
OPTIMA
Mathematical Optimization Society Newsletter 92

Philippe L. Toint

MOS Chair’s Column

September 15, 2013. Dear all, yes, time flies fast and this is my

farewell column as Chair of the Mathematical Optimization Society

since Bill Cook, whom I congratulate very sincerely, has become the

new Chair on September 1st, 2013. Let me take it as an occasion

to look back on three years in office, three years which have seen a

thriving Society and many events in the community of researchers in

optimization worldwide.

I think I concur with the general feeling in saying that the most ob-

vious and satisfying of these events has been the ISMP 2012 Berlin.

This symposium was at the same time a great meeting scientifically, a

very satisfactory gathering of colleagues (and often friends) from all

over the planet, and a superbly managed organization, whose talent

even included summoning bright sunshine over Berlin for us all. The

Paul Tseng memorial lectureship was also awarded during the sym-

posium for the first time. Once more, many thanks to Martin and his

fantastic team. But, of course, there were and are other successful

optimization conferences supported by MOS such as the IPCOs and

the ICCOPT in Lisbon. The community has indeed been far from

lazy in setting up excellent scientific venues.

Another important event for the Society, which, to be honest, oc-

curred just before I took office, was the change from Mathematical

Programming Society (MPS) to Mathematical Optimization Society

(MOS). Widely supported by the membership and by the Council,

this change gave us better visibility and a clearer identification in the

vast arena of research. My job in this, beyond supporting and prepar-

ing the idea from the start with Steve, has been to iron out the many

little things that resulted from this, from legal to practical.

This naturally brings to mind the changes that occurred during my

term in the not-so-visible administrative part of the Society. With

the support of the Council, the administrative help contracted with
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SIAM was extended, for a better service to our members. It is a

real pleasure to attest here to the professionalism of Arlette Lib-

eratore who helped us for so many years, and more recently of

Joanne Cassetti, who has replaced Arlette, now enjoying perpetual

holidays . . . The service provided was always for the benefit of MOS

and in a strict (but most friendly) independence from SIAM. This

help was most precious (aside from prodding a too busy Chair for

action when needed) in the internal management of the reform of

membership dues, now allowing multi-year and life memberships,

and also in the practical side of managing the Council elections.

In accordance with our status, a brand new MOS Council was duly

elected and took office after the Berlin Meeting. It was a pleasure to

work with the previous roster of officers, and this pleasure is again

the rule in the open discussions with the new one. I also took to

heart the re-establishment of the society’s Publications Committee,

whose input was crucial in the renewal of several editorial boards

members and also, significantly, for discussing with Springer Verlag,

our publisher, a better online access for the content of our journals.

All in all, this has been a relatively busy term, where the actions

I could take for the service of the Society were made only possi-

ble by the help and support contributed by many of you: friends of

the Executive Committee and of the Council(s), members of various

committees, conference organizers, editors in chief of our journals

and members of their editorial boards, webmaster, technical sup-

port, and also by the confidence of the society’s members. I wish

to express here my most sincere thanks to all. Thank you so much

for helping me over these three years, and for allowing me, when

passing the torch to Bill, to hand him over a healthy, lively, active and

enthusiastic MOS.

Note from the Editors

Dear Optima readers, some of you may find this issue of Optima a

bit unusual. Instead of a survey of some optimization topic, this time

we have an article by Robert D. Nowak, Benjamin Recht, and Joel A.

Tropp and a discussion column by Steve Wright all on the topics dis-

cussed at a recent workshop on Systems, Information, Learning, and

Optimization, which was held at the University of Wisconsin in June

2013. This workshop’s main focus was not optimization, however,

as you can see from the articles, and hopefully agree, optimization

plays a key role in many research areas discussed at this workshop.

Moreover, we think that the optimization community will benefit

from learning about some of those areas and issues. We hope you

will enjoy the articles as well as some other supplementary materials

and reports.

Sam Burer

Volker Kaibel

Katya Scheinberg

Optima editors
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Robert D. Nowak, Benjamin Recht, and Joel A. Tropp

Report from the 2013 SILO Workshop

The 2013 SILO (Systems, Information, Learning, and Optimization)

Workshop took place at the University of Wisconsin-Madison on

June 17–19, 2013. The workshop was inspired by the weekly SILO

seminar series held at the Wisconsin Institute for Discovery. SILO

began as a way to build a community of mathematically minded

researchers at the University of Wisconsin. Organizers Recht and

Nowak recognized that there were mathematicians scattered across

departments at UW who were all working on similar problems, even

though these researchers communicated in very different languages.

