility, finance, computer science, structural engineering, statistical

physics, combinatorial chemistry, computational biology and algo-

rithmic graph theory. They are however extremely challenging to

solve, both in theory and practice. Existing algorithms and software

are capable of solving only very small instances to proven optimal-

ity, unless they have some amenable structure, such as sparsity or

convexity.

A fascinating feature of polynomial optimisation is that it can be

approached from several different directions. In addition to tradi-

tional techniques drawn from operational research, computer sci-

ence and numerical analysis, new techniques have recently emerged

based on concepts taken from algebraic geometry, commutative al-

gebra and moment theory. In this regard, polynomial optimisation

provides a valuable opportunity for researchers from previously un-

related disciplines to work together.

The plan for this four-week programme is as follows. During the

first week (15th – 19th July 2013), there will be a “summer school”

and a “workshop”. The “summer school” will consist of a series

of tutorials from internationally respected invited speakers, and the

workshop will consist of a series of contributed talks and possibly a

poster session. These events will be open not only to official pro-

gramme participants, but also to other interested academics, PhD

students and post-doctoral researchers (space permitting).

The following three weeks will be open only to invited persons.

Each of the three weeks will focus on a specific sub-topic:

1. Algebraic Approaches (July 22–26, 2013). This will concern the

development of new theory and algorithms based on techniques

from relevant areas of pure mathematics, such as real algebraic

geometry, commutative and noncommutative algebra, moment

theory and the theory of sums-of-squares representations.

2. Convex Relaxations and Approximations (July 29 – August 2).

This will be devoted to the study of convex relaxations (and hier-

archies of relaxations) of certain important specially-structured

problem classes, along with associated approximation algorithms

(and inapproximability results).

3. Algorithms and Software (August 5–9). This will be devoted to

the development of new algorithms and their implementation as

software. This may include, for example, algorithms for comput-

ing lower and upper bounds, algorithms for generating strong

valid inequalities, and algorithms for solving instances to proven

optimality.

Organisers: Joerg Fliege (Southampton), Jean-Bernard Lasserre

(Toulouse), Adam Letchford (Lancaster), Marcus Schweighofer (Kon-

stanz)

Scientific Advisors: Monique Laurent (CWI, Amsterdam & Tilburg),

Kurt Anstreicher (Iowa)

Further information: http://www.newton.ac.uk/programmes/POP/

ulbrich@mathematik.tu-darmstadt.de
mailto:ulbrich@mathematik.tu-darmstadt.de
mailto:samuel-burer@uiowa.edu
mailto:jean-baptiste.hiriart-urruty@math.univ-toulouse.fr
mailto:ulbrich@mathematik.tu-darmstadt.de
http://www.mai.liu.se/~olbur/contents
http://www.tandfonline.com/goms
http://www.tandfonline.com/goms
http://www.newton.ac.uk/programmes/POP/
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Application for Membership

I wish to enroll as a member of the Society. My subscription is for my personal use

and not for the benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.

I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:

Mathematical Optimization Society

3600 Market St, 6th Floor

Philadelphia, PA 19104-2688

USA

Cheques or money orders should be made

payable to The Mathematical Optimization

Society, Inc. Dues for 2012, including sub-

scription to the journal Mathematical Pro-

gramming, are US $ 90. Retired are $ 45.

Student applications: Dues are $ 22.50.

Have a faculty member verify your student

status and send application with dues to

above address.

Faculty verifying status

Institution

ICCOPT 2013

The Fourth International Conference on Continuous Optimization,

will take place in Lisbon, Portugal, from July 27 to August 1, 2013.

ICCOPT is a recognized forum of discussion and exchange of ideas

for researchers and practitioners in continuous optimization, and

one of the flagship conferences of the Mathematical Optimization

Society.

ICCOPT 2013 is organized by the Department of Mathematics

of FCT, Universidade Nova de Lisboa, in its Campus de Caparica,

located near a long beach, 15 minutes away by car (and 30 by public

transportation) from the center of Lisbon, on the opposite side of

the river Tagus.

ICCOPT 2013 includes a Conference and a Summer School. The

Conference (July 29 – August 1) will count with the following Plenary

Speakers:

· Paul I. Barton (MIT, Massachusetts Inst. Tech.)

· Michael C. Ferris (Univ. Wisconsin)

· Yurii Nesterov (Univ. Catholique de Louvain)

· Yinyu Ye (Stanford Univ.)

and the following Semi-plenary Speakers:

· Amir Beck (Technion, Israel Inst. Tech.)

· Regina Burachik (Univ. South Australia)

· Sam Burer (Univ. Iowa)

· Coralia Cartis (Univ. Edinburgh)

· Michel De Lara (Univ. Paris-Est)

· Victor DeMiguel (London Business School)

· Michael Hintermüller (Humboldt-Univ. Berlin)

· Ya-xiang Yuan (Chinese Academy of Sciences)

The Summer School (July 27–28) is directed to graduate students

and young researchers in the field of continuous optimization, and

includes two courses:

– Summer Course on PDE-Constrained Optimization (July 27,

2013), by

· Michael Ulbrich (Tech. Univ. Munich)

· Christian Meyer (Tech. Univ. Dortmund)

– Summer Course on Sparse Optimization and Applications to In-

formation Processing (July 28, 2013), by

· Mário A. T. Figueiredo (Technical Univ. Lisbon and IT)

· Stephen J. Wright (Univ. Wisconsin)

There will be a paper competition for young researchers in Con-

tinuous Optimization (see Page 10 of this issue; further information

available from the website below).

The three previous versions of ICCOPT were organized respec-

tively in 2004 at Rensselaer Polytechnic Institute (Troy, NY, USA),

in 2007 at McMaster University (Hamilton, Ontario, Canada), and in

2010 at University of Chile (FCFM, Santiago, Chile).

The meeting is chaired by Luis Nunes Vicente (Organizing Com-

mittee) and Katya Scheinberg (Program Committee) and locally co-

ordinated by Paula Amaral (Local Organizing Committee).

The website is http://eventos.fct.unl.pt/iccopt2013
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