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MOS Chair’s Column

November 15, 2013. Thanks to everyone for your support. It was
a honor to be elected to chair the society and I am looking for-
ward to working with our Council, our editors, and all supporters
of mathematical optimization. I want to especially thank former chair
Philippe Toint and his dynamic predecessor Steve Wright for making
it easy to step into such a well-run society.

Our membership is at an all-time high, thanks to the wildly suc-
cessful ISMP 2012 in Berlin, followed by the fantastic turnout for
ICCOPT 2013 in Lisbon. Going along with the surge in membership,
the society is in a strong financial position and quite able to support
new initiatives.

I’m certain my three-year term as chair will pass by in a flash. So
if you have suggestions for possible new MOS activities, now is the
time to contact me!

Bill Cook
University of Waterloo

bico@uwaterloo.ca

Note from the Editor

Dear MOS community, After seven years and twenty one issues it is
time for me to step down from the editorial board of Optima. I will
be taking on other editorial duties within MOS and Volker Kaibel
will be the new Optima editor, beginning his new duties in 2014. Sam
Burer will also remain on the Optima board.

I have joined Optima in 2007 as co-editor, with Alberto Caprara,
while Andrea Lodi became the new editor-in-chief. Together we
redesigned Optima’s format, introducing two articles per issue - one
main article and one related discussion column. We also increased
the number of issues per year to three. Alberto and Andrea were

Contents of Issue 93 / December 2013

1 Bill Cook, MOS Chair’s Column

1 Note from the Editor
1 Daniel Bienstock, Progress on solving power flow problems

8 Larry Snyder, Multi-period optimal power flow problems

9 Tamás Terlaky, ICCOPT 2013

10 SIAM Conference on Optimization 2014
11 IPCO 2014
11 Summer schools CIME 2014
11 Mixed Integer Programming (MIP 2014)
12 MOPTA 2014
12 Imprint

the driving force behind these changes and Optima has maintained
this new format for seven years now. In 2011, Alberto and Andrea
stepped down and I took over the role of the main editor, while Sam
Burer and Volker Kaibel joined as co-editors and they have been
contributing tremendously to the newsletter ever since.

The seven years flew by very quickly and I find it astonishing
to look back at all the articles we published. This would not have
been possible without our extremely efficient and creative designer
Christoph Eyrich. I am very grateful to him as well as to Sam and
Volker for making my job easy and enjoyable. Finally, I would like
to thank all of the authors who contributed articles to Optima over
the years. I am very grateful and somewhat baffled at the fact that
nearly none of our invitations to write an article for Optima have
been turned down. Moreover, the articles were typically submitted,
if not strictly by the requested due dates, then soon after (which
allowed us to stick to the three issues per year goal). In short it has
been a great privilege to be in the middle of this vibrant medium for
the MOS community and I am looking forward to enjoying Optima

as a reader from now on.
Katya Scheinberg

Optima editor

Daniel Bienstock

Progress on solving power flow problems

1 Introduction

Power flow problems are a mathematical representation of the
physics of electrical networks, in particular transmission systems
used to convey power from generators to consumers over large ge-
ographical areas. Recent developments have spurred a new emphasis
on the accurate and efficient solution of such problems. Partly, the
motivation stems from pressing practical issues such as the incor-
poration of renewable generation, a continuing growth in demand,
increasing operational costs, and a growing risk of cascading failures
leading to large-scale blackouts. Moreover, after a long period of rel-
atively few methodological advances, optimization researchers have
recently produced a series of interesting new developments that will
likely result in significant practical changes in the near future. In this
article we will provide a brief introduction to power flow problems,
review the prior history of algorithms, and describe some of the
recent research developments.

Power flow problems can surprise optimization experts, both by
their difficulty and by the choice of algorithms that have tradition-
ally proved successful. However, recent developments relying on
semidefinite programming hold promise that a new, modern out-
look may soon take hold. In the rest of this section we will present
a mathematical description of problems of interest; in Section 2 we
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describe traditional methods still heavily in use to address the prob-
lems, as well as some of the challenges. Section 3 outlines the use
of modern convex optimization methods. Section 4 describes the
semidefinite programming formulations mentioned above.

To begin we will provide a very brief description of the underlying
physics. Readers are referred to [1], [5] or [31] for more complete
background. A transmission system (or “grid”) is a network whose
edges are power lines, and some of whose nodes (“buses”) cor-
respond to generators and some to demand nodes (“loads”). The
purpose of a transmission system is to convey power from gener-
ators to loads. Strictly speaking, generators produce electrical cur-
rent at a given voltage. “Current” describes the quantity of charge
moving across a unit area per unit time, whereas “voltage” is (poten-
tial) energy per unit charge. The product of voltage and current has
the units of energy per unit time, or power. Modern power grids
use AC (alternating current) power; this means that both voltage
and current produced at a generator are time-dependent, sinusoidal
quantities with a common frequencyω. Thus, for example, the volt-
age at a bus k at time t has the form

vk(t) = Vmaxk cos(ωt + θk), (1)

and likewise with currents. The frequency, ω, is large (50 or 60 Hz)
and, in steady state operation, is strictly held to a common value
across all generators in a given grid. These facts make possible
a simplification of the representation of physical quantities, using
steady-state averages. First, the (steady-state) voltage at a bus k
will be represented using a complex number Vk which has the form
Vmaxk /

√
2ejθk . The quantity θk is the (steady-state) phase angle at k

(here, j =
√
−1) .

The interdependence between voltages, current and power flows
is then obtained through relationships that incorporate power line
parameters and the laws of physics. In particular, a line km (join-
ing buses k and m), will have a (typically small) resistance rkm and
a reactance xkm, both positive (the order of the buses k and m is
irrelevant in this context). Denoting

zkm ≐ rkm + jxkm, ykm ≐ z−1
km (2)

the (complex) current on km is given by

Ikm = ykm(Vk − Vm). (3)

This is Ohm’s law for AC current. Further, the power injected by k

into km is

Pkm = Re(VkI
∗
km) (4)

where Re indicates real part and ∗ is the conjugate operator. Equa-
tions (3) and (4) can be obtained from (1) by averaging over one
period. The quantity Pkm is referred to as active (or real) power;
whereas the imaginary part of the quantity VkI∗km, denoted Qkm, is
called reactive power (and does have a concrete physical interpreta-
tion).

Using (4), and writing

ykm = gkm + jbkm (5)

one obtains

Pkm = |Vk|2gkm − |Vk||Vm|gkm cosθkm

− |Vk||Vm|bkm sinθkm,

Qkm = −|Vk|2bkm + |Vk||Vm|bkm cosθkm

− |Vk||Vm|gkm sinθkm,

where θkm ≐ θk−θm. These equations are simplifications1 however
they capture the essential properties of power flows. Using these
equations one can represent network-wide requirements. Given a
bus k, consider the expressions

Pk =
∑

km

(
|Vk|2gkm − |Vk||Vm|gkm cosθkm

− |Vk||Vm|bkm sinθkm
)
, (6)

and

Qk =
∑

km

(
− |Vk|2bkm + |Vk||Vm|bkm cosθkm

− |Vk||Vm|gkm sinθkm
)

(7)

(where the sums are over all lines of the form km) we see that if k
is a generator bus then Pk is the net power injection of the generator
into the grid. And if k is a load bus, then Pk is the negative of the net
power consumed at k. For all other buses k the sum will be zero.
Similar considerations apply to the Qk quantities.