The goal of the SILO seminar is to break down the figurative si-

los raised by departmental organization and to connect researchers

across campus to study foundations of the mathematics of informa-

tion. SILO also has a third connotation as homage to the literal silos

established on the agriculture campus at UW.

The study of a new, cross-disciplinary mathematics of information

has been coalescing outside of UW as well, and the 2013 SILO work-

shop aimed to bring members of that community together to look

forward to the new problems and challenges in this rapidly growing

area and to identify threads of common inquiry. Bringing together

a diverse group of researchers from computer science, engineering,

statistics and mathematics, the aim of the 2013 SILO workshop was

to ask, “What’s next?”. More precisely, what are the foundational

research challenges that we must address in the mathematics of in-

formation?

After consulting with the workshop participants, five topical

themes were selected to focus the talks and discussion:

1. Data (re)presentations

2. Foundations of Man-Machine Co-Processing Systems

3. Mathematics of Contemporary Computing Substrates

4. Dynamical Data Analysis

5. Inferential Complexity

A half-day session was dedicated to each topic. Each session con-

sisted of one or two introductory talks followed by a panel dis-

cussion and group discussion. This article summarizes some of our

findings and conclusions.

The workshop was organized by Robert Nowak (Engineering,

UW-Madison), Ben Recht (Computer Science, UW-Madison) and

Joel Tropp (Computing & Mathematical Sciences, Caltech). The

workshop participants were Laura Balzano (UM-Ann Arbor), Con-

stantine Caramanis (UT-Austin), Venkat Chandrasekaran (Caltech),

John Doyle (Caltech), John Duchi (UC-Berkeley), Maryam Fazel

(Univ. Washington), Anna Gilbert (UM-Ann Arbor), Al Hero (UM-

Ann Arbor), Ali Jadbabaie (Penn), John Lafferty (Univ. Chicago),

Per-Gunnar Martinsson (UC-Boulder), Michael Mahoney (Stanford),

Mauro Maggioni (Duke), Deanna Needell (Claremont-McKenna),

Pablo Parrilo (MIT), Sasha Rakhlin (Penn), Philippe Rigollet (Prince-

ton), Justin Romberg (Georgia Tech), Lorenzo Rozasco (IIT/MIT),

Katya Scheinberg (Lehigh), Devavrat Shah (MIT), Aarti Singh (CMU),

Rachel Ward (UT-Austin), and Rebecca Willett (Duke). Also partic-

ipating were Nigel Boston, Stark Draper, Jordan Ellenberg, Christo-

pher Re, Sebastien Roch, Karl Rohe, Grace Wahba, and Stephen

Wright from UW-Madison. The SILO Workshop was partially

supported with generous support from the NSF, AFOSR, and

ONR.

1 Data (re)presentations

The first topic discussed was how to represent data optimally for

large-scale analysis tasks. For many data analysis problems, the pri-

mary challenge is to identify the proper representation or features in

the data. Once we have done so, simple algorithms such as the SVM,

Lasso, or nearest neighbors can solve (apparently) difficult tasks.

For example, while it may be difficult to recognize faces based on

raw pixel values, preprocessing the images to find eyes, noses, and

mouths can make the subject identification task simpler. This ses-

sion surveyed the current state of the art for feature engineering,

exploring generic methods to discover the best features for varied

analytics tasks.

Most of the recent work in this area has focused on dictionary

learning. The idea here is that good features consist of representa-

tions of data that provide good reconstructions of the data and that

represent the data parsimoniously. Classic examples of such rep-

resentations include frames and wavelets, but data-driven methods

such as k-means, k-subspaces, nonnegative matrix factorization, and

sparse coding all fall within this rubric. The dictionary learning prob-

lem is naturally cast as a non-convex optimization problem: we seek

to minimize the reconstruction error subject to a fixed description

length. So, for example, to find a sparsifying dictionary of a data set,

we would look for a matrix such that each data element could be

represented as a sparse combination of a few of its columns.

Except in rare cases, such as PCA, these non-convex dictionary

learning problems do not have efficient solutions. Moreover, it is dif-

ficult to provide guarantees that these learned dictionaries will be

able to represent unseen data. There is also almost no mathemat-

ical analysis of the “learnability” of good representations (with the

notable exception of a paper at last year’s Conference on Learning

Theory [14]). There was a strong consensus at the workshop that

we need to build a firm theoretical foundation for dictionary learning

and data representation in general.

