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Philippe L. Toint

MOS Chair’s Column

December 1, 2012. I am certain that all of you feel the same way
as I do about the Berlin ISMP 2012: what a fantastic meeting! Among
many highlights, let me (very subjectively) select a few.

The first was the opening ceremony. Not that I found the role I
played great, but I had the clear feeling that the mathematical pro-
gramming community was pleased (or even happy) to be gathered
again, much like at a (very big) family event. The general mood was
clearly positive and the enthusiasm was, at least from my point of
view, nearly palpable among the prize festivities (see Katya’s report
on this in this issue) . . .

The second thing I really liked was, obviously, the scientific con-
tent of the meeting. I found the choice of plenaries really good and
of sufficiently broad interest to enjoy large audiences every time.
The idea of the historical talks was also truly excellent and many
colleagues mentioned to me how pleased they felt about it. I will not
dwell on the details of the technical sessions I went to, because this
is too specialized, but, like everyone else, I enjoyed learning what our
colleagues (and often friends) were up to. Some great moments . . .

The conference dinner met all my expectations. When Martin
Skutella and I discussed the form of this event during the prepara-
tion months, we both agreed that it had to be an open affair, afford-
able for all and generally informal. This indeed was the case, but was
also combined with an excellent setting (emphasized by the good
weather, I have to say). And for those who took the boat trip on the
Spree, this was really a great way to discover the architectural facets
of history-rich Berlin. Again a memorable evening!

Talking of Berlin, there is no doubt that the city provided a most
remarkable setting for our ISMP. I admit that my visit this time was by
far the best as far as the impression of the city is concerned, prob-
ably helped, like the conference dinner, by the exceptional weather
Martin and his colleagues were able to order for us. When I left after
the very nice farewell gathering, I promised myself I would go back
quickly (I am returning this month).

Finally, the ISMP is most certainly the high point of a MOS chair-
man’s term. As such, there is an inevitable amount of stress as-
sociated with it: will it be successful? Will the science and the
organization live up to the usual high standards? In my case, I am
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very much indebted to Martin and his great team for relieving me en-
tirely of this worry. Not only the preparations gave no sign of grave
difficulties, but the event itself was superbly managed, with efficiency
and a large friendly smile. Many thanks again, dear Martin; I will def-
initely remember the Berlin ISMP days as amongst the best in my
career.

Of course, I wish the same to the MOS chairman elect, Bill Cook,
who will be taking over from me at the end of August 2013, and who
will supervise the preparations of ISMP 2015 in Pittsburgh, with the
help of François Margot. I know the preparations have started al-
ready, and I am surely looking forward to another great conference
(and, even better, with a new chairman in charge)!

In the mean time, winter is arriving in Europe, days are getting
short and windy, with the famous Belgian rain all too often present.
A good time to start enjoying doing some mathematics in a corner
by a wood fire . . . I wish you all a happy and productive end of 2012.

Note from the Editors

In this issue you’ll find an overview by Jens Vygen of the fascinat-
ing approximation results for the Traveling Salesman Problem that
have recently been obtained by several groups after advances in the
treatment of these questions had been stalling for many years. This
survey article is accompanied by Michel Goeman’s discussion col-
umn, in which he in particular reveals the problem he likes to see
solved until his (hopefully far away) retirement.

Sam Burer,
Volker Kaibel

and Katya Scheinberg
Optima editors

Jens Vygen

New approximation algorithms for the

TSP

The traveling salesman problem (TSP) is probably the best known
combinatorial optimization problem. Although studied intensively
for sixty years, the TSP continues to pose grand challenges. Cook’s
recent book (19) gives an excellent introduction.

Since the TSP is NP-hard ((46)), it is natural to ask for approx-
imation algorithms. How good solutions can we guarantee to find
in polynomial time? (18) devised a 3

2 -approximation algorithm for
the SYMMETRIC TSP: it always finds a solution that is at most 50 %
longer than optimum.

Can we do better? Can we do similarly well for the ASYMMETRIC
TSP? These questions – still unsolved – belong to the most intriguing
open problems in our field. Recently, there has been progress that
makes us hope that we will learn more in the near future.
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In this survey we try to describe the state of the art, in particu-
lar the recent progress, mostly from 2010–2012. We use standard
notation and some basic terminology and well-known results from
combinatorial optimization; see (49) or (64) if necessary.

1 Introduction

Let us first review different formulations of the problems and basic
approximation algorithms.

1.1 ASYMMETRIC TSP and SYMMETRIC TSP

The ASYMMETRIC TSP can be defined as follows. Given a finite
set V (of cities) and distances c(v,w) ≥ 0 for all v,w ∈ V (also
called length or cost), find a closed walk of minimum total length vis-
iting each city at least once. More precisely, we look for a sequence
v0, v1, . . . , vk with vk = v0 and {v0, . . . , vk} = V (also called a tour)
such that

∑k
i=1 c(vi−1, vi) is minimum.

The SYMMETRIC TSP is the special case in which the distances
are symmetric: c(v,w) = c(w,v) for all v,w ∈ V .

Often these problems are formulated such that each city must be
visited exactly once instead of at least once (except, of course, that
we must end in the same city where we start). This is equivalent if
the distances obey the triangle inequality

c(u,w) ≤ c(u,v)+ c(v,w) for all u,v,w ∈ V (1)

because then we can shortcut whenever we visit a city a second
time.

On the other hand, given an instance of the ASYMMETRIC TSP
(or SYMMETRIC TSP) as defined above, we can set

c̄(v,w) := min
{∑

e∈E(P) c(e) : P path from v to w, V(P) ⊆ V}

and consider (V, c̄) instead. Note that c̄ obeys (1). The instance
(V, c̄) is equivalent to (V, c) because we can move from v to w at
cost c̄(v,w) via a shortest v-w-path. The pair (V, c̄) is called the
metric closure of (V, c).

1.2 Approximation algorithms

A ρ-approximation algorithm (for a minimization problem) is an algo-
rithm that runs in polynomial time and always computes a solution
(here: a tour) that costs at most ρ times the optimum. Here ρ can
be a constant or a function of n; here and henceforth n = |V | de-
notes the number of cities.

If we do not require the triangle inequality but still want to visit
every city exactly once, the problems look hopeless: any approxima-
tion algorithm would allow us to decide in polynomial time whether
a given graph contains a Hamiltonian circuit, and thus imply P = NP
(this easy observation is due to (62)).

So we assume henceforth that we may visit cities more than once.

1.3 Euler’s theorem

For the total length of a tour, all that matters is how many times
we move from v to w for each ordered pair (v,w), or how many
times we move between v and w for each unordered pair {v,w}
in the undirected case. Hence we can represent a tour by a directed
or undirected graph (possibly with parallel edges) with vertex set V .
As observed by (28), this graph has two properties:
(a) it is connected;
and for every city:
(b′) the in-degree equals the out-degree in the directed case;
(b′′) the degree is even in the undirected case.
Digraphs with the properties (a) and (b′) and undirected graphs with
properties (a) and (b′′) are called Eulerian. The conditions are equiv-
alent to the existence of an Eulerian walk: a closed walk traversing

every edge exactly once and every vertex at least once. Given an
Eulerian graph or digraph, one can find an Eulerian walk in linear
time ((41)).

Therefore, one can reformulate the ASYMMETRIC TSP and the
SYMMETRIC TSP by asking for a (multi)set F such that (V, F) is an
Eulerian (directed or undirected, respectively) graph with minimum
total length c(F). We call such an F a tour, too. Here and in the
following we abbreviate c(F) := ∑e∈F c(e) and c(e) := c(v,w) for
any edge e from v to w.

1.4 GRAPHIC TSP

A natural special case of the SYMMETRIC TSP arises when we
are given a connected undirected graph G and let V = V(G) and
c(v,w) = 1 if {v,w} ∈ E(G) and c(v,w) = ∞ otherwise. This
problem is called the GRAPHIC TSP. The metric closure (V, c̄) of
(V, c) is also called the metric closure of G. Functions c̄ arising in
this way are called graphic metrics.

By the observations in Section 1.3, the GRAPHIC TSP can be
reformulated as follows. Given a connected graph G, find an Eule-
rian spanning multi-subgraph (V, F) with minimum |F|. Here a multi-
subgraph arises from a subgraph by doubling a subset of its edges.
Again, we call an Eulerian multi-subgraph of G simply a tour in G.

The GRAPHIC TSP has also been called GRAPH TSP by some
authors. It is easy to see that, without loss of generality, we may
assume that G is 2-vertex-connected (otherwise find a tour in each
block separately).

1.5 Double tree and Christofides’ algorithm

A 2-approximation algorithm for the SYMMETRIC TSP is easy: take
a tree on vertex set V with minimum total edge length (it is well-
known that such a minimum spanning tree can be found efficiently,
e.g., by the greedy algorithm), and double all its edges. Since any
tour is connected and thus contains a spanning tree, a minimum
spanning tree cannot be longer than an optimum tour. Hence we
have a 2-approximation algorithm.

(18) showed how to improve this. His algorithm also begins by
computing a minimum spanning tree (V, S). But then, to correct the
parities, it adds a minimum weight TS -join, where TS = {v ∈ V :

|δS(v)| odd} is the set of odd-degree vertices of (V, S). For a set
T ⊆ V , a T -join is a subset F of edges such that |δF(v)| is odd for
v ∈ T and even for v ∈ V \ T . See Figure 1. Of course S itself
is a TS -join, but we can do better: since every tour contains two
disjoint TS -joins (color the edges of a tour red and blue, changing
the color whenever visiting an element of TS for the first time, and
finally delete pairs of parallel edges of the same color), the minimum
weight of a TS -join is at most half the length of an optimum tour.

So we have a 3
2 -approximation algorithm for the SYMMETRIC

TSP. Its running time is O(n3), dominated by the subroutine to find
a minimum weight TS -join.

This bound on the approximation ratio of Christofides’ algorithm
is tight even for the GRAPHIC TSP: for a Hamiltonian graph (so a
tour of length n exists) that contains a spanning tree all whose ver-
tices have odd degree, if we take such a spanning tree, we end up
with 3

2n− 1 edges.

Figure 1. Christofides’ algorithm. From left to right: an instance of the GRAPHIC

TSP, a spanning tree (V, S) whose odd-degree vertices (elements of TS ) are

shown as squares, a minimum TS -join, and the resulting tour.
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2 Relaxations

For NP-hard problems it is often useful to study relaxations that are
easier to solve. For the TSP, there are several interesting relaxations.

As explained in Section 1.3, it is often useful to view a tour as a
(multi)set F of edges. Now we associate a vector x ∈ ZE≥0 with each
tour, where E is the set of ordered or (in the symmetric case) un-
ordered pairs of elements of V and xe is the number of copies of e
in F . Then the tour has length c(F) = c(x) := ∑e∈E c(e)xe. Given a
vector x ∈ RE≥0, the graph (V, {e ∈ E : xe > 0}) is called the support

graph of x. For any subset E′ ⊆ E we will write x(E′) :=∑e∈E′ xe.

2.1 Subtour LP

Let (V, c) be an instance of the SYMMETRIC TSP, n = |V | ≥ 3,
and E =

(
V
2

)
. The following LP, first formulated by (22), has often

been called subtour elimination LP or simply subtour LP or Held-Karp

relaxation:

min c(x)

subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V)
x(δ(v)) = 2 (v ∈ V)

xe ≤ 1 (e ∈ E)
xe ≥ 0 (e ∈ E)

(2)

Note that the constraints xe ≤ 1 (e ∈ E) could be omitted as
they are implied by the other constraints: for e = {u,v} we have
2xe = x(δ(u)) + x(δ(v)) − x(δ({u,v})) ≤ 2+ 2− 2.