Armed with these definitions, we can now present the two cen-
tral problems in power flow analysis. First, we have the power flow

problem (PF for short), also known as the load flow problem. Here
buses are partitioned into two classes:
◦ “PV” buses (typically generators). At a PV-bus k, the voltage mag-

nitude |Vk| and the active power injection Pk are specified. The
phase angle θk and the reactive injection Qk are unknown.

◦ “PQ” buses. At a PQ-bus k both Pk and Qk are known, but |Vk|
and θk are unknown.

If the total number of buses is n, we therefore have a system of
2n equations (6) and (7) on 2n unknowns. The objective of the
problem is to solve this system of equations; from an engineering
perspective the goal is to determine the pattern of power flows that
arise as a result of a given choice of generator set-points (output
and voltage magnitude) and demands. A critical point here is that,
unlike other human networks (such as data networks) it is the un-
derlying physics that determines the flows – they cannot be directly
routed. Hence an outcome of the computation might be to deter-
mine that e.g. the power flow on a given line is too large. This is a
risky outcome, because such a line will likely, eventually, “trip”, i.e.,
be taken out of service, possibly causing congestion. The utility of a
power flow computation is that it (hopefully) verifies the safety of a
network-wide operating mode.

A second problem of interest is the (AC) optimal power flow prob-

lem, or OPF for short (we will drop the “AC” prefix, below). As the
name suggests, this is an optimization problem. Its goal is to deter-
mine generator outputs so as to meet demand at minimum cost. In
typical power engineering practice this problem is run with some
frequency (e.g., every fifteen minutes) using demand estimates. This
has proved feasible because, typically, demands (aggregated at the
network level) change slowly over a fifteen-minute time span. In this
problem the left-hand side quantities Pk and Qk in (6) and (7) (resp.)
are not given in advance, instead they are variables constrained by
two-sided inequalities

PLk ≤ Pk ≤ P
U
k and QLk ≤ Qk ≤ Q

U
k (8)

for each k. In other words, the (net) output of each bus must lie in
a given range. For a load bus, the range indicates the possibility of
reducing (“shedding”) load so as to attain feasibility; the range will
probably be tight. For generators, (8) indicates the feasible output
envelope, which could be broad (when a load is co-located with a
generator the range parameters are adjusted). Additionally, voltage
magnitudes are similarly constrained:

VLk ≤ |Vk| ≤ V
U
k , for all k. (9)
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This constraint models a stability and efficiency requirement – grids
are built to operate at high voltage, and even small deviations (typ-
ically, lower than desired voltages) carry a financial cost and a risk
burden. Typically voltages magnitudes are allowed to deviate by at
most a few percentage points from their target values. In fact, voltage
magnitudes should be near-constant across the entire grid (this ob-
servation relies on the so-called per-unit system; see [1], [5], [31]).

The objective function for OPF problems takes the form

min
∑

i∈G
Fi(Pi) (10)

where G is the set of generator buses, and each function Fi is a con-
vex quadratic function in Pi (or a piecewise-linear approximation).
This function approximates the cost of producing a certain power
output. Thus, in summary, the OPF problem is

min
∑

i∈G
Fi(Pi), subject to: (6), (7), (8) and (9).

Additionally, one may impose other constraints. A typical example
concerns line constraints. For example, the absolute value of the
phase angle difference on a line km may be upper bounded:

|θk − θm| ≤ θmaxkm . (11)

Constraints (11) arise, typically, in the case of long lines (longer than
200 miles, say) and they model frequency (synchronism) require-
ments – large phase angle differences increase the likelihood that
generators will fall out of sync, possibly the single most serious risk
faced by a transmission system (see, e.g., [5], page 114). A maximum
phase-angle difference of 45o (or near) is common; and in normal
practice most phase differences will be much smaller.

Likewise, we may have constraints of the form

|Ikm| ≤ Imaxkm or |Pkm| ≤ Pmaxkm . (12)

These are thermal constraints. When the amount of power of cur-
rent that a line carries is too high, that line will overheat, and po-
tentially sag, increasing the chance of a contact (or an electrical arc)
with a foreign object; this would normally cause the line to trip, as
discussed above. In normal operation, line overheating is a condition
to be monitored and avoided. The modeling needed to understand
the behavior of line temperature in response to power flows and
ambient conditions is quite complex, see [6, 21].

In addition to these, many other types of constraints can (and
do) arise in a practical setting. For example, the above discussion
omits the modeling of transformers (which can be incorporated by
a modification of the line equations defining Pkm and Qkm, above).
We have also not described the modeling of capacitance, or shunt,
effects. Further, digital controls are widely found, and a new gen-
eration of digital devices is now finding its way into operation. Also,
sometimes the objective function will be modified so as to represent
a discrepancy, or error, in meeting some operational goal. There is
some disagreement in the power engineering community as to how
to precisely characterize which modeling features are needed in a
formulation to guarantee that a solution is actually implementable,
or even how to model particular engineering details. Some authors
have argued that is in fact undesirable to model OPF as an optimiza-
tion problem, because of the difficulty in precisely modeling many
engineering details.

An example is provided by the left (lower bounding) voltage con-
straints (9). It is important that individual buses maintain “high” volt-
ages, however, having many load buses at low voltages indicates a
more serious condition than having one bus at a comparatively lower

voltage; further, drooping voltages are correlated with decreased re-
active power injections (the Qk) values and both are associated with
decreased efficiency in the transmission of active power (with in-
creased thermal losses and heating of power lines). Modeling these
interrelated conditions in a way that is comprehensive without being
overly conservative is a challenge; the choice of the parameters VLk
seems to be somewhat heuristic.

For a wider discussion see [42]. Also see [41] for a review of the
history of power flow problems, solution approaches, and a discus-
sion of practical challenges. From the perspective of applied opti-
mization, it is not uncommon to have to deal with a situation with
a myriad of constraints that are difficult to model, some of which
may be important and some not. What is perhaps unique about the
power flow setting is the nontrivial complexity of the many engineer-
ing details, the nonlinearity of many relationships (across different
scales of data) and the inflexibility resulting from having to deal with
laws of physics that cannot be bypassed. We would thus argue that
it is therefore even more important to efficiently address the basic
version of the OPF problem, as described above, so that multiple
runs become practicable.

A final ingredient in the PF and OPF problems is their size. Mod-
ern transmission systems are large, and even regional systems may
encompass tens of thousands of buses and lines. While some ag-
gregation and simplification is possible, problem instances involving
thousands of buses are common.

There is a vast literature on OPF problems going back more than
fifty years; Carpentier [11] formulated the problem and proposed
a number of techniques based on convex optimization. A broad re-
view of the history of the problem and proposed solutions appears
in [9].

2 Traditional solution approaches

In power engineering practice, typical PF and OPF problems are han-
dled routinely, and with ease, using traditional methods that we will
survey below. This may come to a surprise to readers, given the ob-
vious complexity of the problems (which in fact are NP-hard) and
their size. Thus: are the problems easy, or not? Is this yet another
case of theoretically hard problems that in practice prove manage-
able? As we will see, despite their success, the traditional methods
can fall short, and on very critical problem instances where accuracy
is of paramount practical importance.