There were several other questions discussed with regards to

when we can learn good representations. Is it possible to reliably

detect when a sparse dictionary for a dataset exists or is this de-

cision problem computationally intractable? How can we validate

when features are “good” for analysis? In most cases, features are

designed without consideration of a specific analysis task, and we

expect the same features to be good for classification, clustering,

tracking, or whatever task we might have in mind. To what extent

can features be targeted for specific objectives?

Some of the most active and exciting research in dictionary learn-

ing is building hierarchical dictionaries for data. Such hierarchical al-

gorithms are called“deep learning” in the machine learning commu-

nity [11]. These deep learning problems consist of nested, multi-

stage optimization problems, and heuristics are used to find ap-

proximate local minima to these problems. Although the practition-

ers in this area claim that they can learn features with no domain

knowledge or modeling, closer inspection reveals that they incorpo-

rate a substantial amount of prior knowledge into their algorithms.

For example, in image features, most deep learning algorithms start

by building dictionaries of small image patches. At small enough of

a scale, simple Gabor filters are sufficient to sparsely reconstruct

image patches. Moreover, the hierarchical structure in most deep

learning architectures is strongly tied to the two dimensional geom-

etry of images: it would fail completely if the pixels were randomly

permuted. A major question is to understand how much of the ben-

efit of dictionary and deep learning could be engineered with ideas

from approximation theory and wavelets. Preliminary work by Mallat

suggests that carefully designed wavelets can already compete with

learned dictionaries [3]. Understanding how engineered wavelets

can be enhanced to compete with more sophisticated techniques

from machine learning looks to be an exciting direction of future

study. Moreover, understanding how to pose tractable optimization

problems to search for deep representations of data remains an in-

triguing open problem.
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2 Foundations of Man-Machine Co-Processing Systems

People and computers are coupled in an increasingly complex sys-

tem. Mathematical frameworks for modeling, analyzing, and opti-

mizing human-computer interaction remain in their infancy. So far,

mathematical research has focused on specific problems arising in

application domains such as social media analysis, recommenda-

tion systems, e-commerce, and cognitive science, rather than tack-

ling human-computer interaction holistically. How should human re-

sponses and behaviors be modeled? How can we understand how

to control and monitor decentralized decisions, spread or prevent

contagion, or understand shocks and vulnerabilities in tightly inter-

connected networks of human interaction? What representations

best capture human judgements and preferences? Humans are slow

and expensive, machines are fast and cheap. How can we optimize

the symbiosis of man and machine?

Human input is integral to many information processing systems.

Human subjects can provide expert judgments, annotations, label-

ings, rankings, or ratings. These inputs are used for a wide range of

optimization tasks to improve system performance. While compu-

tational capabilities continue to grow and computing becomes less

costly, human capabilities are relatively static, and the cost of human

input is increasing. It is apparent that humans may be the bottleneck.

Optimizing the use of humans in information systems is a major chal-

lenge.

Several design challenges for collaborative human-machine sys-

tems were put forward in this session. Are there notions of load

balancing and/or impedance matching that might guide the optimiza-

tion process? Can we develop models and algorithms that account

for human latency, delay, accuracy, and responsiveness? How can we

perform testing and assess the reliability of human-machine systems?

Human psychology can play a central role in the efficacy of human-

machine systems. Given that humans have limited attention spans,

suffer from fatigue and calibration issues, and are susceptible to

priming and other biases, models for human behavior are important.

Mathematical psychology, educational testing, and economics offer

starting points for further research, but new models are needed in

the Big Data era. How do aggregates of human subjects function?

Can the reliability or accuracy of different human subjects be esti-

mated and factored into system operations?

Adaptively and sequentially optimizing human resources is a key

component of human-machine systems. Using all information and

data currently available, the objective is to automatically select the

most informative tasks for human assistance. This optimization prob-

lem has been considered in many fields, ranging from statistical de-

cision theory and machine learning to psychology and economics.