The set of feasible solutions of the subtour LP (2) is called the
subtour polytope. The integral feasible solutions of (2) are exactly the
incidence vectors of Hamiltonian circuits. Their convex hull is called
the TSP polytope.

So (2) is a relaxation of the SYMMETRIC TSP if the triangle in-
equality holds. For a general instance, we can consider (2) for its
metric closure.

This relaxation has been tightened by many classes of additional
valid inequalities. It is also the basis of branch-and-cut algorithms
(with exponential worst-case running time) that made impressive
progress over the last four decades and have found optimum solu-
tions to TSP instances with up to 85 900 cities; see (3).

2.2 Integrality ratio

Obviously, the integer solutions of (2) are exactly the incidence vec-
tors of Hamiltonian circuits. However, this LP has no integral op-
timum solution in general. Figure 2 shows a well-known example.
We have an infinite family of graphs G; each is an instance of the
GRAPHIC TSP. The subtour LP of the metric closure (V, c) has
a unique optimum solution: xe = 1 on the horizontal edges and
xe = 1

2 on the six other edges. Its LP value is n. However, an opti-
mum tour has length 4

3n− 2.
The integrality ratio of a family of polytopes (P ⊆ REP )P∈P is the

supremum of min{c(x) : x ∈ P ∩ ZEP }/min{c(x) : x ∈ P} over
all P ∈ P and all c : EP → R>0. Often the weight functions are
restricted in the supremum, e.g. to metrics or to graphic metrics.
The above family of examples shows that the integrality ratio of the
family of subtour polytopes for graphic metrics (and hence for gen-
eral metrics) is at least 4

3 . Worse examples are not known. The fact
that the worst known examples are instances of the GRAPHIC TSP
raised interest in this special case. See also Sections 2.5 and 7.2.

Figure 2. Examples showing a lower bound of 4
3 on the integrality ratio of the

subtour polytope

2.3 Spanning trees

The difficulty of the SYMMETRIC TSP lies in the combination of
connectivity and parity requirements. If we require only connectiv-
ity, a minimum spanning tree does the job. (25) gave the following
polyhedral description:

Proposition 1. The convex hull of incidence vectors of trees with vertex

set V and edges in E is the set of vectors x ∈ RE with

x(E) = n− 1∑
e={v,w}∈E:v,w∈U xe ≤ |U| − 1 (∅ 6= U ⊂ V)

xe ≥ 0 (e ∈ E)
(3)

This set is called the spanning tree polytope of the graph (V, E).
The following easy observation was made by (5), strengthening a
result of (40):

Proposition 2. If x is a feasible solution of (2), then n−1
n x is in the

relative interior of the spanning tree polytope of the support graph.

Proof. We have n−1
n x(E) = n−1

2n

∑
v∈V x(δ(v)) = n − 1 as well

as
∑
e={v,w}∈E:v,w∈U

n−1
n xe = n−1

2n (
∑
v∈U x(δ(v)) − x(δ(U))) =

n−1
2n (2|U| − x(δ(U))) ≤

n−1
n (|U| − 1) for any ∅ 6= U ⊂ V .

2.4 T -joins

Now consider the parity aspect. (26) proved:

Proposition 3. The minimum weight of a T -join in a graph (V, E) with

weights c ∈ RE≥0 and T ⊆ V equals the optimum value of the LP:

min c(x)

subject to x(δ(U)) ≥ 1 (U ⊆ V, |U ∩ T | odd)
xe ≥ 0 (e ∈ E)

(4)

The cuts δ(U) with |U ∩ T | odd are called T -cuts.
For negative weights the LP (4) cannot be used directly. We will

also need:

Proposition 4. The convex hull of incidence vectors of T -joins in (V, E)

is the set of vectors x ∈ [0,1]E with

|F| − x(F)+ x(δ(U) \ F) ≥ 1 (U ⊆ V, F ⊆ δ(U),
|U ∩ T | + |F| odd)

(5)

This is called the T -join polytope of (V, E). A minimum weight T -
join can be found in O(n3) time via weighted matching. See (64) or
(49) for details and proofs of Propositions 1, 3, and 4.

2.5 Wolsey’s analysis

(69) proved that Christofides’ algorithm computes a tour of length
at most 3

2L, where L is the LP value of (2). In fact, this is easy to see
from the above: By Proposition 2, the minimum weight of a spanning
tree is at most L. By Proposition 3, the minimum weight of a T -join
is at most L

2 for any T ⊆ V with |V | even.
This shows that the integrality ratio of (2) is at most 3

2 . No better
upper bound is known in general.

2.6 Two-edge-connected spanning subgraphs

Every tour is 2-edge-connected, so a relaxation of the SYMMET-
RIC TSP is to find a minimum weight 2-edge-connected spanning
subgraph (if the triangle inequality holds) or multi-subgraph. Unfor-
tunately, these problems are also NP-hard (cf. Section 7.6).

Let G = (V, E) be a 2-edge-connected undirected graph. Then
the incidence vectors of the 2-edge-connected spanning subgraphs
(2ECSS) of G are the integral feasible solutions of the following LP:

min c(x)

subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V)
xe ≤ 1 (e ∈ E)
xe ≥ 0 (e ∈ E)

(6)



4 OPTIMA 90

This LP arises from (2) by omitting the equality constraints. If we
allow using edges twice, the LP (6) can be simplified further by omit-
ting the upper bounds:

min c(x)

subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V)
xe ≥ 0 (e ∈ E)

(7)

Cunningham (see (54)) and (39) observed:

Proposition 5. If (V, E) is a complete graph, |V | ≥ 3, and c obeys

the triangle inequality, then the optimum values of (2), (6), and (7) are

the same.

Proof. Let x be a rational feasible solution of (7). Choose k ∈ N

such that kxe is an even integer for each e ∈ E. If there is a vertex
v ∈ V with x(δ(v)) > 2, choose incident edges e = {v,w} and
e′ = {v,w′} with xe > 0 and xe′ > 0, reduce xe and xe′ each by
1
k and increase x{w,w′} by 1

k while maintaining feasibility (the exis-
tence of two such edges e, e′ follows from applying Lovász’ [1976]
splitting theorem to the Eulerian graph with kxe copies of each edge
e). Note that we maintain the property that kx(δ(v)) is an even in-
teger for all v ∈ V , so we end up with a feasible solution of (7) also
satisfying x(δ(v)) = 2 for all v ∈ V . Then also xe = 1

2 (x(δ(v)) +
x(δ(w)) − x(δ({v,w}))) = 1

2 (2 + 2 − x(δ({v,w}))) ≤ 1 for all
e = {v,w} ∈ E, so we have a feasible solution of (2). Due to the
triangle inequality we never increased c(x).

We also note:

Proposition 6. If (V, E) is a 2-edge-connected graph and c(e) = 1

for all e ∈ E, then the optimum values of (6) and (7) are the same.

Proof. Let x be an optimum solution of (7). Let f = {v,w} ∈ E with
xf > 1. Call two vertices a and b close if x(δ({a} ∪ S) \ {f}) ≥
1 for all S ⊆ V \ {a,b}. This is a transitive relation. If v and w are
close, then we can reduce xf to 1 and maintain feasibility. Other-
wise each vertex is either close to v or close to w; so there is an
edge f ′ = {v′,w′} such that v and v′ are close, w and w′ are
close, and xf ′ < 1. Then increasing xf ′ to min{1, xf ′ +xf −1} and
decreasing xf to 1 maintains feasibility.

The same holds for integral solutions: we never need to take two
copies of any edge, except of course for bridges of G.

The constraints of (7) define facets of the graphical traveling sales-

man polyhedron: the convex hull of vectors x ∈ Z
E
≥0 for which

x(δ(U)) ∈ {2,4,6, . . .} for all ∅ 6= U ⊂ V . This was studied by
(20).

2.7 Asymmetric subtour LP

Let (V, c) be an instance of the ASYMMETRIC TSP with (1) and
E = {(v,w) : v,w ∈ V,v 6= w}. The following is the natural analo-
gon of the subtour LP in this case:

min c(y)

subject to y(δ+(U)) ≥ 1 (∅ 6= U ⊂ V)
y(δ+(v)) = y(δ−(v)) = 1 (v ∈ V)

ye ≥ 0 (e ∈ E)
(8)

Again, the integral feasible solutions to this LP are exactly the
Hamiltonian circuits. Vectors y ∈ RE≥0 with y(δ+(v)) = y(δ−(v))
for all v ∈ V are called circulations in (V, E).

From a feasible solution y to (8) one can obtain a feasible solution
to (2) by setting x{v,w} := y(v,w) +y(w,v) for all {v,w} ∈

(
V
2

)
.

2.8 Solving the linear programs

All linear programs above have exponentially many constraints, but
they can all be solved in polynomial time; in fact an optimum basic
solution can be found in polynomial time. One way to show this is via
the equivalence of optimization and separation. The LPs for spanning
trees and T -joins can be solved by combinatorial algorithms. For the
LPs (2), (6), (7), and (8), there are straightforward polynomial-size
extended formulations (by introducing flow variables and using the
max-flow min-cut theorem), but combinatorial algorithms to solve
these LPs are not known. (40), however, showed how to solve (2)
fast approximately.

2.9 Optimum basic solutions

Any optimum basic solution x∗ of any of the LPs (2), (6), and (7) has
at most 2n−3 nonzero variables; in fact the subgraph of the support
graph induced by U has at most 2|U| − 3 edges for any U ⊆ V with
|U| ≥ 2 (cf. (20) and (38)).

Any optimum basic solution x∗ of the LP (8) has at most 3n− 4

nonzero variables (and the subgraph of the support graph induced
by U has at most 3|U| − 4 edges for any U ⊆ V with |U| ≥ 2); this
was also shown by (38).

The basic feasible solutions of (8) arise as the unique solutions of
a linear equation system with all coefficients 0 or 1, so by Cramer’s
rule each of their components can be written as a

b for integers a
and b ≤ (3n− 4)!/2. The same holds for (2), (6), and (7), even with
b ≤ (2n− 3)!/2.

2.10 Covering the cities by disjoint circuits

Another relaxation works both in the directed and undirected case.
We ignore connectivity and look for a graph in which each city be-
longs to a circuit and the circuits are pairwise vertex-disjoint.

In the undirected case, such an edge set is called a perfect 2-

matching because every vertex must have degree 2. A minimum
weight perfect 2-matching can be found in polynomial time (this is
essentially equivalent to nonbipartite weighted matching), but it did
not prove useful in the design of approximation algorithms so far.

In the directed case, the analogous relaxation is even easier to
solve. Here every vertex must have in-degree and out-degree 1. A
minimum weight spanning subgraph with this property can easily be
found by solving a bipartite weighted matching problem. This was
used for the first nontrivial approximation algorithm for the ASYM-
METRIC TSP, to be described next.

2.11 O(logn)-approximation for ASYMMETRIC TSP

For the ASYMMETRIC TSP no constant-factor approximation algo-
rithm is known, so we will consider f(n)-approximation algorithms,
where f(n) is a function of the number n of cities. It is trivial to
give an n-approximation algorithm: order the cities arbitrarily, say
V = {v1, . . . , vn}, and take a shortest vn-v1-path and a shortest
vi−1-vi-path for i = 2, . . . , n.