To understand this apparent contradiction, consider the PF prob-
lem. In routine practice an instance under consideration will be fea-
sible, and furthermore a “near” solution will be known, for example,
the solution to a different PF instance with slightly different data. And
even when an approximate solution is not available, if one assumes
that the grid is in a stable configuration all voltage magnitudes should
be approximately equal (to 1, after an appropriate scaling step) and
all phase angle differences should be very small. Hence one can use
as a starting point for Newton-Raphson, the vector where all voltage
magnitudes are 1 and all phase angle differences θkm are zero.

In either case one can employ an iterative algorithm, and start
from the known point. By far, the most popular algorithm in power
engineering practice is the classical Newton-Raphson method [30]2 .
Frequently, a remarkably small number of iterations are needed for
convergence, especially when dealing with a grid not under stress.

On the negative side, Newton-Raphson can fail to converge. This
will happen in particular if the Jacobian of the system becomes sin-
gular at some iteration. This condition can sometimes be bypassed
(e.g., by reducing the step size) but there is no theoretical guaran-
tee of convergence. Experimentation shows that non-convergence
is especially common (in fact: almost the default) when modeling
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a grid under stress. In such cases, the ‘flat’ starting point will be far
from feasible. When convergence to a feasible solution proves prob-
lematic, some popular commercial software packages used in actual
operation (such as Powerworld [34]) may alter problem data on the
fly in order to attain convergence. See, for example, [32], [33]. Fre-
quently, it is argued that the number or L2-norm of the changes to
problem data is minimal, however it is not clear how the claim can
be validated. The difficulty in diagnosing infeasibility of a PF instance
is a significant challenge, for example because PF problems may be
run as ‘what-if ’ studies to determine the impact of a control action
(possibly in a situation of emergency).

Similar considerations apply to the OPF problem. Many commer-
cial software systems are available to address the OPF problem(s);
additionally these systems attempt to accommodate a number of
engineering features that are difficult to model directly. Frequently
such systems iteratively solve a sequence of problems, relying on
linearizations of the power flow equations. Note that the lineariza-
tion of a non-convex constraint will result in a linear inequality that
may not be globally valid (see [10]). Of course, methods of this type
may only converge to a local optimum, and convergence itself is not
guaranteed. Nevertheless, it must be stressed that all the software
systems described here benefit from extensive industry experience
supporting the underlying models, from the modeling of many com-
plex engineering details, and from (usually) very good software im-
plementations and often, clever mathematics.

Here, we see the same paradigm as described above: on routine
problems one can (probably) compute the optimum quickly, espe-
cially if a good starting point is known. Yet on the other hand, when
dealing with a grid under stress, the algorithms can (and do) break
down.

The lack of a categorical proof of infeasibility of a PF instance or
optimality of an OPF instance can be problematic. In the PF case,
non-convergence of the Newton-Raphson method could be due to
genuine infeasibility (as is often claimed) – or it could be due to algo-
rithmic shortcomings. This is not just a theoretical assertion; non-
convexities are observed in both the PF and OPF problems, both in
realistic problem instances and also in extremely simple, but realis-
tically parameterized instances. See, e.g., [18] for very simple 3-bus
examples that nevertheless exhibit a remarkable degree of noncon-
vexity.

Likewise, the lack of proof of optimality (or a bound for the op-
timality gap) for an OPF instance can be nontrivial especially (once
again) when dealing with a grid under distress, where, potentially, the
conditions that cause such stress (such as low voltages) can make
transmission less efficient (i.e., more costly). Further, we note that
(relying on a common optimization “trick”) as a stand-in for evalu-
ating feasibility of a PF problem, one can instead solve an OPF-like
problem with an objective of the form

min
∑

k

(
ak(Pk − P̃k)2 + bk(Qk − Q̃k)2

)

(with constraints (8), (9)) where the quantities P̃k and Q̃k are desired
target values. The resulting optimization problem may be easier to
solve than the original PF instance. However, non-convergence, or
convergence to a significantly suboptimal solution, again becomes
problematic. Once again, the setting under consideration is that of a
grid under stress, where the goal of the computation is to determine
how the system will behave, for example in response to a control
action.

In summary, thus, traditional methods that lack a theoretical guar-
antee of convergence to a guaranteed solution (i.e., a solution fea-
sible for a PF instance, or optimal to an OPF instance) prove fast
and reliable on routine problem instances. This is of course impor-

tant. When considering systems under stress the traditional solution
methods become much less reliable. This is also quite important,
and has become more so under growing congestion, increasing costs
(which push grid operators toward riskier operating modes) and the
incorporation of new technologies such as renewable generation.

3 Convex optimization algorithms and formulations

MATPOWER [45, 46], a freely available package of PF and OPF
solvers, includes a primal-dual, logarithmic barrier method espe-
cially designed for the OPF problem. MATPOWER can also use,
as “plugins”, a number of modern solver systems for convex opti-
mization problems, such as MINOS [36], SNOPT [39], IPOPT [44],
CONOPT [13] and KNITRO [28]. Clearly, these solvers, though
modern and extremely well implemented, can only guarantee con-
vergence to a local optimum, for the simple reason that PF and OPF
problems are extremely non-convex. Recent work [8, 10, 35] per-
formed an experimental evaluation of the solvers mentioned in the
above paragraph, using as testbed a subset of the popular IEEE test
family [20].

[As a parenthetical remark, it is to be noted that extremely few
realistic problem instances of transmission systems are publicly avail-
able, possibly because of the proprietary nature of the data. As a
result, many of the instances in the IEEE family are old, and small.
Relatively recent snapshots of the Polish national grid have now be-
come publicly available; at (roughly) 3,000 buses they constitute an
interesting family of (probably) realistic small- to medium-size exam-
ples.]

The experiments in [8] used, as the largest example, the “300-
bus” case. The experiments reveal a wide disparity in performance
profiles among the solvers, with occasional non-convergence. On
the positive side, often the solvers converged to a global optimum
(but without proving so, of course). On the negative side, conver-
gence typically required on the order of twenty seconds (for the
fastest solver) and performance significantly worsened when run-
ning instances with increased low levels. This is a form of stress
test – when loads increase in a grid, resources obviously become
scarcer. We should add that twenty seconds is (as far as we can tell)
much too slow a performance when only 300 buses are concerned –
practical applications would require at least one order of magnitude
more buses.

It is worth pointing out a widely used convex (in fact: linear) ap-
proximation to the PF and OPF problems. This is the DC “approx-
imation,” so-called because it is reminiscent of Ohm’s law for DC
(direct current) circuits. The approximation rests on a number of
observations:
◦ First, a typical line km in a high-voltage transmission system will

have rkm ≪ xkm (small resistance compared to reactance). In
the DC approximation, all lines are modeled as having zero resis-
tance. Recalling (2), (5), a calculation shows that for any line km,
gkm = 0, and bkm = −x−1

km.
◦ As mentioned before, in a transmission system under stable op-

eration, after scaling, |Vk| ≈ 1 for all buses k. In the DC approxi-
mation we assume |Vk| = 1 for all k.

◦ Another characteristic of stability is that |θkm| should be small
for all km. In the DC-approximation we replace cosθkm with 1

and sinθkm with θkm, for all lines km.
Using these simplifications (6) becomes linear:

Pk =
∑

km

x−1
km(θk − θm), (13)

and reactive power is ignored. We obtain a linearly constrained opti-
mization problem. In practice, the DC approximation is very heavily
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used, even when the conditions that make the approximation accu-
rate do not hold. It is attractive when, in particular, a large volume of
computations is needed. It is also useful because of its modest need
for accurate data (relative to the full OPF formulation). A discussion
of the pros and cons of the DC approximation is given in [43].