Mathematically, this sort of problem has been formulated in terms of

multi-armed bandits [4], Markov decision processing, active learning

[5, 9], and signal processing [10]. In certain cases, optimal policies

are known, but usually these are under restrictive and sometimes

unrealistic assumptions. Computationally feasible and provably ef-

fective methods for optimizing human resources in general settings

remains a relatively open problem. Quantifying the gains associated

with adaptive and sequential schemes is also an important direction

for research, since such schemes may be more complex to imple-

ment and more sensitive to modeling assumptions than nonadaptive

approaches.

There are many kinds of human feedback. Numerical evaluations,

scores, and ratings are notoriously difficult to calibrate, and so com-

parative judgements (e.g., comparisons between decision options or

alternative models) are often favored. Comparative judgements are

known to be more reliable and reproducible, and the comparative

judgements of multiple humans are more easily aggregated. New

theory and methods for incorporating comparative judgements into

large-scale systems via crowd-sourcing is a potentially fertile area of

research.

3 Mathematical Models of Contemporary Computing

Substrates

Distributed computing and networked algorithms are all the rage,

but do the usual mathematical models and constraints match the re-

alities of contemporary infrastructures? As computing architectures

and network structures change, it is imperative that our models for

analysis continue to keep pace.

In this session, we began with a survey of modern computer hard-

ware and networks. We looked at the basic models of the mod-

ern workstation and how these machines are typically networked

in data centers. One concern that arose is the fact that many algo-

rithms for distributed computation assume interconnection schemes

that do not reflect best practices from industry. However, with new

methods of virtualization and software-defined networks, it may in-

deed be possible to create very complex interconnection and com-

munication schemes that do not currently exist in hardware. We

examined the fact that communication-efficient algorithms are also

power-efficient because data movement is energy intensive [7].

A basic issue is that most theoretical work does not account for

multiple levels of network speed. For example, even on a multicore

workstation, the time to move data from registers to cache is tens

of thousands of times faster than the time required to read that in-

formation off an idle disk. In this regard, understanding distributed

algorithms with multiple link speeds seems like a clear problem to

explore. New optimization analyses need to do careful bookkeeping

of computation, space, and time [1].

Along these lines, signal processing, optimization, and numerical

analysis researchers could benefit from incorporating precomputed

libraries into their algorithms. By making an initial investment (say, a

day or a month) to precompute commonly used primitives, it may be

possible to design algorithms that are substantially faster than cur-

rent methods. Such pre-computation optimization has been studied

in detail in database research, and a fruitful project would be to adapt

this literature to numerical computation.

We also discussed how data itself is organized and the challenges

in modeling large-scale networks such as social graphs. Common

random models do not accurately match the statistics of real-world

networks, yet much of our understanding of large networks comes

from analyzing these random models [12]. Graph algorithms should

reflect the statistics of real data, not the synthetic ones. Indeed, per-

formance on random graph models tends to say very little about

performance in practice.

Finally, we spent a long time discussing how it is imperative

for mathematical researchers to interface with practitioners in the

rapidly changing field of large-scale computation. Theorists do not

necessarily want to work on problems that will be mapped into

products in the next quarterly cycle, but our community must adapt

our models of computation to reflect modern trends in comput-

ing. This cannot happen without constant interaction with systems

engineers and big-data consumers in the sciences.

4 Dynamical Data Analysis

Online decision making, forecasting and prediction, control, and

adaptivity are all intimately related, but they are treated by nearly

disjoint communities (signal processing, control, machine learning,

statistics). This session explored the rich potential for joining the-

oretical tools from these disciplines. We asked if it is possible to

use techniques from machine learning and signal processing to help
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dynamical systems adapt to stochastic environments? Is it possible

to use techniques from dynamical systems to allow data processing

systems to adapt to time-varying data? Does the control-theoretic

perspective have anything to add to our understanding of streaming

algorithms? Can we find a closed-loop theory that applies in infor-

mation, statistics, and learning?

Recent research on online optimization has incorporated dynami-

cal models to obtain enhanced versions of mirror descent [13]. How

do these techniques compare with classic adaptive filters? Can these

new methods give better theoretical guarantees for classic adaptive

filtering methods? How do new techniques in sequential decision

making and optimization relate to classic methods in optimal con-

trol theory? There is a disconnect here because control theorists

have historically been interested in asymptotic rates of convergence,

rather than those on a finite time horizon. Moreover, statistics has

not always played a first-class role in optimal control theory. What

can these two areas learn from each other?

Another way that data analysis can help dynamical models is by

using machine learning to locally enhance control decisions [8]. Can

we design predictors that use a modest number of measurements to

steer a system toward an optimal configuration? How do modeling

errors propagate? Tools from derivative-free optimization could play

a role in establishing rates of convergence for this type of estimation

scheme.