The first nontrivial approximation algorithm was found by (33). It
assumes that the triangle inequality holds and works as follows.

Begin with W := V . Find a minimum weight subset F of edges with
|δ+F (v)| = |δ−F (v)| = 1 for all v ∈ W and |δ+F (v)| = |δ−F (v)| = 0

for all v ∈ V \W (cf. Section 2.10). Then pick one vertex from each
connected component of (W, F), and replace W by the set of these
vertices. Iterate until (W, F) is connected.

The set of all edges chosen in this algorithm forms an Eulerian
graph. Due to the triangle inequality, the total cost of edges picked
in each iteration is at most the length of an optimum tour. Since
|W | decreases by a factor of two in each iteration, we are done
after ⌊log2n⌋ iterations. Hence we have a (log2n)-approximation
algorithm.
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(8), (44), and (29) improved this by a constant factor.

3 Random sampling

It is quite natural to first take a spanning tree to guarantee connec-
tivity, and then add a minimum cost set of edges in order to make the
graph Eulerian. This idea (underlying Christofides’ algorithm) works
also in the directed case as we shall see soon (in the proof of Theo-
rem 8).

A minimum spanning tree does often not give the best overall re-
sult. A certain kind of random sampling led to better approximation
algorithms for the ASYMMETRIC TSP and the GRAPHIC TSP.

3.1 Thin trees

Asadpour, Goemans, Mądry, Oveis Gharan and Saberi [2010] were
the first to obtain an o(logn)-approximation algorithm for the
ASYMMETRIC TSP. Their algorithm is randomized. The main in-
gredient is the following result, which, interestingly, applies to an
undirected instance:

Theorem 7. There is a randomized polynomial-time algorithm which,

given a feasible solution x of the LP (2), computes a spanning tree

(V, S) such that with probability at least 1
2 we have c(S) ≤ 2c(x) and

|δS(U)| ≤ αx(δ(U)) for all U ⊆ V , where α = 4 logn/ log logn.

The last property is called α-thinness. By Proposition 2, n−1
n x is a

convex combination of spanning trees, i.e. n−1
n xe =

∑
S∈S:e∈S pS for

all e ∈ E, where S is the set of (edge sets of) spanning trees, pS ≥ 0

for all S ∈ S and
∑
S∈S pS = 1. Such an explicit convex combina-

tion can be obtained in polynomial time. If we pick each tree S ∈ S
with probability pS , the expected cost is

∑
e∈E c(e)xe, and hence

the cost at most is twice as much with probability at least 1
2 .

The difficulty is that such a random spanning tree will in general
not be thin enough. Therefore (5) choose the probability distribution
carefully, namely such that it maximizes the entropy

∑
S∈S pS log

1
pS

.
Equivalently, pS = γΠe∈Sλe for all S ∈ S, for suitable positive num-
bers γ and λe (e ∈ E). Such a distribution is also called λ-uniform.

(5) show how to sample trees efficiently from approximately this
distribution. Moreover, they prove that the random variables indi-
cating for each edge whether it is part of the selected tree are neg-
atively correlated; then thinness is implied by a Chernoff bound to-
gether with the fact that in any graph there are less than 2n2γ many
γ-approximate minimum cuts, for any γ ≥ 1 ((45)). See (5) for the
details. (Alternatively, a thin tree can be obtained by the dependent
randomized rounding approach of (15).)

3.2 The O(logn/ log logn)-approximation algorithm

Using Theorem 7, the randomized O(logn/ log logn)-
approximation algorithm of (5) and its analysis can be described
easily. We work in the metric closure, so c satisfies the triangle
inequality.

First solve the LP relaxation (8) to obtain a vector y . Then get
a solution x of (2) by setting x{v,w} := y(v,w) + y(w,v) for all
{v,w} ∈

(
V
2

)
. Note that xe = 0 or xe ≥ 1

(3n−4)! for all e ∈
(
V
2

)

(cf. Section 2.9); so x can be stored with O(n2 logn) bits.
Next apply Theorem 7 to obtain a spanning tree (V, S). Ori-

ent the edges of this tree by replacing each {v,w} ∈ S by
the cheaper one of (v,w) and (w,v). Setting c′({v,w}) :=
min{c(v,w), c(w,v)}, we get with probability at least 1

2 that the
resulting arc set R satisfies c(R) = c′(S) ≤ 2c′(x) ≤ 2c(y) as well
as |δ−R(U)| ≤ |δS(U)| ≤ αx(δ(U)) = α(y(δ−(U)) +y(δ+(U))) =
2αy(δ+(U)) for all U ⊆ V .

Finally apply the following Theorem 8 to R and y . With probabil-
ity at least 1

2 we obtain a tour of length at most (2α+ 2)c(y).

Theorem 8. Let (V,R) be a connected spanning subgraph of the

complete digraph (V, E), y ∈ R
E
≥0, and β > 0 such that |δ−R(U)| ≤

βy(δ+(U)) for all U ⊆ V(G). Then we can find a tour F with

c(F) ≤ c(R)+ βc(y) in polynomial time.

Proof. Let l(e) := 1 for e ∈ R and l(e) := 0 for e ∈ E \ R. Any
integral circulation f in (V, E) with f ≥ l corresponds to a tour. We
compute an integral minimum cost circulation f∗ ≥ l and note that
the resulting tour has cost c(f∗).

To prove that such a circulation (and hence an integral circulation)
of cost at most c(R)+βc(y) exists, we let u(e) := max{l(e), βye}
for all e ∈ E and observe that a circulation g with l ≤ g ≤ u exists;
then c(f∗) ≤ c(g) ≤ ∑e∈E c(e)u(e) ≤ c(R)+ βc(y).

The existence of g follows from Hoffman’s [1960] circulation the-
orem: we have l ≤ u and l(δ−(U)) = |δ−R(U)| ≤ βy(δ+(U)) ≤
u(δ+(U)) for all U ⊆ V .

3.3 Random sampling for the SYMMETRIC TSP

The random sampling of (5) was also used by (56) for the first im-
provement over Christofides’ algorithm for the GRAPHIC TSP.

They proposed the following algorithm. Take the metric closure
and solve the subtour LP (2) to obtain an optimum basic solution x.
Again, n−1

n x is a convex combination of spanning trees, and we pick
one at random according to a maximum entropy distribution; call
it (V, S). Let TS be again the set of odd degree vertices of (V, S).
Finally add a minimum-weight TS -join to S as in Christofides’ algo-
rithm.

(56) conjectured that this algorithm has better approximation ra-
tio than 3

2 , but they could prove this only for the GRAPHIC TSP, and
only for a slight variant of this algorithm. Their main structure the-
orem is the following. (The constants below are not best possible,
but the improvement is tiny anyway.)

Theorem 9. Let (V, c) be an instance of the SYMMETRIC TSP satis-

fying the triangle inequality. Let x be an optimum solution of (2), and let

(V, S) be a spanning tree picked at random according to the maximum

entropy distribution (pS)S∈S with
∑
S∈S:e∈S pS = n−1

n xe for all e ∈ E.

Let TS be the set of odd degree vertices of (V, S). Call an edge e good if

e does not belong to any TS -cut δ(U) with x(δ(U)) ≤ 2+10−15. Then

at least one of the following holds:

(a) there is a subset E∗ of edges with x(E∗) ≥ 10−12n such that for

each e ∈ E∗ the probability that e is good is at least 10−24;

(b) there are at least 19
20n edges e with xe ≥ 1− 10−7.

The proof of this theorem is very long. It uses deeper results
about random spanning trees and the structure of near-minimum
cuts.

3.4 First improvement over Christofides for the GRAPHIC TSP

Following (56), we show now that Theorem 9 implies a better ap-
proximation ratio for the GRAPHIC TSP.

In case (a), Wolsey’s analysis can be improved: let ye :=
xe/(2 + 10−15) for good edges e and ye := xe/2 for other
edges e. Since y(δ(U)) ≥ 1 for every TS -cut δ(U), we con-
clude that y is a feasible solution to (4). Therefore the expected
cost of a minimum weight TS -join is at most c(y) ≤ 1

2c(x) −
10−16

∑
e∈E:egood c(e)xe ≤ 1

2c(x) − 10−40
∑
e∈E∗ c(e)xe. If c is a

graphic metric, we have c(e) ≥ 1 for all e ∈ E and c(x) ≤ 2n.
Then we get c(y) ≤ 1

2c(x) − 10−40x(E∗) ≤ 1
2c(x) − 10−52n ≤

1
2 (1− 10−52)c(x).

In case (b), the approximation ratio is better, and the proof is also
easy. Let I be the set of edges e with xe ≥ 1 − 10−7. The edges in
I form vertex-disjoint paths and circuits, and each circuit has length
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at least 107 (or is Hamiltonian). Remove one edge from each cir-
cuit and add edges of cost 1 to obtain a spanning tree (V, S). Note
that c(S \ I) = |S \ I| < ( 1

20 + 10−7)n ≤ ( 1
20 + 10−7)c(x). We

get c(S) = c(S ∩ I) + c(S \ I) ≤ ∑e∈S c(e)xe/(1 − 10−7) + ( 1
20 +

10−7)c(x).
Finally we add a minimum weight TS -join J, where TS is the set of

vertices with odd degree in (V, S). To bound c(J), let ye := 1
3 for

e ∈ S and ye := 2
3xe for other edges e. We show that y is a feasible

solution to (4).
For any set U with |U∩TS | odd we have |δ(U)∩S| odd. If |δ(U)∩

S| = 1, then y(δ(U)) ≥ 1
3 +y(δ(U)\S) ≥

1
3 +

2
3 (x(δ(U))−1) ≥ 1.

If |δ(U)∩ S| ≥ 3, then y(δ(U)) ≥ 3 · 1
3 = 1.

Hence c(J) ≤ c(y) = 1
3c(S) +

2
3

∑
e∈E\S c(e)xe. We conclude

c(S
.∪ J) ≤ 4

3c(S)+
2
3

∑
e∈E\S c(e)xe ≤ 4

3c(x)/(1−10−7)+ 4
3 (

1
20 +

10−7)c(x) ≤ ( 7
5 + 10−6)c(x).

Note that we used properties of the GRAPHIC TSP in both cases,
(a) and (b). Although the improvement over Christofides’ algorithm
is tiny (in case (a)), this result received a lot of interest.

4 Correcting parity by adding and removing edges

So far, all algorithms began with a spanning tree and then added
edges to make the graph Eulerian. (53) had a brilliant idea: if we be-
gin with a 2-connected graph, we may also delete some edges for
making it Eulerian, and this may be cheaper overall.

4.1 Removable pairings

The following definition of (53) is very interesting. A removable pair-

ing in a 2-vertex-connected graph (V, E) is a pair (R,P) with the
following properties:

(a) R ⊆ E;
(b) for each P ∈ P there exists a vertex v ∈ V and three distinct

edges e1, e2, e3 incident to v such that P = {e1, e2};
(c) the elements of P are pairwise disjoint;
(d) for any set F ⊆ R with |F ∩ P | ≤ 1 for all P ∈ P, the graph

(V, E \ F) is connected.
(53) proposed to obtain a removable pairing as follows.

Lemma 10. Let G = (V, E) be a 2-vertex-connected graph and (V, S)

a DFS-tree in G, rooted at r ∈ V . For each edge e = {v,w} ∈ E \ S ,

let w.l.o.g. be v on the r -w-path in (V, S), and let v′ be the successor

of v on this path. Add e to R; moreover if |δ(v)| ≥ 3 and e′ = {v,v′}
has not yet been added to R, then add also e′ to R and {e, e′} to P (cf.