4 Conic formulations

Suppose we represent voltage at bus k using rectangular coordi-
nates, i.e. Vk = ek + jfk . With this representation, the current
Ikm = ykm(Vk − Vm) is linear in ek, fk, em, fm, and the power
injection Pkm = VkI∗km is quadratic. For example, for any line km
one obtains

Pkm = g{k,m}e2
k + ek

(
−g{k,m}em + b{k,m}fm

)

− fk
(
b{k,m}em + g{k,m}fm

)
+ g{k,m}f 2

k . (14)

(and a similarly expression for Qkm). Thus, writing

w = (e1, . . . , en, f1, . . . , fn)
T ∈ R2n,

equation (8) becomes,

PLk ≤ wTMkw ≤ PUk and QLk ≤wTNkw ≤ QUk (15)

for appropriate matrices Mk,Nk ∈ R2n×2n. The detailed structure
of the Mk and Nk matrices is unimportant here. However, say that a
2n×2nmatrix A is block skew-symmetric if there exist n×nmatrices
B and C with B symmetric such that

A =
(

B C

−C B

)
. (16)

Then one can show that for each bus k, both Mk and Nk are block
skew-symmetric – this is a direct consequence of the structure of
equations such as (14).

Similarly, (9) becomes

(VLk )
2 ≤ e2

k + f 2
k ≤ (V

U
k )

2, for all k. (17)

Note that the quadratic in (17) is diagonalized, and hence its corre-
sponding matrix (which we will call Dk) is block skew-symmetric. In
summary, the OPF problem with objective as in (10), and injection
and voltage bounds can be written as

min
∑

i∈G
Fi(w

TMiw)

s.t.

for 1 ≤ k ≤ n : PLk ≤ wTMkw ≤ PUk
QLk ≤ wTNkw ≤ QUk

(VLk )
2 ≤ wTDkw ≤ (VUk )2,

where all Mk,Nk,Dk are block skew-symmetric. The rectangular
voltage representation is not new (for example it appears in the
work of Overbye cited above). Recently, however, Lavaei and Low
[26] used the above formulation to obtain an SDP relaxation of the
OPF problem. Some earlier work on conic and SDP formulations
can be found in [2], [22], [23]. To obtain the Lavaei-Low formula-
tion, suppose that for each generator i, we have cost function

Fi(p) = aip2 + bip, where ai ≥ 0 and bi ≥ 0. (18)

Setting ai = bi = 0 for i ∉ G, we can then rewrite the above opti-
mization problem as

O1: min
∑

k

αk

s.t. for 1 ≤ k ≤ n :

PLk ≤ wTMkw ≤ PUk
QLk ≤ wTNkw ≤QUk

(VLk )
2 ≤ wTDkw ≤ (VUk )

2

[
bkw

TMkw −αk
√
akw

TMkw√
akw

TMkw −1

]
� 0.

(Remark: This is not a QCQP [quadratically constrained quadratic
program] but we can easily reduce it to one, by replacing the
semidefinite constraint for each i ∈ G with the system

|wTMiw| − pi ≤ 0, aip
2
i + biwTMiw −αi ≤ 0,

where pi is a new variable.) We can next construct the semidefinite
relaxation of problem O1:

R1: min
∑

k

αk

s.t.W � 0, and for 1 ≤ k ≤ n :

PLk ≤Mk •W ≤ PUk
QLk ≤ Nk •W ≤QUk

(VLk )
2 ≤ Dk •W ≤ (VUk )2[

bkMk •W −αk
√
akMk •W√

akMk •W −1

]
� 0.

Clearly, if R1 has a rank-1 optimal solution, it constitutes an
optimal solution to O1. To investigate this condition, [26] con-
structs a dual problem to O1. For 1 ≤ k ≤ n, and given reals
λU , λL, µU , µL, γU , γL , define

hk(λ
U , λL, µU , µL, γU , γL)

≐ λLkPLk − λ
U
k P

U
k + µLkQLk − µ

U
k P

U
k + γLk(VLk )2 − γ

U
k (V

U
k )

2,

and consider the optimization problem with variables, for each k,

λUk , λ
L
k, µ

U
k , µ

L
k , γ

U
k , γ

L
k , gk, rk

given by:

L1: max
∑

k

hk(λ
U
k , λ

L
k, µ

U
k , µ

L
k , γ

U
k , γ

L
k) −

∑

k

rk

s.t. λUk , λ
L
k, µ

U
k , µ

L
k , γ

U
k , γ

L
k ≥ 0; gk, rk ∈ R, all k,

∑

k

[λkMk + µkNk + γkDk] � 0 (19)

and ∀k : λk = λUk − λLk + 2
√
akgk + bk

µk = µUk − µLk
γk = γUk − γLk[

1 gk

gk rk

]
� 0.

Then we have [26]:

Theorem 4.1. Assume O1 is feasible. (1) Problem L1 is the dual of

O1. (2) Problem R1 is the Lagrangian dual of L1 with W acting as the

dual variable for constraint (19). Further, strong duality holds.

A key ingredient in the analysis in [26] is the following:

Assumption C. At optimality for problem L1, the matrix in the
left-hand side of (19) has null space of dimension 2.
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Now a key observation is that the matrix in (19) is block skew-
symmetric. As a result, suppose that λ∗, µ∗, γ∗ are the optimal val-
ues for the variables λ,µ, γ in L1; and likewise that W∗ is an optimal
matrix for R1. Denote

A∗ ≐
∑

k

[
λ∗kMk + µ∗kNk + γ∗k Dk

]
.

Then by complementary slackness,

A∗ •W∗ = 0. (20)

Let the spectral decomposition of W∗ be W∗ =
∑2n
i=1 θiviv

T
i ,

where θi ≥ 0 for all i. Then by (20),

2n∑

i=1

θiv
T
i A

∗vi = 0.

But by (19), A∗ � 0, and so

vTi A
∗vi = 0, for all i with θi > 0. (21)

Assumption C now implies that at most two eigenvalues θi are
strictly positive. Assuming e.g. VLk > 0 for at least one k we have
W∗ ≠ 0, and so at least one the θi is positive.

We will now show that, without loss of generality, problem R1

has a rank-1 solution. Obviously this holds if W∗ has rank one. As-
suming otherwise, we have

W∗ = θ1v1v
T
1 + θ2v2v

T
2

where v1, v2 form an orthonormal pair. Write v1 = (sT1 , t
T
1 )
T

where s1, t1 ∈ Rn. Consider the vector

v̂1 ≐ (−tT1 , sT1 )T .

Clearly v̂T1 v1 = 0 and v̂1 ≠ v1. Moreover, it is straightforward to
verify that for any block skew-symmetric 2n× 2n matrix R,

v̂T1 Rv̂1 = vT1 Rv1 (22)

and so in particular, A∗v̂1 = 0. By Assumption C we must therefore
have

v̂1 = ±v2.

Thus, using (22) we have that for any block skew-symmetric R,

R •W∗ = (θ1 + θ2)R • v1v
T
1 .

It follows that (θ1 + θ2)v1v
T
1 is feasible for problem R1 and with

equal objective value as W∗, and therefore, optimal, as desired. For
additional details see [26].