Diffusion processes on networks can be used to design dis-

tributed optimization, control, and decision making algorithms.

There was some discussion about the concept of diffusion on higher-

order complexes (as opposed to the edges of a network). This type

of process might be able to tell us more about structures that exist

(or do not exist) in a graph, and it may also have favorable conver-

gence properties.

Complex networked systems, including communication, social, bi-

ological, and brain networks, are not stationary. Modeling the dy-

namics of networked systems and fitting models to observational

data is a challenging problem. In some applications, the dynamics can

be transient, with network topology and behavior changing abruptly.

Nonparametric estimation and detection methods are capable of

automatically adapting to unknown spatial smoothness of signals. For

example, wavelet-based methods have had tremendous success in

signal and image processing. In comparison, theory and methods for

adapting to unknown temporal dynamics are lacking. Can we de-

velop signal processing and statistical inference methods that exploit

hidden regularities in the dynamics of signals and systems?

5 Inferential Complexity

More data yields better inferences, but such quality always comes

at a computational cost. Given a computational resource budget,

is more data always helpful? Understanding the tradeoff between

computational complexity and statistical accuracy (hence, inferential

complexity) is a challenge of fundamental importance in the Big Data

era, but little is currently known.

There have been recent attempts to answer this question using

tools from theoretical computer science and statistical learning the-

ory, but a general framework has yet to emerge. What are the sorts

of mathematical tools that will allow us to build the appropriate

bridges between computational complexity, mathematical statistics,

and numerical linear algebra to understand the fundamental trade-

offs and hard limits in data analysis?

This session focused on trying to merge notions from mathemat-

ical statistics and theoretical computer science. mathematical statis-

tics has well developed theory of tradeoffs between statistical accu-

racy and sample size, while theoretical computer science has well

developed theory of tradeoffs between solution accuracy and com-

putational complexity. In principle, these tradeoffs should be unified,

and we sought to understand the cases where we could compute a

Pareto curve mapping the tradeoff between computation and statis-

tical confidence.

In this discussion, we encountered an interesting multidisciplinary

question about the interaction between adaptivity and instance op-

timality. As is often the case in optimization research, worst-case

analysis tends to lead to very pessimistic bounds. At the same time,

analyses and algorithms that consider properties of the particular

instance often yield faster algorithms in practice. Tying in detailed

properties of individual instances could help to refine trade-offs be-

tween computation and statistical accuracy.

A major focus of this session was the sparse PCA problem, which

requests sparse principal components of a data matrix [2]. This

problem is intimately related to the maximum clique problem in

graph theory which is notoriously hard to solve in practice. Results

about maximum clique demonstrate that sparse PCA must be diffi-

cult in interesting parameter regimes unless P is equal to NP. Sparse

PCA was the only example we could devise where simple optimiza-

tion heuristics are not competitive with combinatorial search. As a

sharp contrast, the statistical bounds derived for standard sparse op-

timization via the lasso are within a constant factor of those derived

for exhaustive combinatorial enumeration (see [6] for an extensive

list of examples).

This session featured a somewhat heated discussion about the

fragility of lower bounds. Although we commonly believe that we

have a very robust notion of minimax lower bounds in statistics, we

still make very restrictive modeling assumptions to achieve these

bounds. In computational complexity, on the other hand, lower

bounds are very rare, but that may be because we are trying to

prove lower bounds for a very rich and expressive model of com-

putation (i.e., the Turing machine). There was some skepticism as to

whether we could ever get “true” lower bounds. Is there a rea-

sonable model of computation for statistical estimation that will

make it easier to obtain lower bounds? Would simply restricting

the model of computation to common algorithmic tasks like linear

algebra or convex optimization allow us to develop a better un-

derstanding of trade-offs? Our discussion concluded that the best

approach may be to trace out Pareto frontiers on an instance-by-

instance basis.

One point of agreement is that constants matter in this area, an

issue that also arose in the session on computing substrates. In many

cases, statisticians are only interested in the scaling behavior of the

error rate as a function of the number of samples. But the other

“constants” are incredibly important. There are many algorithms

that perform very poorly in practice but have the correct optimal

scaling with respect to the number of samples. A major challenge is

to calculate precise constants.