Figure 3). Then (R,P) is a removable pairing in G.

Proof. (a)–(c) are easy to see. To show that condition (d) holds, take
F ⊆ R with |F∩P | ≤ 1 for all P ∈ P. For each v ∈ V we consider the
set Wv of vertices w for which v is on the r -w-path in (V, S). We
show that for each v ∈ V the vertex set Wv induces a connected
subgraph of (V, E \ F). Indeed, this follows from a straightforward
induction on |Wv |.

r

Figure 3. A 2-connected graph with a DFS tree (left, solid edges) and a removable

pairing (right: dashed and dotted edges are in R; arrows indicate pairs).

1
1
1

–1 1 –1

–1

Figure 4. Proof of Theorem 11. The graph G′ on the left results from G and

(R,P) in Figure 3. Squares denote odd-degree vertices. Here |E| = 11 and

|R| = 7. As J′ one could choose, e.g., the four edges whose weight is shown. This

leads to the tour shown on the right.

4.2 The Mömke–Svensson lemma

Now we can formulate and prove the key lemma of (53). It works
for general weights, although it has been used so far only for c ≡ 1.
We follow the proof of (66), a variant of the original proof:

Theorem 11. Let G = (V, E) be a 2-vertex-connected graph, c :

E(G) → R, and (R,P) a removable pairing in G. Then one can find a

tour in G of length at most 4
3c(E) −

2
3c(R) in O(n3) time.

Proof. Let TG be the set of odd degree vertices of G. Let c′(e) =
c(e) for e ∈ E \R and c′(e) = −c(e) for e ∈ R. For any TG-join J in
G that intersects each pair P ∈ P in at most one edge, we construct
a tour from E by doubling the edges in J \ R and deleting the edges
in J ∩ R. This tour has length c(E)+ c′(J).

To compute a TG-join of weight at most 1
3c(E)−

2
3c(R) =

1
3c

′(E),
intersecting each pair at most once, we construct an auxiliary graph
G′ with weights c′ from (G, c′) as follows (cf. Figure 4). For each
pair P = {{v,w}, {v,w′}} ∈ P we add a vertex vP and an edge
{v,vP} of weight zero, and replace the two edges in P by {vP ,w}
and {vP ,w′}, keeping their weight.

Let TG′ be the set of odd degree vertices of G′. G′ is 2-edge-
connected. Hence every TG′ -cut contains at least three edges, and
the vector with all components 1

3 is in the TG′ -join polytope of G′

(cf. Proposition 4), and even in its face defined by x(δ(vP )) = 1 for
all P ∈ P. Hence there is a TG′ -join J′ in G′ with |δJ′(vP )| = 1 for
all P ∈ P and with weight at most 1

3c
′(E). Such a J′ can be found in

O(n3) time (by adding a large weight to edges incident to vP , for all
P ∈ P). It corresponds to a TG-join J in G that intersects each pair
at most once and has weight at most 1

3c
′(E).

4.3 Subcubic graphs

Boyd, Sitters, van der Ster and Stougie [2011] devised a 4
3 -approx-

imation algorithm for cubic graphs. (53) gave a simpler proof for
this result and extended it to subcubic graphs (i.e., graphs with
maximum degree 3). Indeed, Lemma 10 yields a removable pair-
ing with |R| ≥ 2(|E| − |S|) − 1, because all non-tree edges, except
possibly one incident to the root, can be paired with tree edges
if the graph is subcubic. Theorem 11 yields a tour with at most
4
3 |E| −

2
3 |R| =

4
3n −

2
3 edges. This is best possible, e.g. for graphs

that consist only of three internally vertex-disjoint paths of the same
length and with the same endpoints.

(21) refined the techniques of (11); they can compute a tour of
length less than ( 4

3 −
1

61236)n in any cubic graph in polynomial time.

4.4 Removable pairing via circulation

(53) showed how to find a good removable pairing in general graphs
by a network flow approach, somewhat similar to Theorem 8. The
idea again to start with a DFS tree and include some of the non-tree
edges to make the subgraph 2-vertex-connected, but use as few as
possible non-pairable edges.

First the input graph G is transformed into a flow network D as
follows (cf. Figure 5). Let (V, S) be again a DFS tree, rooted at r .
Note that r has degree 1 because G is 2-connected. Orient all tree
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r

Figure 5. Flow network D in which we look for a circulation. Tree arcs (except the

one incident to r ) require at least one unit of flow. New vertices ie (e ∈ S) are

shown as squares.

edges away from r and all non-tree edges towards r . Subdivide each
arc e ∈ S by a vertex ie. For each non-tree arc (v,w) add an arc
(v, ie), where e is the first edge on the w-v-path in (V, S).

Let l((v, ie)) := 1 for each v ∈ V \ {r} and e ∈
δ+S (v), and l(e) := 0 for all other arcs in D. Let c(f) :=∑
e∈S max{0, f (δ−(ie))− 1}. (53) proved:

Lemma 12. Let f be an integral circulation in D with f ≥ l. Then one

can construct a tour with at most 4
3n+

2
3c(f)−

2
3 edges in O(n3) time.

Proof. Let B be the set of non-tree edges that correspond to edges
in D with positive flow. (V, S ∪ B) is 2-vertex-connected. Let C :=
{e = (v,w) ∈ S : v 6= r , f(δ−(ie) \ {(v, ie)}) > 0} be the set of
tree edges that can be paired (with a non-tree edge). Define a re-
movable pairing in G by R := B∪C and letting P contain a pair P for
each element of C: for e ∈ C choose an e′ ∈ B that corresponds to
an edge in δ−(ie) and let P = {e, e′}. By Lemma 10, (R,P) is indeed
a removable pairing.

Now we apply Theorem 11 and obtain a tour with at most
4
3 |S ∪ B| −

2
3 |R| =

4
3 |S| +

2
3 |B| −

2
3 |C| =

4
3 (n − 1) + 2

3c(f) +
2
3

edges.

An integral circulation in D with f ≥ l and c(f) minimum can be
found in O(n3) time. To bound the cost, (53) (and then also (55))
proceeded as follows.

1. Compute an optimum basic solution x of (6), with c ≡ 1 (in
fact, (53) and (55) used (7) instead, but using (6) simplifies the
proof; cf. Proposition 6).

2. Compute a DFS tree (V, S) by choosing a root arbitrarily and
following always an edge e with maximum xe to an unvisited
vertex.

3. Define the following fractional circulation f ′ in the associated
flow network (D, l): For each e ∈ E \ S send xe units of flow
along the fundamental cycle of e (the circuit in D correspond-
ing to the unique circuit in (V, S ∪ {e})).

4. For each v ∈ V \ r and e ∈ δ+(v) with f ′(v, ie) < 1, send
1 − f ′(v, ie) units of flow along any fundamental cycle con-
taining e; this circulation is called f ′′. Let f := f ′ + f ′′. Then
f ≥ l.

(53) proved c(f) ≤ (4
√

2− 3)x(E)− (6
√

2− 6)n. (55) improved
the analysis and obtained c(f) ≤ 5

3x(E)−
3
2n. The heart of his proof

consists of showing that for each v ∈ V \ {r} the contribution of
the edges in Bv := {e ∈ δ−(v) : xe > 0} to c(f) plus the extra flow
added for v in step 4 is at most 1

6 |Bv | +
5
6 (x(δ(v)) − 2); the re-

sult then follows from summation, using the fact that x has at most
2n− 3 nonzero variables (cf. Section 2.9).

We do not know whether Mucha’s bound is tight. Together with
Lemma 12 it directly yields a 13

9 -approximation algorithm for the
GRAPHIC TSP: we get a tour with at most 4

3n+
10
9 x(E)−n edges.

In the case that x in Step 1 is half-integral, we actually get a 4
3 -

approximation (as observed by (53)): we may assume that the sup-
port graph is 2-connected (otherwise consider its blocks separately);
then f ′′ ≡ 0 and c(f) = 0. This is particularly interesting because
(63) conjectured that the worst case for the integrality ratio occurs

when x is an optimum fractional perfect simple 2-matching (and
hence w.l.o.g. half-integral).

5 Using ear-decompositions and matroids

5.1 Ear-decompositions

An ear-decomposition of a connected graph G = (V, E) is a sequence
P0, P1, . . . , Pk of subgraphs of G such that P0 consists of a single ver-
tex, {E(P1), . . . , E(Pk)} is a partition of E, and for i = 1, . . . , k, either
Pi is a path with exactly its endpoints in V(P0) ∪ · · · ∪ V(Pi−1) or
Pi is a circuit with exactly one of its vertices (called its endpoint) in
V(P0)∪ · · · ∪ V(Pi−1).

The vertices of an ear that are not endpoints are called its internal

vertices. The length of an ear is the number of its edges; this is always
the number of internal vertices plus one. An ear is called trivial if it
has length 1, otherwise nontrivial. We call an ear short if it has length
2 or 3, otherwise long. An ear is called odd if its length is odd, oth-
erwise even. The number of ears is always |E| − |V | + 1. See Figure
6, left-hand side, for an example.

(68) observed that a graph is 2-edge-connected if and only if it
has an ear-decomposition. Hence computing an ear-decomposition
with minimum number of nontrivial ears is equivalent to finding the
smallest 2-edge-connected spanning subgraph (2ECSS); this problem
is NP-hard. However, the number of even ears can be minimized in
polynomial time. This is a fundamental result of (32) (also proved in
Schrijver’s [2003] book):

Theorem 13. Let G = (V, E) be a 2-edge-connected graph. Letϕ(G)

denote the minimum number of even ears in any ear-decomposition of G.

Then for any T ⊆ V such that |T | is even, there exists a T -join in G

with at most 1
2 (|V | +ϕ(G)− 1) edges. Moreover, there exists a T ⊆ V

such that |T | is even and the minimum cardinality of a T -join in G is
1
2 (|V | + ϕ(G) − 1). Such a T and an ear-decomposition with ϕ(G)

even ears can be found in O(|V ||E|) time.

Any 2-edge-connected spanning subgraph (2ECSS) of G has at
least ϕ(G) ears in any ear-decomposition. Hence any 2ECSS, and
thus any tour, has at least n − 1+ϕ(G) edges. (17) used Theorem
13 to strengthen this statement. Let

LP(G) := min{x(E) : x ≥ 0, x(δ(U)) ≥ 2 (∅ 6= U ⊂ V)}. (9)

Note that (9) is the special case of (7) for c(e) = 1 for all e ∈ E,
and LP(G) is a lower bound on the length of an optimum tour.

Corollary 14. For any 2-edge-connected graph G we have

Lϕ := n− 1+ϕ(G) ≤ LP(G).

Proof. By Theorem 13 there exists a set T of vertices such that |T |
is even and 1

2 (n− 1+ϕ(G)) is the minimum cardinality of a T -join
in G. Now observe that (4) is at most half of (7).
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Figure 6. Left: A graph G with an ear-decomposition. The internal vertices of the

i-th ear are labelled i. We have ϕ(G) = 2; ears 1 and 5 are even. Ears 3, 4, 5,

and 6 are short; they are all pendant. Dotted edges are trivial ears. Right: Trivial

ears are deleted, and a removable pairing (R,P) with |R| = 8 and |P| = 2 as in

the proof of Theorem 15 is shown.
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5.2 Applying the Mömke-Svensson lemma to ear-decompositions

Let us call an ear pendant if none of its internal vertices is endpoint of
any nontrivial ear. By applying Theorem 11 to an ear-decomposition
of a graph G, (66) observed:

Theorem 15. Given a 2-vertex-connected graph G with an ear-

decomposition with π pendant ears and no trivial ears, one can construct

a tour with at most 4
3 (n− 1)+ 2

3π edges in O(n3) time.