Assumption C is the key for obtaining rank-1 solutions. Does it
always hold? Clearly not – the OPF problem is NP-hard. However,
in [26] the authors present arguments that would suggest that it
does hold in realistic instances, possibly after some small perturba-
tions to the data. Indeed, they show that that is the case for the IEEE
test instances. Following the publication of [26] other researchers
have taken up this question. A number of small, simple, realistic ex-
amples where Assumption C does not hold appear in D. Molzahn’s
PhD thesis [37]; also see [27]. As of this writing, the preponderance
of opinion is that Assumption C may not always hold on realistic
instances – but that it will nearly hold, that is to say problem R1 will
usually have a low rank solution.

In any case, it is clear that the work in [26] has drastically redrawn
the map of the OPF problem and almost certainly additional pos-
itive results are forthcoming. Further investigations are presented
in [14, 15, 29] and references therein.

5 Approximate solution algorithms

Can we efficiently solve the SDP relaxation of the OPF problem dis-
cussed above? We point out that problems R1 and L1 are very
sparse. In fact, their nonzero pattern is identical to the (graph-
theoretic) set of neighbors of bus k; furthermore each Dk has just
two nonzeros. Overall, the nonzero pattern of R1 and L1 is es-
sentially identical to the adjacency matrix of the underlying network
(plus diagonal entries). Real-world grids are quite sparse, with aver-
age degree approximately 3, say.

Reference [37] describes a number of experiments using the SDP
solver SeDuMi [38], including an algorithm that takes advantage of
the sparsity so as to preprocess formulation L1 before presenting it
to the solver (using matrix completion techniqes, see [24]). On the
IEEE 300-bus case, they report running times on the order of 5 sec-
onds (using a current computer); this is comparable or better than
the running times reported in [8] for local-optimality convex solvers
(see Section 3). On various versions of the Polish grid (roughly 3000
buses) [37] reports running times on the order of 1500 seconds.
The sparsity-aware preprocessing proved invaluable; without its use
the Polish grid examples could not be solved.

In both cases, these running times exceed the times reported
by commercial vendors (used to obtain possibly local optima) by
two orders of magnitude or more; we have observed that the DC
approximation for the Polish grid solves, typically, in a fraction of
a second. Of course, the SDP formulation (when the rank condi-
tion applies) has the supreme advantage of being correct. This is key
when analyzing a grid under distress. Hence we are in a situation
already discussed above: in routine situations, heuristic and approx-
imate solvers are very fast and practicable, and, empirically, provide
correct solutions. What is new is that now there is a theoretically
sound, albeit slow, method for handling non-routine situations.

Future research will possibly produce significant speedups for the
SDP relaxation, as well as a way to bypass the rank condition. As
an intermediate step, researchers have produced a number of alter-
natives to the (linear) DC approximation, with some guarantees of
accuracy under various degrees of grid “stress”, while retaining com-
putational practicability. These approximations linearize the power
flow equations around the “flat start” point (e.g. |Vk| = 1, θkm = 0

for all k and km) but with more flexibility than the DC approxima-
tion. See [3, 12, 17] (convex quadratic approximation). These ap-
proximations are less accurate than the full OPF formulation; how-
ever they remain highly practicable and have some theoretical guar-
antees. Quite likely, algorithms of this type will see increased usage
in practical settings, in particular in volume computation settings.

A different approach is discussed in [7]. Consider equation (6),
which describes the (active) power balance at bus k. If we assume
gkm ≈ 0 for all km and all voltage magnitudes approximately equal
to 1, then (6) becomes

Pk ≈
∑

km

(−bkm sinθkm) . (23)

Reference [7] describes a way to solve the system of equations (23)
for given Pk while constraining the solution in terms of line flow
limits. To describe this development we will choose an orientation
for each line; for a line i = uv we write aui = 1, avi = −1. For
any bus k ≠ u,v we write aki = 0. For a line i = km we write
βi = bkm, and we denote by ui the (active power) flow limit on i.
In [7] the following formulation is discussed, where L indicates the
set of (directed) lines:

min
ρ

∑

i∈L
βiψ(ρi) (24)
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s.t.
∑

i∈L
βiaikρk = Pk ∀k (25)

|ρi| <min{1, ui}. ∀i ∈ L (26)

Here for |x| < 1,

ψ(x) ≐
∫ x

−1
arcsin(y)dy,

a convex function of x since arcsin(x) is increasing for x ∈ [−1,1].
Note that this formulation may be infeasible, and if the optimal so-
lution of Eq. (24) occurs on the boundary of Eq. (26), then the so-
lution is likely unstable. Suppose optimization problem (24-26) is
well-defined, that is to say, it has an optimal solution which strictly
satisfies (26). Then denoting by θi the optimal Lagrange multiplier
for constraint (25) we obtain that for every line i = km,

arcsin(ρi) = θk − θm, (27)

in other words, we obtain an exact solution to (23) (by (25)). How-
ever, the objective function that we used to obtain this result is not

what is desired in the OPF setting. In [4], the authors present an in-
terior point (logarithmic barrier function) algorithm that solves the
OPF problem under the assumptions described above (gkm ≈ 0 for
all km and all voltage magnitudes approximately equal to 1) to guar-
anteed tolerance, in polynomial time.

Notes
1. They ignore, for example, “shunt” effects.
2. Other, slower iterative methods are also possible, see, e.g., [1]

Daniel Bienstock, Departments of Industrial Engineering and Operations Re-
search, and Applied Physics and Applied Mathematics, Columbia University,
New York, NY, USA. dano@columbia.edu, www.columbia.edu/~dano
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Larry Snyder

Multi-period optimal power flow problems

An important new development in the research on optimal power
flow (OPF) problems has been the formulation and analysis of multi-

period OPF problems. In some cases these problems have emerged in
response to changes (or anticipated changes) in electricity grids, as
the U.S. and other countries develop “smart grids” that will inte-
grate a two-way communications infrastructure into the electricity
network and require many new kinds of decisions for grid opera-
tors. In other cases the problems have been a natural stop on the
trajectory of OPF research and have been studied recently simply
because, due to advances in the optimization technologies used to
solve OPF problems, they can be.

Although single-period OPF problems are ubiquitous in practice
today, multi-period problems are likely to play a significant role in the
planning and operation of transmission grids in the future. Since Dan
Bienstock’s column discusses single-period problems, I will use this
discussion column to provide a brief introduction to multi-period
OPF problems (sometimes called dynamic OPF problems).

Power planning problems exhibit several requirements that can-
not be modeled without inter-temporal constraints. I’ll focus on
ramping constraints, which restrict the magnitude of changes in gen-
eration quantities between consecutive time periods to reflect tech-
nical requirements of the generators. The classical (single-period)
OPF model can naturally be extended to T periods by adding time
indices to the parameters and decision variables in (5)–(8) (refer-
ring to the equation numbering in Dan’s column) and replacing the
objective function (9) with:

min
T∑

t=1

∑

k∈G
Fk(Pk(t), t). (1)

Ramping constraints take the form

−∆−k ≤ Pk(t) − Pk(t − 1) ≤ ∆+k (2)

for constants ∆−k ,∆
+
k ≥ 0. (Other inter-temporal constraints could

be added, for example, to model minimum or maximum total power
output over the horizon.) The multi-period OPF model with ramp-
ing is then given by

min
T∑

t=1

∑

k∈G
Fk(Pk(t), t), subject to: (5)–(8), (2), (3)

where (5)–(8) have been modified to include time indices. See, for
example, [10, 11], which formulate models similar to this and pro-
pose algorithms based on interior point methods. However, the
computational burden for these algorithms is large since the prob-
lem size is an order of magnitude greater than that for single-period
problems.