6 Future Workshops

We believe the workshop was a success and hope to hold simi-

lar meetings in the future. Let us record a few of the lessons we

learned in the planning and execution of this workshop. We intend

to incorporate these observations at future events.

We believe that it is essential (and refreshing) to have few talks

and many breaks. Active moderation of the panels is critical to get-

ting the most interaction from the group, and it took us a few ses-

sions before we became comfortable with this style of interaction.

We felt as if the meeting improved as it progressed because we all

figured out how to work with the modular format. Let us elaborate

on these points.
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The unstructured time at the meeting was very productive, and

every break witnessed heated and highly technical conversations

among the participants. The other feature of the meeting that

seemed to be effective was that all five sessions had the same struc-

ture. We felt that, as a group, we became better at navigating the

structure of the meeting with each subsequent session.

The introductory speakers had the daunting task of preparing lec-

tures for our unusual workshop format. The speakers truly rose to

the occasion. Our only misgiving, if anything, is that we still may have

allotted too much time for introductory talks! It is challenging to

give a lengthy presentation that does not focus on research that you

have been actively engaged in. We believe that shorter introductory

talks would help make sure that the overview is truly general.

At most meetings, the “moderator” is simply the person holding

the “5 minutes” sign when a speaker talks for fifteen minutes longer

than their allotment. In the SILO workshop, the moderators played

an active role to guarantee that all participants had adequate time

to contribute. They also helped to keep the conversation focused.

We believe that the moderators could be even more proactive in

the future.

We very much enjoyed the meeting, and are already looking for-

ward to SILO 2!

Robert Nowak, Department of Electrical Engineering, University of Wiscon-

sin, Madison, WI, USA. nowak@ece.wisc.edu

Benjamin Recht, Department of Electrical Engineering and Computer Sci-

ence and Department of Statistics, University of California, Berkeley, CA

USA. brecht@berkeley.edu

Joel A. Tropp, Department of Applied and Computational Mathematics, Cal-

ifornia Institute of Technology, Pasadena, CA USA. jtropp@cms.caltech.edu
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Stephen J. Wright

Remarks on Optimization in SILO

I was able to attend the SILO Workshop only by video hookup dur-

ing the wee hours of the Australian morning. My biased sample of

the live proceedings (and a later study of the slides for the introduc-

tory talks) confirms the organizers’ opinion that the meeting was

highly successful and that it highlighted some of the most exciting

current research in data analysis and learning.

As an optimizer who has been marginally involved in these fields

for some time, I was asked to make some remarks on SILO issues

from the optimization perspective. I’ll start with some background,

then discuss the optimization issues that arise in data analysis and

learning, and the ways in which optimization research (past and

present) addresses these issues.

Data analysis can be defined broadly as the extraction of knowl-

edge from data. Machine learning is similar in scope, but emphasizes

the use of the knowledge to make predictions about other, similar

data. These areas are highly interdisciplinary, drawing on statistics,

information theory, signal processing, and computer science (artifi-

cial intelligence, databases, architecture, and systems). Optimization

too is key. Not only is it embedded into many aspects of data analy-

sis and learning (as discussed below), but it also plays a familiar role

in turning the knowledge thus gained into good decisions.

Interest in data analysis and learning has grown because of the

buzz surrounding “big data”. A feature article in the New York Times

Magazine (11 Feb 2012), quoted by Michael Mahoney in his SILO talk,

opines that “(big data) opens the door to a new approach to under-

standing the world and making decisions”. The scientific, social, and

economic implications of big data will take years to fathom, and it

may not live up to the hype, but the potential is clearly present for

major impacts across many fields.

Important big data application problems are found in speech, lan-

guage, and text processing (e.g., speech recognition, machine trans-

lation); image and video processing (e.g., denoising/deblurring and

medical imaging); biology and bioinformatics (e.g., identifying ge-

nomic and evironmental risk factors for diseases); feature identifi-

cation in geographical and astronomical images; and many other ar-

eas. As we discovered recently, U.S. government agencies have been

busy solving big-data problems of their own, analyzing surveillance

data from telephone and email communications.

The nature of the analysis differs across these applications, as

does the use that is made of the extracted knowledge. Neverthe-

less, some powerful unifying themes can be identified. One theme is

the prevalence of regression and classification problems. Given many

items of data and an output or label associated with each item, can

we learn a function that maps the data to its corresponding output?