Proof. Define a removable pairing by taking an arbitrary edge of each
pendant ear, and for each other ear a pair of its edges, incident to a
common vertex that is endpoint of another ear. If k = |E| − |V | + 1

denotes the number of ears, we have |R| = 2k − π . Theorem 11
yields a tour with at most 4

3 |E| −
2
3 |R| =

4
3 (n− 1)+ 2

3π edges.

See Figure 6 for an example. This bound is good if there are few
pendant ears. Otherwise we need something else. It turns out that
long pendant ears are easy to deal with, but short pendant ears re-
quire care.

5.3 Nice and nicer ear-decompositions

Frank’s Theorem 13 was also used by (17) and (66) as a starting point
to obtain a nice ear-decomposition. An ear-decomposition is called
nice if it has ϕ(G) even ears, all short ears are pendant, and there
is no edge joining internal vertices of different short ears. (Figure 6,
left-hand side, displays a nice ear-decomposition.)

Lemma 16. Given a 2-vertex-connected graph, one can compute a nice

ear-decomposition in polynomial time.

A nice ear-decomposition allows for optimizing the short ears in
the following sense. Let M contain for each short ear the set of its
internal vertices (cf. Figure 7, left-hand side). For f ∈ M we denote
by Ef the set of pairs {v,w} such that G contains a path from v

to w whose set of internal vertices is f . We will pick an ef ∈ Ef
for each f ∈ M such that (V, {ef : f ∈ M}) has as few connected
components as possible.

Equivalenty, we pick an ef ∈ Ef for each f ∈ M such that the
rank of {ef : f ∈ M} in the graphic matroid is maximum. Denote
this maximum by µ. By Rado’s [1942] Theorem,

µ = min
{
r
(⋃

i∈I Ei
)+ |M \ I| : I ⊆ M}. (10)

(In the example of Figure 7, |M| = 4, µ = 3 and I = {5,6} attains the
minimum.) The maximum can be found by an algorithm for matroid
intersection. (66) found an O(|V ||E|)-time algorithm.

We then replace the short ear with internal vertices f by a path
with internal vertices f and endpoints ef , for each f ∈ M . This
may change the set of trivial ears, but the ear-decomposition re-
mains nice. Let VM denote the union of the sets in M (i.e., the set of
internal vertices of short ears). We have:

Theorem 17. Let G be a 2-connected graph with a nice ear-decompo-

sition. Then we can compute in polynomial time another nice ear-

decomposition of G such that (V, F), where F contains all edges of short

ears, has |V | − |VM | − µ connected components. �
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Figure 7. Left: Optimizing the ear-decomposition of Figure 6. The elements of M

are the gray sets. Here only ear 4 needed to be replaced. Right: The cuts in the

proof of Theorem 18.

We also get another lower bound:

Theorem 18. Let G be a 2-connected graph with a nice ear-decompo-

sition with |M| short ears. Then

Lµ := n− 1+ |M| − µ ≤ LP(G).

Proof. Let I be a set attaining the minimum in (10). Let U be the
partition of V such that for each f ∈ I there is a U ∈ U with f ⊆ U
and ef ⊆ U for all ef ∈ Ef , and |U| = |V | − |VI | − r(

⋃
i∈I Ei). By

Rado’s Theorem (cf. (10)) we have |U| = |V | − |VI| − µ + |M \ I|.
Consider the family of sets U ∪ I .∪ {{v} : v ∈ VI}, taking sin-

gletons in I twice. Summing over the inequalities x(δ(U)) ≥ 2 for
these sets U (unless U = V ) completes the proof because no edge
is contained in more than two of these at least n − 1 + |M| − µ
cuts.

See Figure 7 (right-hand side) for an illustration. The set F in The-
orem 17 consists of the black edges in Figure 8, left-hand side.

5.4 The 7
5 -approximation algorithm

Now we can explain the 7
5 -approximation algorithm for the

GRAPHIC TSP by (66). Let ΛG := 2
3Lµ +

1
3Lϕ . Note that ΛG is a

lower bound on the optimum and in fact on LP(G), and ΛG ≥ n− 1

(cf. Corollary 14 and Theorem 18). We first show:

Lemma 19. Let G be a 2-vertex-connected graph with a nice ear-

decomposition that has no trivial ears and for which the union of all short

ears have |V |−|VM|−µ connected components. Then one can compute

a tour in G with at most 7
5Λ edges in O(n3) time.

Proof. If π ≤ Λ
10 , apply Theorem 15 and obtain a tour with at most

4
3 (n− 1)+ 2

3π ≤
7
5Λ edges.

Otherwise take all |Vπ |+π edges of pendant ears, where Vπ de-
notes the internal vertices of pendant ears. Add at most n− |Vπ | −
µ − 1 edges of G[V \ Vπ ] to obtain a connected spanning subgraph.
Let T ⊆ V \ Vπ be the set of vertices with odd degree in this sub-
graph. Then add a minimum T -join in G[V \ Vπ ]; by Theorem 13 it
has at most 1

2 (n−|Vπ |−1+ϕ−ϕπ) edges. Summing up, our tour
has at most π+n−µ−1+1

2 (n−|Vπ |−1+ϕ−ϕπ) edges. Observing
|Vπ | ≥ 4π − 2|M| −ϕπ , this is at most Lµ + 1

2Lϕ −π ≤
7
5Λ.

Figure 8 illustrates the second part of this proof for the ear-
decomposition in Figure 7 (left-hand side).

The overall algorithm is now easily described:
1. Compute a nice ear-decomposition of G (Lemma 16).
2. Optimize the short ears (Theorem 17).
3. Delete all trivial ears.
4. Apply Lemma 19 to each block of the remaining graph.

It is not difficult to show that the sum of the lower bounds Λ for
all blocks equals the lower bound Λ for G. This implies that we have
a 7

5 -approximation algorithm.
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Figure 8. Left: The edges of pendant ears after optimizing short ears (black) and

a minimal set of edges of non-pendant ears (gray) to make a connected spanning

subgraph. Right: For correcting parities we need three more edges; a possible

resulting tour is shown.
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6 The path version and connected T -joins

What if we do not require the walk to be closed? Then we look
for a (Hamiltonian) path in the metric closure. We assume that the
endpoints are given (otherwise we can try all pairs, or take a tour
and delete one edge) and distinct: the path must begin in s and end
in t (where s, t ∈ V and s 6= t). For any of the problems studied in
this paper, this variant is called the s-t-path version or simply the path

version.

6.1 Asymmetric path version

Obviously, any ρ-approximation for the s-t-path version implies a ρ-
approximation algorithm for the ASYMMETRIC TSP itself: just guess
any edge (t, s) in an optimum solution (fix s and try all n−1 possibil-
ities for t). (29) showed that the opposite also holds approximately:
any ρ-approximation for the ASYMMETRIC TSP implies a (2+ ǫ)ρ-
approximation algorithm for the path version.

6.2 Undirected path version and connected T -joins

In the undirected case, if we ask for a walk from s to t, by Section
1.3 this is equivalent to ask for a connected spanning multi-subgraph
in which s and t have odd degree and all other vertices have even
degree. It is natural to generalize this further to prescribe arbitrary
parities: the CONNECTED T -JOIN PROBLEM asks for a set F such
that (V, F) is a connected graph and F is a T -join. We call such a set
F simply a connected T -join, or a T -tour. Again, F may contain pairs
of parallel edges.

For T = ∅ this is the SYMMETRIC TSP, and for T = {s, t} this
is its s-t-path version. Again we may consider the GRAPHIC spe-
cial case, where all edges of F must be copies of edges of the input
graph.

Christofides’ [1976] algorithm also works for the CONNECTED
T -JOIN PROBLEM: take a minimum spanning tree (V, S) and add a
minimum-weight TS -join, where TS is now the set of vertices whose
degree in (V, S) has the wrong parity (so S is a (TS△T)-join).

However, this generalization of Christofides’ algorithm is only a 5
3 -

approximation algorithm ((43; 66)). To see this, let (V, S) be a min-
imum spanning tree. Let J be a minimum weight TS -join, and J∗ an
optimum solution (a minimum weight connected T -join). Then S

.∪
J∗ is a TS -join. Since both S and J∗ are connected, each contains
a TS -join; so S

.∪ J∗ can be partitioned into three TS -joins. Hence
3c(S

.∪ J) ≤ 3c(S)+3c(J) ≤ 3c(S)+c(S .∪ J∗) = 4c(S)+c(J∗) ≤
5c(J∗). The bound is tight even for |T | = 2 ((43)), as the graphs
({0, . . . ,3k}, {{i, i + 1} : 0 ≤ i < 3k} ∪ {{3i,3i + 3} : 0 ≤ i < k})
show.

(66) showed that their techniques (outlined in Section 5 above)
also lead to a 3

2 -approximation algorithm for the GRAPHIC CON-
NECTED T -JOIN PROBLEM. Previously, there were only algo-
rithms for the special case |T | = 2; here the best was the 1.578-
approximation algorithm of (2).

6.3 Best-of-many Christofides’ algorithm

(2) also found a 1.619-approximation algorithm for the path ver-
sion (|T | = 2) with general weights. This was the first improve-
ment of Christofides’ algorithm that is not restricted to the graphic
special case. This algorithm was generalized by (16); they obtain an
approximation ratio of 1.625 for |T | ≥ 4. Then (65) obtained an
8
5 -approximation algorithm for arbitrary T and general weights.

All these three papers analyze essentially the same algorithm,
which (2) called best-of-many Christofides: it computes an optimum
solution to a natural LP relaxation (see (11) below) and writes it as
convex combination of spanning trees (plus a nonnegative vector).
For each of these spanning trees, S , we again compute a minimum
weight TS -join J, where TS is the set of vertices of S whose degree

has the wrong parity, and output the best of these T -tours S
.∪ J.

Following (66) and (65), we consider the LP relaxation

min c(x)

subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V, |U ∩ T | even)
x(δ(W)) ≥ |W|−1 (W partition of V)

xe ≥ 0 (e ∈ E)
(11)

Here δ(W) denotes the set of edges with endpoints in different
classes of the partition W . For an optimum solution x (in fact for
every feasible solution) we can write x ≥ ∑S∈S pSχS , where again
S denotes the set of edge sets of spanning trees, χS denotes the
incidence vector of S , and pS ≥ 0 for all S ∈ S and

∑
S∈S pS = 1.

((2) and (16) work in the metric closure and use a stronger LP in
order to obtain x = ∑S∈S pSχS , but this is not necessary.)

By Carathéodory’s theorem we can assume that pS > 0 for less
than n2 spanning trees (V, S). An optimum LP solution x, such
spanning trees, and such numbers pS can be computed in poly-
nomial time, as can be shown with the ellipsoid method. For each
S ∈ S with pS > 0, the algorithm computes a minimum weight
TS -join J and consider the T -tour S

.∪ J; we output the best of
these. Its cost is minS∈S:pS>0(c(S) +min{c(J) : J is a TS -join}) ≤∑
S∈S pS(c(S)+min{c(J) : J is a TS -join}) ≤ c(x)+∑S∈S pSc(yS),

for any set of vectors (yS)S∈S such that yS is in the TS -join poly-
hedron (cf. (4)). The difficulty in the analysis lies in finding an appro-
priate set of vectors (yS)S∈S .