In practice, inter-temporal features are usually captured by con-
straints in the unit commitment (UC) problem [6, 9], which makes
binary startup and shutdown decisions about multiple generators
across a multi-period time horizon, ignoring power flows and net-
work constraints. The UC problem is typically solved once per day
for the following day’s operations, and then the OPF problem is
solved every fifteen minutes or so, adhering to the schedule set
by the UC solution and accounting for power flow constraints.
Some authors have combined the two models, i.e., including OPF-
type power flow constraints in the UC problem. For example, [2]
and [8] propose Benders decomposition and augmented Lagrangian
methods, respectively. Solution times are on the order of minutes

or hours, making these joint models valuable as refinements to the
UC problem but impractical as replacements for the OPF problem,
which must be solved multiple times per hour.

A common explanation for the separability of OPF problems by
time period is that today’s power systems require demands in a short
time interval to be supplied, exactly, by generation within the same
interval; therefore there is no coupling of time intervals, at least
with respect to supply and demand. However, the requirement that
demand must match supply within a given, short time span – a re-
quirement that has been at the heart of grid operation for more
than a century – is changing, due to the development of grid-scale
energy storage systems (ESS) such as batteries, flywheels, compressed
air, etc. [1] This complicates the OPF paradigm since storage cou-
ples time periods: decisions about generation and storage charg-
ing/discharging must account for the future as well as the present.
The resulting multi-period OPF models might be solved, for exam-
ple, with 15-minute time periods and a 24-hour horizon, perhaps on
a rolling-horizon basis.

Assume that each generator in G has a co-located ESS, e.g., a bat-
tery. To incorporate storage into the multi-period OPF model, we
introduce new decision variables gk(t) ≥ 0 representing the amount
of power generated at k ∈ G in time period t, as well as variables
rk(t) representing the amount of power discharged from the ESS
(or charged to the ESS, if rk(t) < 0) at node k in period t.1 The
power injected into the grid from generator k is no longer given by
(12), but rather by

Pk(t) = gk(t) + rk(t); (4)

now gk(t) and rk(t) are the “direct” decision variables, whereas
Pk(t) is derived from it via (4) and is related back to the grid via
(12). (We will use the DC (linear) approximation and thus ignore
Qk(t).) The generation amounts must be nonnegative:

gk(t) ≥ 0. (5)

The energy level in the ESS at node k in period t, denoted bk(t), is
governed by

bk(t) = bk(t − 1)− rk(t). (6)

(Before proceeding, we note that (4) and (6) together are equivalent
to to bk(t) = bk(t − 1) + gk(t) − Pk(t), which is reminiscent of
the equation used to describe the dynamics of periodic-review in-
ventory systems; see, e.g., [12]. Here b stands in for the inventory
level, g for the order quantity, and P for the demand. This is not
an accident, of course, since an ESS is essentially an inventory of en-
ergy.) In addition, the energy level must remain in some given range:

BLk ≤ bk(t) ≤ B
U
k (7)

for all k and t. (Often BLk = 0.)
Combining these, we get the multi-period OPF model with storage

introduced by Chandy et al. [4]:

min
T∑

t=1

∑

k∈G

[
Fk(gk(t), t) +hk(bk(t))

]
+
∑

k∈G
hTk (bk(T)) (8)

subject to: (7), (11)–(12), (4)–(7)

In the objective function (8), Fk(gk(t), t) is the generation cost in
period t, hk(bk(t)) is the ESS cost as a function of the charge level,
and hTk (bk(T)) is a terminal ESS cost. In [4], hk(·) is assumed to be
decreasing, an assumption that is meant to encourage high charge
levels since a full ESS has more value. However, one could instead
assume hk(·) is increasing, in which case the function acts like a
“holding cost” in the inventory sense. In (7), (11), and (12) we add
time indices, and in (7) and (11) we consider the constraints related
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to P only. The model in [4] also allows the voltage magnitudes |Vk|
to take values other than 1, though they are assumed to be constant.
It does not include ramping constraints as in (2).

In the special case in which the network consists of a single gen-
erator/ESS and a single load connected by a line of infinite capac-
ity, the problem reduces to something that is very much like an
inventory problem. Chandy, et al. [4] derive the KKT conditions
for this problem and use them to find an explicit optimal solution.
They also prove that the optimal charging pattern follows a par-
ticular shape, conditioned on a (somewhat restrictive) assumption
on the cost and demand structures over the horizon. For the gen-
eral (multiple-generator/load) problem, [4] again derives KKT con-
ditions, although, assuming Fk(·) is convex, the problem can also be
solved using a convex optimization solver such as CPLEX.

The recent results by Lavaei and Low [7] for the single-period
OPF problem extend to the multi-period problem: Gayme and
Topcu [5] modify the problem above to include AC power flow
constraints (5) and (6); they solve an SDP relaxation of the origi-
nal OPF problem and prove that, under certain assumptions, there
is no duality gap.

These models can also be modified to accommodate more realis-
tic factors such as charging/discharging capacities and efficiencies. In
the latter case, one can change (6) to

bk(t) = bk(t − 1)− ηrk(t) (9)

if the charging and discharging efficiency are both equal to η. Typi-
cally this is not the case, so it is necessary to split the rk variables
to represent charging and discharging separately:

bk(t) = bk(t − 1)+ ηinr in
k (t)− ηoutrout

k (t), (10)

where r in
k (t), r

out
k (t) ≥ 0. A minor difficulty can arise with this ap-

proach: as [3] shows, the first-order conditions may fail to satisfy
the linear independence constraint qualification (LICQ), causing the
Jacobian to become singular and the Newton–Raphson method to
fail to converge. This happens, for example, if the ESS begins the
horizon fully charged or fully empty and it is optimal for it to stay
at that level during the first time period. For the multi-period OPF,
the issue can be avoided using a simple modeling trick, but the re-
sults in [3] may have implications for other multi-period models that
make use of (10).

In addition to storage, other features of advanced electricity grids
will increase the importance of multi-period OPF problems. The in-
creased penetration of renewable generation resources, and their in-
herent volatility and uncertainty, will mean that traditional genera-
tors will have to ramp more quickly and more often, making ramping
constraints a critical feature of OPF problems. The introduction of
new demand response (DR) programs, in which consumers are en-
couraged to shift their demands away from peak times via pricing or
other mechanisms, will add new temporal (and stochastic) aspects
to the loads themselves. Moreover, in some DR programs such as di-

rect load control (in which the grid operator directly shifts the timing
of consumers’ HVAC or other devices), the load becomes a deci-
sion variable that functions very much like the generation variables,
with additional inter-temporal constraints. In addition, new sensing

and communications infrastructure integrated into the grid will enable
better forecasts of conditions in the near future, providing opportu-
nities for improved inter-temporal decision making.

Note
1. Since we assume these and other quantities have units of energy
per period, we use the terms power and energy interchangeably.