This function can then be applied to future, unknown items of data

and used to predict the output. By parametrizing the function appro-

priately and applying statistical principles (for example, expressing

the likelihood of the observations as a function of the parameters)

such problems can be formulated as optimization problems. A pro-

cess of this type leads to the familiar least-squares problem, and the

only slightly less familiar robust regression, logistic regression, and

support vector machine (SVM) formulations. (A common version of

the latter is a structured convex quadratic program, to which many

nowak@ece.wisc.edu
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brecht@berkeley.edu
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optimization methods have been applied during the past 15 years.)

Many formulations have partially separable objectives, a consequence

of the fact that the data set has many items of the same structure

to which the same transformations and measures are applied. Al-

gorithms of stochastic and incremental gradient type have thus be-

come extremely popular. Each iteration of these methods requires

only a small, randomly selected subset of the data, using this sam-

ple to form an unbiased estimate the full objective gradient. These

methods can be applied also to streaming data, provided we assume

that the order of arrival of data items is random. Stochastic gradient

methods date back to a 1951 paper of Robbins and Monro. They

were studied independently by the machine learning and optimiza-

tion communities for many years; forces have been joined in recent

times. A particularly relevant property of stochastic methods is that

they do not require evaluations of the objective, an operation that

requires a complete sweep through the data set, and is therefore

prohibitively expensive in some big data applications.

Another important theme is the identification of low-dimensional

structure in high-dimensional data. Examples include finding a partic-

ular combination of base pairs in a genome (among an astronomical

number of possible combinations) that indicate heightened risk of a

disease, or finding a particular (possibly nonlinear) function of the

pixel intensities in a picture of a digit, that makes it easy to identify

the subject as being one of the digits 0 through 9. Two fundamental

issues arise here. The first is one of representation, in which we seek

ways to transform raw data into forms that facilitate more effective

analysis. Deep learning – in which data is transformed by passing

it though a layered neural network, resulting in output data that

is easier to classify – is enjoying renewed popularity in speech and

image processing. Optimization is used in the training of deep learn-

ing networks, in determining optimal values for the parameters that

define the transformations at each layer of the network. Another

way to address the representation issue is to choose a collection

of basis elements (sometimes called “atoms”) in high-dimensional

space and define the low-dimensional structure in terms of a small

subset of these elements. The basis can be predefined, or built up

greedily or adaptively during the computation. Basis selection leads

us to the second key issue: Formulation and solution of optimiza-

tion problems that are tractable representations of the essentially

intractable problem of low-dimensional structure identification. To

explain: Consider the classical problem of finding the vector in Rn

with k ≪ n nonzeros that minimizes a least-squares objective. A

general algorithm would require investigation of all
(

n
k

)

possible lo-

cations for the nonzeros, but compressed sensing shows us that

when the least-squares objective has certain properties, a convex

optimization formulation involving the ℓ1 norm finds the solution.

More generally, the challenge is to find regularization functions that

can be included in the optimization formulation to induce the de-

sired low-dimensional structure. The form of these functions de-

pends, naturally, on the type of structure desired. As examples: The

nuclear norm of a matrix tends to induce low rank in the solution

of matrix optimization problems, and the use of the total-variation

norm in image processing yields images with a natural quality – fields

of constant color separated by sharp edges. Regularizations func-

tions are often simple but nonsmooth. The study of formulation and

solution of such problems is sometimes known as “sparse optimiza-

tion.”

Optimization formulations derived from Bayesian principles con-

tain terms arising from prior assumptions about the knowledge hid-

den in the data. These terms often have similar forms to the regular-

ization functions discussed above. Optimizers can leave the Bayesian

vs. frequentist disputes to statisticians! Both approaches give rise to

interesting optimization problems.

Partial separability and the widespread use of regularization are

two typical characteristics of optimization problems in data analysis

and learning. We mention several other ways in which these prob-

lems are unusual, by the standards of traditional optimization.

1. The objective functions often have a simple analytical form, mak-

ing it easy to hand-calculate derivatives. (Indeed, it is argued that

greater volumes of data make it possible to use less sophisticated

models.)

2. Data scientists usually do not require a near-exact solution of

the optimization problem, as the problem posed is often thought

of as an empirical model (based on sampled data) of some un-

derlying true objective. In fact, over-precise solution can lead

to overfitting of the available data, at the expense of generaliz-

ability, that is, relevance of the solution to unseen data. In this

sense, early termination of the optimization algorithm can be

regarded as a form of regularization. The low-accuracy imper-

ative is another reason for the success of stochastic gradient and

first-order methods, which can sometimes find crude solutions

rapidly.