6.4 Analysis

Let Q := {Q = δ(U) : ∅ 6= U ⊂ V, x(Q) < 2}. (2) proposed to
choose yS := (1 − 2β)χS + βx + rS , where β ≤ 1

2 and rS is a
nonnegative vector satisfying

rS(Q) ≥ 4β− 1− βx(Q) (12)

for all S ∈ S and all Q ∈ Q with |Q∩ S| ≥ 2.
Then for each S ∈ S and each TS -cut Q we have yS(Q) ≥ 1.

Indeed, if Q ∉ Q, then yS(Q) ≥ (1 − 2β)|S ∩ Q| + βx(Q) ≥
1− 2β+ 2β = 1. If Q ∈ Q, then Q is not only a TS -cut but also a T -
cut, so |Q∩S| is even and hence at least two, and we have yS(Q) =
(1− 2β)|Q∩ S| +βx(Q)+ rS(Q) ≥ 2− 4β+βx(Q)+ rS(Q) ≥ 1.

So yS is in the TS -join polyhedron for all S ∈ S. Moreover,∑
S∈S pSc(yS) ≤ (1−2β)

∑
S∈S pSc(S)+βc(x)+

∑
S∈S pSc(rS) ≤

(1− β)c(x)+∑S∈S pSc(rS).
(2) chose β = 1/

√
5 and found a vector r such that rS = r for all

S ∈ S satisfies (12) and c(r) ≤ (7√5− 15)/10, yielding the approx-
imation ratio (1+√5)/2 (the golden ratio).

(65) improved this by letting vQ := ∑
S∈S:|Q∩S|=1 pSχ

Q∩S for
Q ∈ Q, and

rS :=
∑

Q∈Q:|Q∩S|≥2

max

{
0,

4β− 1− βx(Q)
2− x(Q)

}
vQ.

Note that vQ(Q) = ∑
S∈S:|Q∩S|=1 pS ≥ 2 − ∑S∈S pS |Q ∩ S| ≥

2− x(Q). To show (12), simply observe that for S ∈ S and Q ∈ Q
with |Q∩ S| = 2 we have rS(Q) ≥ 4β−1−βx(Q)

2−x(Q) vQ(Q).
We now bound the cost. Note that

∑
S∈S:|Q∩S|≥2 pS ≤ x(Q) − 1

for Q ∈ Q. Using this, we obtain the bound
∑
S∈S pSc(rS) ≤∑

Q∈Q(x(Q) − 1)max
{

0, 4β−1−βx(Q)
2−x(Q)

}
c(vQ) ≤ ∑

Q∈Q
1
9c(v

Q) =
1
9

∑
S∈S pS

∑
Q∈Q:|Q∩S|=1 c(Q∩ S) ≤ 1

9

∑
S∈S pSc(S \ JS), where JS

denotes the unique subset of S that is a TS -join.
Let β = 4

9 . If
∑
S∈S pSc(S \ JS) ≤ 2

5c(x), we have∑
S∈S pSc(yS) ≤ (1 − 4

9 + 2
45)c(x) = 3

5c(x). Otherwise∑
S∈S pSc(JS) ≤ 3

5c(x), and noting that χJS is in the TS -join
polyhedron, we get the same bound. This gives Sebő’s [2012] 8

5 -
approximation algorithm.
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7 Further results

We briefly mention some other related results. However, it is im-
possible to mention all important results here.

7.1 Inapproximability

(50) proved that no 185
184 -approximation algorithm exists for the

SYMMETRIC TSP unless P = NP. (57) proved that no 118
117 -

approximation algorithm exists for the ASYMMETRIC TSP unless
P =NP.

7.2 Integrality Ratios

We have seen in Section 2.2 that the integrality ratio of (2) is at least
4
3 even for graphic metrics. The integrality ratio of (2) is conjectured
to be exactly 4

3 even for general metrics, but this so-called TSP- 4
3 -

conjecture is open; we only know Wolsey’s [1980] upper bound 3
2 in

general (cf. Section 2.5) and the upper bound 7
5 for graphic metrics

by (66) (cf. Section 5).
The TSP- 4

3 -conjecture is supported by computational verification
for n ≤ 12 ((10)) and by theoretical work of (37), who proved that
for any instance with ratio greater than 4

3 even the LP that arises
from (7) by adding many classes of inequalities that are valid for the
graphical traveling salesman polyhedron does not have an integral
optimum solution.

(63) showed that the worst ratio of an optimum perfect 2-
matching over (2) is 10

9 , as conjectured by (9).
For (6) and (7), the integrality ratio is between 6

5 and 3
2 ((1)).

(12) conjectured it to be 4
3 . The ratio restricted to unit weights is

between 9
8 and 4

3 ((66)).
The integrality ratio of the asymmetric subtour LP is at least

2 (shown by (14), disproving a conjecture of (13)) and at most
2+ 8 lnn/ ln lnn ((5)). The same holds for the path version ((34)).

7.3 Further special cases

An even more special case than the GRAPHIC TSP is the 1-2-TSP,
in which c(v,w) ∈ {1,2} for all v,w ∈ V . To see that this is essen-
tially a special case of the GRAPHIC TSP (up to an additive constant
of 1), add a vertex x and consider the graph (V ∪{x}, {{v,x} : v ∈
V} ∪ {{v,w} : v,w ∈ V,u 6= v, c(v,w) = 1}) The 1-2-TSP has
an 8

7 -approximation algorithm ((7)) but no 744
743 -approximation algo-

rithm ((27)). The integrality ratio of (2) for the 1-2-TSP is between
10
9 and 19

15 ((59)).
In the special case of the GRAPHIC TSP where the instance is a

k-regular graph (with k large), (67) showed how to find a tour of
length at most (1+

√
64/ lnk)n in polynomial time.

7.4 Geometric instances and planar graphs

(4) found an approximation scheme for geometric instances. Here,
each city is associated with a point in Rd, and the distances are ℓp-
distances. This case is also NP-hard, for any fixed d ≥ 2 and any p.
The most prominent case d = p = 2 is called the EUCLIDEAN TSP
(see also (52)). (61) improved the running time: for every fixed ǫ > 0

they have a (1+ ǫ)-approximation algorithm that runs in O(n logn)

time. However, the constants involved are still quite large for rea-
sonable values of ǫ, and thus the practical value seems to be limited.
(6) found a randomized approximation scheme for metric spaces
with bounded doubling dimension.

For planar graphs with nonnegative edge weights, (48) found an
approximation scheme that has linear running time for every fixed
ǫ > 0. An approximation scheme exists even for bounded genus
graphs ((23)).

Interestingly, it is not known whether the decision version of the
EUCLIDEAN TSP belongs to NP.

7.5 Polyhedral Descriptions

Many classes of facets of the TSP polytope have been discovered,
but a complete description is out of reach. Recently, (31) proved
that every polyhedron that projects to the TSP polytope (i.e., any
extended formulation) has 2Ω(n

1/4) facets. It may not be surprising
that the TSP has no compact extended formulation, but this was
not known before, and this result is unconditional (i.e., it does not
assume P 6= NP). The proof reveals an interesting connection to
communication complexity.

7.6 The 2ECSS problem

The integral solutions to (6) are the 2-edge-connected spanning sub-
graphs (2ECSS). (54) showed that the smallest 2ECSS can be smaller
than the shortest tour by up to a factor 4

3 ; this also follows directly
from applying Theorem 11 to each block of a smallest 2ECSS. The
bound is tight as Figure 2 shows.

(66) observed that the techniques of Section 5 directly imply a 4
3 -

approximation algorithm for the (unweighted) 2ECSS problem. In-
deed, if π ≥ 1

6 LP(G), the second case of the proof of Lemma 19
yields a tour (and hence a 2ECSS) of length 4

3 LP(G). Otherwise one
can simply take all k nontrivial ears: we get n−1+k edges, and this
is at most 5

4Lϕ +
π
2 since n− 1 ≥ 4k− 2π −ϕ(G).

Better approximation ratios have been claimed, but no complete
proof has been published. (30) proved that the problem is MAXSNP-
hard. For the weighted case, (47) found a 2-approximation algorithm,
which is still the best known.

(66) also showed the following: if there is a ρ-approximation algo-
rithm for the unweighted 2ECSS problem, then there is a 2

3 (ρ + 1)-
approximation algorithm for the GRAPHIC TSP.

8 Open problems

We conclude this survey by listing some open research problems
that we consider important. Almost all of these problems have been
formulated earlier, and indeed most of them are very natural. None
of them seems to be easy. However, given the remarkable progress
that has been made during the last few years, one may hope that we
will see some solutions soon.

1. Improve Christofides’ algorithm: find a ρ-approximation algo-
rithm for the SYMMETRIC TSP for some ρ < 3

2 .
2. Find a constant-factor approximation algorithm for the

ASYMMETRIC TSP, or at least the special case in which a
strongly connected digraph (V, E) is given and c(v,w) = 1 if
(v,w) ∈ E and c(v,w) = ∞ otherwise (one might call this
the DIGRAPHIC TSP).

3. Determine the integrality ratio of the subtour relaxation (2)
of the SYMMETRIC TSP.

4. Prove a better bound on the integrality ratio for another
(polynomial-time solvable) LP relaxation of the SYMMETRIC
TSP.

5. Solve the LPs (2), (6), (7), and (8) by combinatorial algorithms.
6. Answer the question whether the integrality ratio of the di-

rected subtour relaxation (8) is bounded by a constant.
7. How good is the best-of-many Christofides’ algorithm (cf.

Section 6.3) really; i.e., what is the worst case? The answer
can of course be different for T = ∅ (the SYMMETRIC TSP)
and for general T .

8. Improve the lower bounds on the approximability substan-
tially.

9. Find a 4
3 -approximation algorithm for the GRAPHIC TSP.

10. Find a 3
2 -approximation algorithm for the CONNECTED T -

JOIN PROBLEM with arbitrary nonnegative weights, at least
in the special case |T | = 2.
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11. Improve on the 2-approximation algorithm for the weighted
2ECSS problem. Note that Wolsey’s analysis (Section 2.5)
shows that Christofides’ algorithm is also a 3

2 -approximation
algorithm for the variant of the 2ECSS problem where dou-
bling edges is allowed. However, in contrast to the unweighted
special case, allowing to double edges really changes the prob-
lem.
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Discussion Column

Michel X. Goemans

Thinness Spurs Progress

In his article, Jens Vygen has discussed at length the recent devel-
opments that have occurred in the last two to three years in the
world of approximation algorithms for the Traveling Salesman Prob-
lem, both in the symmetric and asymmetric case. In this discussion
column, let me simply add a few comments mostly for the asymmet-
ric case.