Lawrence V. Snyder, Department of Industrial and Systems Engineering,
Lehigh University, Bethlehem, PA, USA, larry.snyder@lehigh.edu
coral.ie.lehigh.edu/~larry
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Tamás Terlaky

ICCOPT 2013

Looking back

This year marks the 10th anniversary of the birth of ICCOPT. The
idea to have a triennial continuous optimization conference was first
born during ISMP 2003 on the Copenhagen-Lyngby suburban train.
Jean-Philippe Vial and myself started a lively discussion on the im-
portance of continuous optimization, and the lack of an annual fo-
rum for the continuous optimization community to come together
and celebrate the most notable achievements of the field. The next
day during the lunch break many members of the community came
together and provided strong support to initiate the ICCOPT se-
ries as a major instrument of the Mathematical Optimization Society
(MOS), MPS, at that time. As the chair of the ICCOPT Steering
Committee of MOS until the summer of 2013, it is my pleasure and
privilege to report on the success of ICCOPT 2013.

ICCOPT 2013

The Fourth International Conference on Continuous Optimization
took place from July 27 to August 1, 2013, in the Department of
Mathematics of the Faculty of Science and Technology of the New
University of Lisbon, Caparica, Portugal. The meeting was co-chaired
by Katya Scheinberg (Program Committee) and by Paula Amaral and
Joaquim João Júdice (Organizing Committees), and overall coordi-
nated by Luis Nunes Vicente.

larry.snyder@lehigh.edu
mailto:larry.snyder@lehigh.edu
coral.ie.lehigh.edu/~larry
http://coral.ie.lehigh.edu/~larry
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The activities started during the weekend with two 5-hour inten-
sive Summer Courses. On Saturday, July 27, PDE-Constrained Op-
timization was taught by Michael Ulbrich and Christian Meyer and
on Sunday, July 28, Sparse Optimization and Applications to Infor-
mation Processing was taught by Mário A. T. Figueiredo and Stephen
J. Wright. Both courses were of excellent quality and attended by
more than one hundred participants each. ICCOPT 2013 partially
supported the traveling or lodging expenses of 21 young partici-
pants, mostly PhD students, who attended the Summer School and
the Conference.

The scientific program of the Conference spanned over 4 days
(July 29–August 1). The featured talks were given by Paul I. Bar-
ton, Michael C. Ferris, Yurii Nesterov, and Yinyu Ye (plenaries) and
by Amir Beck, Regina Burachik, Sam Burer, Coralia Cartis, Michel
De Lara, Victor DeMiguel, Michael Hintermüller, and Ya-xiang Yuan
(semi-plenaries). A total of 479 participants profited from these
great lectures which covered nearly all topics in Continuous Op-
timization. The bulk of the program was organized around 13 clus-
ters of invited sessions and sessions of contributed talks (coordi-
nated by a crucial team of 26 co-chairs) resulting in a total of 412
talks and 13 posters. The program was enriched with a plenary ses-
sion featuring talks by the three finalists of the Best Paper Prize
for Young Researchers in Continuous Optimization, namely Venkat
Chandrasekaran (the winner), Boris Houska, and Meisam Raza-
viyayn, who were selected among more than 30 applicants by a
selection committee of Stefan Ulbrich (the chair), Sam Burer, and
Jean-Baptiste Hiriart-Urruty.

As it is becoming the standard in all ICCOPTs, the social program
included the MOS Welcome Reception on Sunday, the Reception
during the Session of Poster Presentations on Monday, the Confer-
ence Banquet on Tuesday, and the Student Social on Wednesday.
The winner of the Best Paper Prize was announced at the banquet
followed by a live performance of Fado singing. Participants were of-
fered lunch during every day of the meeting, outside in the interior
courtyard of the Department. Most of those who stayed until the
end on Thursday went on to the Conference Tour to visit a natural
park and local wine cellars.

The logistics of the meeting were essentially organized by a team
of 12 colleagues, namely Carmo Brás, Nelson Chibeles-Martins,
Isabel Correia, Ana Luísa Custódio, Luís Merca Fernandes, Isabel
Gomes, João Gouveia, Ismael Vaz, Manuel Vieira, Zaikun Zhang, led
by Paula Amaral and Luis Nunes Vicente.

Thanks to the excellent work of the Program Committee, the
Organizing Committees, the help of a large number of student vol-
unteer, and last but not least, the general chair Luis Nunes Vicente’s
exceptional leadership and organizational talent, ICCOPT 2013 was
a sound success. The fourth edition of the ICCOPT series, has so-
lidified the position of the ICCOPT conferences as one of the prime
optimization conferences, providing a major international venue for
the continuous optimization community to gather each year at the
ISMP, ICCOPT and at the SIAM Optimization conferences.
Looking forward – The next steps

In the Summer of 2013 the ICCOPT Steering Committee was reju-
venated. After ten years of service I am passing the torch to Jong-Shi
Pang, the new Chair of the ICCOPT Steering Committee. The first
action of the renewed committee was to select the site of ICCOPT
2016. As it was announced in Lisbon, ICCOPT-V, the next edition of
the series, will take place in Tokyo, Japan. After a difficult decision
in choosing among several well-written site proposals, the 2016 IC-
COPT Steering Committee picked Tokyo, Japan as the host for this
event. Under the enthusiastic leadership of Professor Shinji Mizuno
and his local team, we look forward to another interesting confer-
ence in this series that promises to extend the impact of continuous

optimization to the Asian countries and offer an opportunity for the
local optimization experts to interact with their international col-
leagues.

Looking forward to meet all of you again at ICCOPT 2016 in
Tokyo!

Tamás Terlaky, Department of Industrial and Systems Engineering, Lehigh
University, Bethlehem, PA, USA, terlaky@lehigh.edu
coral.ie.lehigh.edu/~terlaky

SIAM Conference on Optimization 2014

May 19–22, 2014, Town and Country Resort & Convention Center, San

Diego, California, USA.

Plenary Speakers

Retsef Levi, Massachusetts Institute of Technology, USA / Joaquim R.
R. A. Martins, University of Michigan, USA / Yurii Nesterov, Catholic
University of Louvain, Belgium / Cynthia A. Phillips, Sandia National
Laboratories, USA / Andy Philpott, The University of Auckland, New
Zealand / Franz Rendl, Universität Klagenfurt, Austria / Francisco
Santos, Universidad de Cantabria, Spain / Rekha R. Thomas, Univer-
sity of Washington, USA

Invited Minitutorials

Mixed-integer Nonlinear Optimization

Sven Leyffer, Argonne National Laboratory, USA Jeff Linderoth, Uni-
versity of Wisconsin Madison, USA Jim Luedtke, University of Wis-
consin Madison, USA
Polynomial Optimization

Didier Henrion, University of Toulouse, France Monique Laurent,
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands,
and Tilburg University, The Netherlands

Minisymposia

Over 100 minisymposia on various aspects of optimization theory,
algorithms, and applications, including:
– Coordinate Descent Methods
– Derivative-Free Optimization
– Energy Applications
– Geometry of Linear Optimization
– Global Optimization
– Healthcare Applications
– Integer and Discrete Optimization
– Large-Scale Inverse Problems
– Multidisciplinary Design Optimization
– Nonlinear Optimization
– Numerical Linear Algebra
– PDE-Constrained Optimization
– Polynomial and Tensor Optimization
– Robust Optimization
– Semidefinite and Conic Optimization
– Stochastic Optimization

Contributed Presentations (in Lecture or Poster Format)

We look forward to seeing you in San Diego!
Miguel F. Anjos and Michael J. Todd

Organizing Committee Co-chairs

terlaky@lehigh.edu
mailto:terlaky@lehigh.edu
http://coral.ie.lehigh.edu/~terlaky
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IPCO 2014

The 17th Conference on Integer

Programming and Combinatorial

Optimization

Summer school: June 20–22, Conference: June 23–25, 2014, Bonn, Ger-

many. The IPCO conference is a forum for researchers and prac-
titioners working on various aspects of integer programming and
combinatorial optimization. The aim is to present recent develop-
ments in theory, computation, and applications. The scope of IPCO
is viewed in a broad sense, to include algorithmic and structural re-
sults in integer programming and combinatorial optimization as well
as revealing computational studies and novel applications of discrete
optimization to practical problems.