3. Optimization formulations in these areas often contain simple

scalar parameters, that trade off between different objectives,

for example, between fitting the available data vs generalizabil-

ity/regularization. The process of finding good values for these

parameters is called “tuning.” Often, the solution of the opti-

mization model for a particular parameter is evaluated by some

external criterion, such as its performance in predicting outputs

for data items in a validation data set. The optimal parameter

value is taken to be the one whose solution performs best on

this criterion. Consequently, we need to solve not just one iso-

lated problem, but rather a sequence of closely related problems,

differing only in the choice of tuning parameters. Warm starting

– using the solution for one value of tuning parameter as the

starting point for a nearby value – has been applied with suc-

cess. Moreover, techniques from derivative-free optimization can

be used to traverse the space of tuning parameters, when the

dimension is greater than one.

4. Data scientists are strongly interested in the theoretical complex-

ity of optimization algorithms, such as different sublinear conver-

gence rates (for example 1/
√
k vs 1/k vs 1/k2 in iteration num-

ber k) and dependence of complexity on the dimension of the

data space. The level of interest would seem unusual to many op-

timizers, who are used to seeing only weak relationships between

theoretical complexity and practical performance. Optimization

complexity plays into the field of inferential complexity, which ex-

plores the tradeoffs between the statistical quality of a solution

and the complexity of attaining it.

Many established optimization techniques, including some re-

garded as old-fashioned, have proved to be extremely useful in

tackling data analysis and learning problems. Augmented Lagrangian

methods, in particular the alternating direction method of multipli-

ers (ADMM), are important in regularized formulations and as a ba-

sis for parallel methods. Accelerated first-order methods are pop-

ular because they can be extended easily to regularized objectives

and require little extra work or storage than steepest-descent ap-

proaches. These methods introduce “momentum” terms into search

directions to improve convergence rates, and are cousins of such

old approaches as conjugate-gradient and heavy-ball. The prox-linear

framework has proved useful for regularized formulations; LBFGS

and inexact Newton methods have been adapted with much success

to learning applications; and even the conditional-gradient method

(sometimes known as “Frank-Wolfe”) is enjoying a revival, as a way

to find compact representations greedily. Coordinate relaxation, not

taken very seriously by optimizers for some years, has been used
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with success in support vector machines since the 1990s, and is

being applied in other areas too. Duality has also proved to be an

important tool. Duals are sometimes easier to solve and may (as in

support vector machines) lead to reformulations with more pow-

erful statistical properties. Primal-dual algorithms are efficient for

some applications.

Computational systems issues – database systems, computation

and memory architectures, parallel computing – also play a central

role in big data. The interaction of optimization algorithms with sys-

tems is opening up new opportunities for research, for example in

fast parallel asynchronous variants of stochastic gradient and coordi-

nate descent. The possibility of using GPUs has piqued the interest

of several resarchers since about 2008. They remain difficult to ex-

ploit for several reasons (including ease-of-use and memory transfer

rates) but the potential payoff in computational efficiency is large, so

they may yet hold interest in some contexts.

What of the future? Although we do not know how research pri-

orities in SILO will evolve, we can say with confidence that optimiza-

tion will continue to play an important role. It has become deeply

enmeshed in many aspects of SILO; interest in optimization is run-

ning high among data scientists. New optimization formulations will

continue to proliferate, each bringing its own particular challenges.

It is not hard to imagine that optimization solvers will provide im-

portant middleware for general purpose data-analysis toolboxes, or

that optimization technology will form some of the glue in “human-

in-the-loop” systems for data analysis. Finally, new and increasingly

complex computing substrates are rewriting the rules of computa-

tional cost and parallel processing. Optimization algorithms will need

to be rethought and reanalyzed to exploit these new realities.

I close with several references. The report [1] presents a per-

spective on big data from leaders of the data science community.

The recent edited volume [2] collects papers from on optimization

for machine learning, written by researchers in both fields, and at

their interface. Finally, I recommend perusal of the slides from the

SILO Workshop, which illustrate the impressive variety and depth

of research at the intersection of systems, information, learning, and

optimization.

Stephen J. Wright, Computer Sciences Department, University of Wiscon-

sin, Madison, Wisconsin, USA. swright@cs.wisc.edu
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