I will start by addressing some of the criticisms that have
been directed towards approximation algorithms. One may wonder
whether a real traveling salesman or the designer of circuit boards
or a transportation company which routinely solves TSP problems
would be satisfied or happy with tours 33.3 % more costly than opti-
mal in the symmetric case, or even a much larger factor in the asym-
metric case. I doubt so, and I wouldn’t either if I was in the sales-
man’s shoes (although I have to confess that, as a traveling professor,
I tremendously enjoy taking detours . . . ). However, the renewed in-
terest and the focus in the last few years as discussed in Vygen’s arti-
cle have been on understanding how to derive good tours from the
optimum solution of the Held-Karp lower bound (obtained by opti-
mizing over the symmetric or asymmetric subtour polytope), and I
think this is a very important endeavor. The Held-Karp lower bound
has been known to be very close to optimal (both for symmetric and
asymmetric instances) and being able to round well such solutions
to tours may have not just an impact for theoreticians interested
in the approximability of the problem but also to practitioners. At
a recent workshop devoted to the TSP in Corsica, Denis Naddef
mentioned open problems he would like to be solved before he re-
tires. Before my own retirement, I would love to see an algorithm
which efficiently rounds the solution to the Held-Karp bound and
produces a tour which on most typical instances is within 1 or 2 %
of optimal and never more than 4/3 of the optimal (without simply
running in parallel two algorithms and taking the best solution . . . ).
We are not there yet (no definite retirement plans yet . . . ), but I am
happy to see a lot of young talent getting interested in the problem. I
personally have been interested in the Held-Karp lower bound since
learning about its conjectured worst case of 4

3 in a class taught by
Laurence Wolsey in the mid 80’s (while an undergraduate at UCL in
Belgium) and from David Shmoys a few years later (while a graduate
student at MIT). In Wolsey’s paper (77) on using linear programming
for the analysis of heuristics in which he proves that the integrality
gap for the Held-Karp lower bound is at most 3/2, he raises the
issue of the exact worst-case gap and mentions that, at that time (in
1980), the worst gap he is aware of is 8/7.

As emerges from Vygen’s article, the worst-case quality of the
Held-Karp lower bound is much more elusive in the asymmetric
case (ATSP) than in the symmetric case, and so is the approxima-
bility of the associated problems. Charikar, Karloff and I (73) have
constructed a family of ATSP instances for which the integrality gap
is arbitrarily close to 2, but interestingly, these instances have a num-
ber of vertices exponential in 1

ǫ to achieve a gap of 2−ǫ. In contrast,
in the symmetric setting, one only needs a number of vertices linear
in 1

ǫ to achieve 4
3 − ǫ for the 3-path configuration. For many other

combinatorial optimization problems, this linear growth in 1/ǫ is
quite typical, and so this exponential growth is rather peculiar.

There is an ocean between this lower bound of 2 on the integral-
ity for ATSP and the best known upper bound of O(logn/ log logn)

where n = |V |, proved recently in joint work with Asadpour et al.
(71), and improving upon a long sequence of logarithmic bounds.
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From this work (see Vygen’s article), a key question surfaces. Is
there an α > 1 (independent of the size of the graph) for which
the following holds (with the same notation as in Vygen’s article)?

Given an undirected graph G and a point x in its spanning
tree polytope, we can find a spanning tree T of G such that
|δT (U)| ≤ αx(δ(U)) for all U ⊂ V .

This factor α is called the thinness of the spanning tree (with respect
to x). If we were focusing on singleton cuts, we would want to
construct a spanning tree satisfying some given upper bounds on its
degrees, and this was the motivation behind my work on bounded-
degree spanning trees (75). If we take a complete graph G on n
vertices and a uniform point x (with xe = 2

n for all edges e) then
looking at singleton cuts are enough: A spanning tree with maximum
degree ∆ is indeed (better than) ∆-thin. Similarly if x was uniform
on an expander graph, but in general, one has to consider all cuts.

A constructive/algorithmic answer to the above question (with
α independent of n) would give an approximation algorithm with a
constant approximation factor for the ATSP, answering a longstand-
ing open question. How does thinness come into play in the approx-
imability of ATSP? Although details were given in Vygen’s article,
let me highlight informally the key reason. One easy way to obtain
an Eulerian (i.e., with equal indegree and outdegree at every vertex)
directed graph is to start from a weakly connected subgraph (a span-
ning tree, for example) and then augment it at minimum cost into an
Eulerian directed graph. Indeed, this augmentation subproblem is an
easy minimum cost flow problem (see (71; 76)). However, the cost
of this min-cost flow augmentation can be upper bounded linearly in
terms of the thinness of the spanning tree we started from, hence
the incentive for the tree to be on a diet.

Let us go back to the question of finding a thin tree. As any el-
ement x in the spanning tree polytope can be expressed (in many
ways) as a convex combination of spanning trees, we could try study-
ing the thinness of spanning trees in such a convex combination. Any
convex combination can also be interpreted as a probability distribu-
tion with given marginals x. If this probability distribution is negatively

correlated – i.e., for all F ⊂ E, we have P[F ⊆ T] ≤ ∏e∈F P[e ∈ T]
where T is a random spanning tree – then one can show (see Vy-
gen or (71)) that the spanning tree T is O(log(n)/ log log(n))-thin
with high probability. There are several ways of obtaining a negatively
correlated distribution with marginals x, and hence several ways of
deriving a O(log(n)/ log log(n))-approximation algorithm for ATSP.
Asadpour et al. (71) uses a distribution with the probability of span-
ning tree T being proportional to

∏
e∈T λe for a vector λ approx-

imately equal to the optimum Lagrange multipliers for the convex
program of maximizing the entropy of the distribution. Proving that
this vector λ can be found efficiently is somewhat tricky. There are
two other ways I am aware of that give a negatively correlated dis-
tribution with given marginals; both of these can be applied as well
to any matroid polytope while the maximum entropy approach fails
to give a negatively correlated distribution for some matroids. One
way is mentioned in Vygen’s article and uses the randomized swap
rounding approach of Chekuri, Vondrák and Zenklusen (74). Yet an-
other way is inspired by the randomized pipage rounding approach
(72) as was explained to me by Rico Zenklusen. Let me describe it as
it is particularly simple, has never appeared in print, and is possibly
even more powerful than it appears. If one would like to express a
point x in a polytope P as a convex combination of extreme points
(a constructive version of Caratheodory’s theorem), one possibility
is to choose an arbitrary nonzero direction d within the minimal
face Fx containing x and shoot in the directions d and −d until one
would leave P , thereby obtaining two points y and z whose corre-
sponding minimal faces Fy and Fz have smaller dimensions than Fx .
The point x can then be expressed as a convex combination of y

and z and we can recurse (here, we do not care that such a convex
combination may have exponentially many terms). This is classical.
But instead of choosing an arbitrary direction within Fx , we can al-
ways impose that d is one of the edges of Fx , and thus of P . In the
case of the spanning tree polytope (or any matroid base polytope),
the edges of the polytope have all their components 0, except for
one +1 and one −1. If we always use such a direction, one can prove
by induction that the resulting probability distribution (convex com-
bination) is negatively correlated: If one has negatively correlated
distributions for y and z and they differ in only two components
then the resulting distribution for x is negatively correlated.

The notion of thinness discussed above allows the derivation of an
O(log(n)/ log log(n)) bound but may not be the easiest to handle
for further, significant improvements. Indeed, computing the thinness
of a tree amounts to solving a sparsest cut problem, for which the
current best approximation algorithm has an approximation factor
of O(

√
logn) (2012 Fulkerson prize winning paper (70)). One might

hope to generate a thin tree along with a certificate of thinness and
get around this (current) approximability limitation, but this might be
too much to ask. But there are other – this time, well-characterized
– notions of thinness that may lead to constant guarantees for ATSP.
For brevity (and to avoid further delaying this issue of Optima . . . ),
let me mention only one of them, that comes directly from the work
in (71). Instead of considering an undirected solution x (in the span-
ning tree polytope or a feasible solution to the symmetric subtour
polytope), consider a feasible solution y to the asymmetric subtour
polytope with support A. A weakly connected set T ⊆ A of arcs
(or, if minimal, a weakly connected tree) is directed α-thin with re-
spect to y if |δ+T (U)| − |δ−T (U)| ≤ α[y(δ+(U)) + y(δ−(U))] for
all U ⊂ V . On the left-hand-side, we have the imbalance of a cut in
our tree while on the right-hand-side we have the total value of y in
the cut defined by U . This directed thinness is a weaker notion (so
it should be easier to get thinner trees) and has the main advantage
that this directed thinness can be computed in polynomial time as
a network flow problem. Furthermore, being Eulerian, the solution
y really behaves like a symmetric solution: y(δ+(U)) = y(δ−(U))
and all properties of undirected cuts (cactus and polygon representa-
tion of minimum and approximately minimum cuts, splitting-off, etc.)
still hold. Producing a directed α-thin tree directly (without going
through the undirected notion) appears to be challenging but well
worth the effort as a constant α would give a constant approxima-
tion factor for ATSP.

In conclusion, I hope that this recent progress regarding the TSP
will lead to unlocking the secrets of the quality of the Held-Karp
lower bound for both the symmetric and asymmetric cases.

Michel X. Goemans, Department of Mathematics, Cambridge, MA 02139,

USA. goemans@math.mit.edu
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Prizes awarded at ISMP 2012
The Dantzig Prize

Committee: John Birge (Chair), Gerard Cornuejols, Yuri Nesterov,
Eva Tardos

The George B. Dantzig prize is awarded for original research,
which by its originality, breadth, and scope, is having a major impact
on the field of mathematical programming. The 2012 winners are
Professors

1. Jorge Nocedal from Northwestern University and
2. Laurence Wolsey from Université Catholique de Louvain

(UCL).
Jorge Nocedal has made fundamental contributions to the theory
of nonlinear optimization methods, has developed new algorithms
that expand the range of efficiently solvable optimization models,
and has created widely distributed software that enables new devel-
opments in numerous application areas. Laurence Wolsey has been
one of the most influential scholars in the field of mathematical opti-
mization, contributing significantly to foundational understanding of
the geometry of mixed integer programs, to duality theory in dis-
crete optimization, and to the development of effective new meth-
ods for a variety of applications, particularly in production planning
and scheduling.

The Beale-Orchard-Hays Prize

Committee: M. Ferris (Chair), P. Gill, T. Kelley, J. Lee.
In a unanimous decision, the selection committee for the Beale

Orchard Hays Prize for 2012 decided that the award be given to
Michael Grant and Stephen Boyd for the software CVX as described
in the following two papers:

1. CVX: Matlab software for disciplined convex programming,
version 1.21, http://cvxr.com/cvx, April 2011.

2. “Graph Implementations for Nonsmooth Convex Programs”
in Recent Advances in Learning and Control, V. Blondel, S.
Boyd and H. Kimura (eds), pp. 95–110, Lecture Notes in Con-
trol and Informational Sciences, Springer, 2008.

The nomination states that “CVX is a modeling language for convex
programming that has been implemented in Matlab. It also automat-
ically links to semidefinite solvers . . . CVX makes convex program-
ming as easy as Matlab makes matrix computation.” The committee
feels that this work is very well respected within our community
and is used extensively for both research and teaching at a number
of high-profile institutions. In particular, it provides a unique, well-
documented tool for prototyping and exploring existing and emerg-
ing applications of convex optimization.

The Fulkerson Prize

Committee: K. Aardal (Chair), Paul Seymour, Richard Stanley.
The award was given to three papers:
1. Sanjeev Arora, Satish Rao, and Umesh Vazirani, “Expander

flows, geometric embeddings and graph partitioning”, J. ACM,
56 (2009), 1–37.

2. Anders Johansson, Jeff Kahn, and Van Vu, “Factors in random
graphs”, Random Structures and Algorithms 33 (2008), 1–28.

3. Lászlo Lovász and Balázs Szegedy, “Limits of dense graph
sequences”, Journal of Combinatorial Theory Series B 96
(2006), 933–957.

Citations can be found at http://www.mathopt.org/?nav=fulkerson.