In the preceding summer school, the following distinguished speak-
ers have accepted our invitation to give lectures: Gérard Cor-
nuéjols (Carnegie Mellon University, Pittsburgh), Friedrich Eisen-
brand (École Polytechnique Fédérale Lausanne), András Frank
(Eötvös University, Budapest), David Shmoys (Cornell University,
Ithaca).

Organizing Committee:

Stephan Held (co-chair), Stefan Hougardy, Bernhard Korte, Jens Vy-
gen (chair)

Program Committee:

Flavia Bonomo (Universidad de Buenos Aires), Sam Burer (Uni-
versity of Iowa), Gérard Cornuéjols (Carnegie Mellon University),
Satoru Fujishige (Kyoto University), Michael Jünger (Universität zu
Köln), Matthias Köppe (University of California, Davis), Jon Lee,
chair (University of Michigan), Jeff Linderoth (University of Wis-
consin), Jean-Philippe Richard (University of Florida), András Sebő
(CNRS, Laboratoire G-SCOP, Grenoble), Maxim Sviridenko (Univer-
sity of Warwick), Chaitanya Swamy (University of Waterloo), Jens
Vygen (Universität Bonn), David P. Williamson (Cornell University),
Laurence Wolsey (Université catholique de Louvain)

The program committee is currently selecting approximately 33
papers among the record number of 143 submissions. The list of
accepted papers will be published in early February 2014.

There will also be a poster session. Abstracts for posters can be
submitted by March 31, 2014.

Registration is now open. The deadline for early registration is
April 20, 2014.

http://www.or.uni-bonn.de/ipco/

IPCO 2014 in Bonn (Michael Sondermann/Presseamt Bundesstadt Bonn)

Summer schools 2014 at the Centro

Internazionale Matematico Estivo

June – September, 2014, Firence, Italy. In 2014, the following courses
will be offered at the Centro Internazionale Matematico Estivo (In-
ternational Mathematical Summer Center):
– Partial Differential Equations and Geometric Measure Theory

June 2–7, 2014 – Cetraro (CS)
– Computational Electromagnetism June 9–14, – Cetraro (CS)
– Centralized and Distributed Multi-agent Optimization: Models

and Algorithms. CIME-EMS Summer School in applied mathemat-
ics June 23–28, 2014 – Cetraro (CS)

– Mathematical Models and Methods for Living Systems CIME-CIRM
Course September 1–6, 2013 – Levico Terme (TN)

Proposals for new courses are welcome and they can be submitted,
preferably via e-mail, to cime@math.unifi.it.

CIME activity is carried out with the collaboration and financial
support of: INdAM (Istituto Nazionale di Alta Matematica), MIUR
(Ministero dell’Istruzione, dell’Università e della Ricerca), and Ente
Cassa di Risparmio di Firenze.

http://web.math.unifi.it/users/cime/

Mixed Integer Programming (MIP 2014)

July 21–24, 2014, Ohio State University, Columbus, OH, USA. This will
be the eleventh in a series of annual workshops held in North Amer-
ica designed to bring the integer programming community together
to discuss very recent developments in the field. The workshop se-
ries consists of a single track of invited talks and also features a
poster session as an additional opportunity to share and discuss re-
cent research. Registration details and a call for participation in the
poster session will be announced later.

Confirmed speakers:

Karen Aardal (TU Delft), Warren Adams (Clemson), Alper
Atamtürk (Berkeley), Timo Berthold (Xpress), Daniel Bienstock
(Columbia), Pierre Bonami (IBM CPLEX), Sanjeeb Dash (IBM T. J.
Watson), Juliane Dunkel (IBM Research – Zurich), Zonghao Gu
(Gurobi), Raymond Hemmecke (TU Munich), Robert Hildebrand
(ETH Zurich), Simge Küçükyavuz (Ohio State), Jeff Linderoth (UW-
Madison), Andrea Lodi (University of Bologna), Marco Molinaro
(Georgia Tech), Michele Monaci (University of Padova), Francois
Margot (Carnegie Mellon), Giacomo Nannicini (Singapore University
of Technology and Design), Laurent Poirrier (University of Padova),
Sebastian Pokutta (Georgia Tech), Domenico Salvagnin (University
of Padova), Stefan Vigerske (GAMS), Andreas Wächter (Northwest-
ern), Minjiao Zhang (University of Alabama).

Program Committee:

Amitabh Basu (chair) (Johns Hopkins), Tobias Achterberg (IBM
CPLEX, ZIB), Jon Lee (University of Michigan), Susan Margulies (US
Naval Academy), Jim Ostrowski (University of Tennessee Knoxville).

Local Committee:

Simge Küçükyavuz (chair) (Ohio State), Ramteen Sioshansi (Ohio
State).

Contact: mip2014@osu.edu
https://mip2014.engineering.osu.edu

http://www.or.uni-bonn.de/ipco/
cime@math.unifi.it
mailto:cime@math.unifi.it
http://web.math.unifi.it/users/cime/
mailto:mip2014@osu.edu
https://mip2014.engineering.osu.edu
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MOPTA 2014

August 13–15, 2014, Lehigh University Rauch Business Center Bethle-

hem, PA, USA. MOPTA aims at bringing together a diverse group of
people from both discrete and continuous optimization, working on
both theoretical and applied aspects. There will be a small number
of invited talks from distinguished speakers and contributed talks,
spread over three days. Our target is to present a diverse set of ex-
citing new developments from different optimization areas while at
the same time providing a setting which will allow increased interac-
tion among the participants. We aim to bring together researchers
from both the theoretical and applied communities who do not usu-
ally have the chance to interact in the framework of a medium-scale
event.

Confirmed plenary speakers:

Gerald Cornuejols (Carnegie Mellon University), Darinka
Dentcheva (Stevens Institute of Technology), Warren Powell
(Princeton University), Asu Ozdaglar (MIT), Andreas Wächter
(Northwestern University).

Organizing Committee:

Boris Defourny (Chair), Tamás Terlaky, Frank E. Curtis, Katya
Scheinberg, Ted K. Ralphs, Robert H. Storer, Aurélie C. Thiele, Larry
V. Snyder, Eugene Perevalov, Luis F. Zuluaga.

We look forward to seeing you at MOPTA 2014! http://coral.ie.lehigh.edu/~mopta/

Application for Membership

I wish to enroll as a member of the Society. My subscription is for my personal use
and not for the benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.
I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:

Mathematical Optimization Society
3600 Market St, 6th Floor
Philadelphia, PA 19104-2688
USA

Cheques or money orders should be made
payable to The Mathematical Optimization
Society, Inc. Dues for 2013, including sub-
scription to the journal Mathematical Pro-

gramming, are US $ 90. Retired are $ 45.
Student applications: Dues are $ 22.50.
Have a faculty member verify your student
status and send application with dues to
above address.

Faculty verifying status

Institution
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