The Lagrange Prize in Continuous Optimization

Committee: T. Terlaky (Chair), K. Anstreicher, D. Goldfarb, T.
Liebling.

The Lagrange Prize was awarded to Emmanuel J. Candés and Ben-

jamin Recht for their paper “Exact matrix completion via convex op-
timization”, Foundations of Computational Mathematics 9 (2009),
717–772.

The paper of Candés and Recht was selected because of its ex-
position excellence, the current importance of the topic and the
impressive number of citations in three years. It also opens Semidef-
inite Optimization to a fascinating new field of applications and intro-
duces a very clever mathematical approach for proving probabilistic
tractability of certain NP hard problems.

Paul Y. Tseng Memorial Lectureship in Continuous

Optimization

Committee: S. Leyffer (Chair), D. Li, S. Ulbrich, N. Xiu.
The first recipient of Paul Y. Tseng memorial lectureship was Yinyu

Ye of Stanford University. Yinyu Ye has been at the forefront of con-
tinuous optimization and in particular research into interior-point
methods for over 20 years. His accomplishments span the breadth
of optimization including fundamental theoretical contributions into
interior-point methods, the development of semi-definite program-
ming software, and the promotion of novel applications of optimiza-
tions in economic markets and distance geometry.

In addition, Yinyu Ye has played a pivotal role in promoting opti-
mization research in the Asia-Pacific region. He was a founding edi-
tor of the Pacific Journal of Optimization and he has held numerous
honorary appointments at Chinese Universities, where he regularly
teaches popular tutorial lectures and supervises students.

A. W. Tucker Prize

Committee: D. Ralph (Chair), M. Anjos, F. Eisenbrand, B. Fortz, B.
Morini.

The Tucker Prize for an outstanding doctoral thesis has been
awarded to Oliver Friedmann, Department of Computer Science,
Ludwig-Maximilians-Universität in Munich, Germany, for his thesis
“Exponential Lower Bounds for Solving Infinitary Payoff Games and
Linear Programs.”

One of the most prominent mysteries in Optimization is the
question of whether a linear program can be solved in strongly-
polynomial time. A strongly polynomial-time method would be poly-
nomial in the dimension and in the number of inequalities only,
whereas the complexity of the known weakly-polynomial time algo-
rithms for linear programming, like the ellipsoid method or variants
of the interior-point method, also depend on the binary encoding
length of the input. The simplex method, though one of the old-
est methods for linear programming, still is a candidate for such
a strongly polynomial time algorithm. This would require the exis-
tence of a pivoting rule that results in a polynomial number of pivot
steps. Since the famous Klee-Minty example, many techniques for
deriving exponential lower bounds on the number of iterations for
particular pivoting rules have been found.

Some very important pivoting rules, however, have resisted a
super-polynomial lower-bound proof for a very long time. Among
them the Random-Facet pivoting rule and Zadeh’s pivoting rule.
Random-Facet has been shown to yield sub-exponential running
time of the simplex method independently by Kalai as well as by
Matousek, Sharir and Welzl.

Zadeh was a postdoc at Stanford in 1980, when he published
a technical report with his least-entered rule: enter the improving
variable that has been entered least often. In a hand-written letter

http://cvxr.com/cvx
http://www.mathopt.org/?nav=fulkerson
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to Viktor Klee he offered $1000 to the person who either showed
this rule to be a polynomial pivoting rule for the simplex method, or
provided a counterexample to it being a polynomial method. Conse-
quently, Zadeh’s rule is very well known in the linear-programming
community.

In his thesis, Oliver Friedmann has shown super-polynomial lower
bounds for pivoting rules in a groundbreaking way. The novelty of
his approach is to establish a connection from policy iteration for
2-player parity games and Markov decision processes to pivoting in
linear programs. In his paper Subexponential lower bounds for ran-
domized pivoting rules for solving linear programs, coauthored with
Hansen and Zwick (Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC’11, San Jose, CA, USA, 2011), Fried-
mann shows a super-polynomial bound on the Random-Facet pivot-
ing rule. This paper was awarded the prestigious STOC best paper
award. This line of work, initiated by Friedmann, shows that the
standard strategy iteration algorithm for parity games may require
an exponential number of iterations. By giving analogous results
for Markov decision processes, Friedmann extends super-polynomial
lower bounds to pivoting in linear programming.

The thesis of Friedmann lays out this connection of improve-
ment strategies for games and pivoting. Two of the most promi-
nent results are the aforementioned lower bounds for Random-
Facet and Zadeh’s rule. But, with this new connection, other piv-
oting rules that resisted super-polynomial lower-bound proofs have
also been shown to be non-polynomial, like the Random-Edge rule
and, in a recent publication of Friedmann, Cunningham’s rule as
well.

Oliver Friedmann is 27 years old (at the date of receiving the
Tucker Prize). His undergraduate, master’s-level and Ph.D. degrees
were all undertaken in the Department of Computer Science at the
Ludwig-Maximilians-Universität in Munich, and were completed in
2006, 2008 and 2011 respectively. His Ph.D. thesis was completed in
only 2.5 years under supervision from Martin Hofmann and Martin
Lange.

With his thesis, Friedmann has built bridges between so-far
seemingly unrelated fields, enriched optimization with novel ideas
and techniques and achieved groundbreaking results that settled

many longstanding open problems. This thesis truly deserves to be
awarded the Tucker Prize 2012.

The other two Tucker Prize finalists chosen by this year’s Tucker
Prize Committee are Amitabh Basu and Guanghui Lan.

Amitabh Basu obtained his undergraduate degree in Computer
Science and Engineering from the Indian Institute of Technology,
Delhi in 2004, and received an M.S. in Computer Science from Stony
Brook University in 2006. In May 2010, he finished a Ph.D. in Algo-
rithms, Combinatorics and Optimization from the Tepper School of
Business, Carnegie Mellon University advised by Gerard Cornuéjols.
He is currently a visiting assistant professor in the Department of
Mathematics at the University of California, Davis. The thesis of Basu
is entitled “Corner Polyhedra and Maximal Lattice-free Convex Sets:
A Geometric Approach to Cutting Planes”.

Guanghui Lan obtained his undergraduate degree in Mechanical
Engineering from the Xiangtan University, China, in 1996 and went
on to complete two master’s degrees, one in Mechanical Engineer-
ing at the Shanghai Jiao Tong University, China, 1999, and the other
in Industrial Engineering at the University of Louisville, Kentucky,
2004. In January 2009 he completed his Ph.D. in Industrial and Sys-
tems Engineering at Georgia Institute of Technology supervised by
Arkadi Nemirovski and co-advised by Renato Monteiro and Alexan-
der Shapiro. He is currently an Assistant Professor of Industrial and
Systems Engineering at the University of Florida. Lan’s dissertation
is entitled “Convex Optimization under Inexact First-Order Infor-
mation, concerns the design and complexity analysis of first-order
methods for solving convex optimization problems under a stochas-
tic oracle”.

The Tucker Prize Committee was both humbled and inspired the
large number of outstanding doctoral theses submitted. Beyond the
three finalists we would like to unofficially commend three nominees
for their truly superb work (in alphabetical order): 1. João Gouveia
for his 2011 PhD thesis “Geometry of Sums of Squares Relaxations”
at the University of Washington; 2. Fernando de Oliveira Filho for his
2009 PhD thesis “New Bounds for Geometric Packing and Coloring
via Harmonic Analysis and Optimization” at the University of Ams-
terdam; and Neil Olver for his 2010 PhD thesis “Robust Network
Design” at McGill University.

Many members of MOS may be aware that our Society’s Chair, Philippe Toint, turned 60 in April. As part of a year of celebrations, September’s IMA Conference on

Numerical Linear Algebra and Optimisation in Birmingham, UK, included a session dedicated to Philippe’s achievements. This was followed by a mass assembly of Philippe

Toint impersonators . . . see if you can spot the original! Orchestration by Coralia Cartis and Nick Gould, photograph by Michal Kocvara.

The celebrations will continue in Toulouse next July, see http://www.fondation-stae.net/fr/optimization-july2013.html.

http://www.fondation-stae.net/fr/optimization-july2013.html
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Springer Book Archives
Make your book part of this archiving initiative!

Have you already heard about the Springer Book Archives? On this
page you will find all relevant information to make sure that your
book will be included in this major initiative.

At this point you may be wondering what the Springer Book
Archives are all about. The archive will consist of high-quality dig-
ital versions of books from Springer (and about 40 imprints) pub-
lished between 1842 and 2005. It will include many titles that are
now out-of-print and make them available again, both online and
in print.

This project affirms our commitment to preserving valuable schol-
arly content. It will enable researchers all over the world to access
a wealth of information through their libraries. Your book plays an
important part in this effort!

How to include my work in the Springer Book Archives?

Please go to the URL
http://www.springer.com/authors/oba?SGWID=0-1726313-0-0-0
and follow the hints given there.

IPCO 2013

The 16th Conference on Integer Programming and Combinatorial
Optimization (IPCO XVI) will be held March 18–20, 2013, at Uni-
versidad Tecnica Federico Santa Maria in Valparaiso, Chile.

The IPCO conference is held every year, except for those in which
the International Symposium on Mathematical Programming takes
place. The conference is a forum for researchers and practitioners

working on various aspects of integer programming and combina-
torial optimization. The aim is to present recent developments in
theory, computation, and applications. The scope of IPCO is viewed
in a broad sense, to include algorithmic and structural results in inte-
ger programming and combinatorial optimization as well as revealing
computational studies and novel applications of discrete optimiza-
tion to practical problems.

Program commitee: Chandra Chekuri (UIUC), Bill Cook (Geor-
gia Tech), Jose Correa (U Chile, local arrangements chair), Jesus
De Loera (UC Davis), Michel Goemans (MIT, chair), Volker Kaibel
(U Magdeburg), Jon Lee (U Michigan), Francois Margot (CMU),
Thomas McCormick (UBC), Andreas Schulz (MIT), David Shmoys
(Cornell), Zoltan Szigeti (INP Grenoble), Robert Weismantel (ETH),
Giacomo Zambelli (LSE)

Information: http://ipco2013.dim.uchile.cl

MIP 2013

The MIP2013 workshop on Mixed Integer Programming will take
place in Madison, Wisconsin, at the Wisconsin Institutes for Dis-
covery from July 22 to July 25, 2013. MIP2013 will be the tenth in a
series of annual workshops held in North America designed to bring
the integer programming community together to discuss recent de-
velopments in the field.

The program committee for the workshop consists of Amitabh
Basu (UC Davis), Dan Bienstock (Columbia), Alberto Del Pia (ETH
Zurich), Santanu Dey (Georgia Tech), and Jim Luedtke (UW Madi-
son). Michael Ferris, Jeff Linderoth, Jim Luedtke, and Christos Mar-
avelias make up the local organizing committee.

As more information is available about the workshop, it will be
made available at https://events.discovery.wisc.edu/mip2013/.

Application for Membership

I wish to enroll as a member of the Society. My subscription is for my personal use
and not for the benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.
I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:

Mathematical Optimization Society
3600 Market St, 6th Floor
Philadelphia, PA 19104-2688
USA

Cheques or money orders should be made
payable to The Mathematical Optimization
Society, Inc. Dues for 2012, including sub-
scription to the journal Mathematical Pro-

gramming, are US $ 90. Retired are $ 45.
Student applications: Dues are $ 22.50.
Have a faculty member verify your student
status and send application with dues to
above address.

Faculty verifying status

Institution
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