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Note from the Editors

Dear MOS members,

In the main article of this Optima issue in your hands, Warren B.

Powell (Princeton University) deals with the question of how a gen-

eral model of optimization problems involving uncertainties could

look like – a model that would allow for describing and discussing

models from an entire spectrum of areas such as stochastic pro-

gramming, dynamic programming, and robust optimization in a uni-

fied way. In the follow-up discussion column, Andrzej Ruszczynski

(Rutgers University) analyzes four aspects of Powell’s proposal rais-

ing in particular the question to what extent the proposed unified

model suitably covers all relevant aspects.

We would be happy if these contributions to Optima started a

fruitful debate within the community. In this spirit, we already have

a short rebuttal by Warren Powell that you will find immediately af-

ter Andrzej Ruszczynski’s remarks. We hope that this issue of our

newsletter initiates discussions about the “right way to state opti-

mization problems under uncertainty”, e.g., at the upcoming ISMP

2015 in Pittsburgh.

In case you have not yet made plans for ISMP 2015, you will want

to do so after having a look at the list of outstanding plenary and

semiplenary speakers whose short biographies we also include in

this issue.

With our best wishes for the new year! Sam Burer, Co-Editor

Volker Kaibel, Editor

Jeff Linderoth, Co-Editor

Warren B. Powell

Bridging the Fields of Stochastic

Optimization

While there is almost universal acceptance of the canonical form

for a deterministic optimization problem, the study of sequential

stochastic optimization problems has become fragmented into a

diverse set of communities which differ in terms of applications and

notation, modeling and algorithmic strategies, and even the types of

questions that are considered publishable contributions. It is quite
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common that authors cannot agree on an objective function, or even

what they are optimizing over!

Perhaps the most visible debate in operations research has been

between the frameworks offered under the headings of “dynamic

programming,” “stochastic programming,” and “robust optimization,”

with different research groups promoting the strengths of each ap-

proach. However, these arguments quickly blend with methods that

have evolved using names such as reinforcement learning, stochastic

search, simulation optimization, and optimal control. Often over-

looked are the communities working on online versions of these

problems using the terminology of multiarmed bandit problems.

An example of the current state of affairs is captured by a com-

ment made by a well-intentioned referee:

One of the main contributions of the paper is the demonstra-

tion of a policy-based modeling framework for transportation

problems with uncertainty. However, it could be argued that a

richer modeling framework already exists (multi-stage stochas-

tic programming) that does not require approximating the de-

cision space with policies.

The confusion is leading to claims that one method is “better” than

another method. Many authors have criticized dynamic programming

because of the “curse of dimensionality”; stochastic dual dynamic

programming (SDDP) has been described as a “gold standard”; ro-

bust optimization overcomes the curse of dimensionality (one col-

league insisted to me that it “always works”); and a host of heuris-

tic policies have been promoted because they enjoy some sort of

bound.

In our experience, none of these statements is always true, and

we believe that almost every proposed methodology is best (or at

least very good) for at least some problem. What is missing is an ap-

preciation that this discussion is effectively a heuristic search for the

best policy to solve an optimization problem that is rarely formu-

lated properly. The goal of this article is to articulate and formalize

this process.

In this article, we are going to argue for a particular canonical

form for sequential stochastic optimization problems that unifies dy-

namic programming, stochastic programming, and robust optimiza-

tion, along with every other approach used to solve this problem

class. Our goal is not to claim that any method is better than any

other method, but rather to agree on the problem that is being

solved so that we have a common basis for comparing solutions. Fi-

nally, we would like to get an agreement on precisely what it is that

we are looking for.

1 A canonical model for sequential stochastic

optimization

If we are solving a deterministic version of a time-staged problem,

we might write the problem as the following linear model

min
x0,...,xT

T
∑

t=0

ctxt (1)



2 OPTIMA 96

subject to

Atxt = Rt , t = 0, ... ,T , (2)

Rt+1 = Rt + Btxt , t = 0, ... ,T − 1, (3)

xt ≤ ut , t = 0, ... ,T , (4)

xt ≥ 0, t = 0, ... ,T . (5)

Thus, we have expressed a decision vector, an objective function,

and a set of constraints.

A generic, static stochastic optimization problem is widely written

in a form that is close to

min
x∈X

EF (x ,W ), (6)

where W is a random variable (or random vector), E is the expec-

tation operator over the set of possible outcomes of W , and X is

the feasible region.

But what happens when we have a sequential problem? Here, we

have to deal with a sequence of decisions xt and information Wt ,

starting with an initial state S0. An author writing the problem as a

dynamic program might start by writing

Vt(St) = min
xt

(

C(St , xt) + γ
∑

s′∈S

p(s′|St , xt)Vt+1(s
′)
)

, (7)

where γ is a discount factor, S is our state space, Vt(s) is the value

of being in state s , and p(s′|St , xt) is the probability of transitioning

to state s′ if we are in state St and take decision xt (more typically

written as action at ).

Since we know that we cannot compute (7) for anything other

than a toy problem, we can turn to stochastic programming ([3],

[6]), where we might face the problem of solving

min
x0,(xt (ω),0<t≤H),∀ω∈Ω

(

c0x0 +
∑

ω∈Ω

p(ω)

H
∑

t=1

ct(ω)xt(ω)
)

, (8)

subject to constraints that capture not only stochastic versions of

(2)–(5), but also nonanticipativity constraints that ensure that we

are not making decisions using information that is not available yet.

We formulate (8) over a planning horizon H that is typically less than

the model horizon T .

A simpler alternative appears to be robust optimization [1], which

replaces an approximation of the expectation with optimization over

an uncertainty set (we revisit this below).

We note, however, that while (1)–(5) represents a determinis-

tic, optimization model, neither (7) nor (8) represents what could

be called the stochastic counterpart. Oddly, we cannot find any ev-

idence of the kind of canonical form for a sequential stochastic op-

timization problem enjoyed by the deterministic community (with

notable exceptions in pocket communities such as multiarmed ban-

dits).

We argue (as we have in [5, Chapter 5]) that there are five ele-

ments to a sequential, stochastic optimization problem:

1. The state St . This is all the information needed to compute our

model from time t onward, which means it has to include the

information in the cost function, decision function and transition

function for all remaining time periods. The state consists of the

resource or physical state Rt (inventories, state of machines), ex-

ogenous information It (basically any data we need that is not in

the resource/physical state), and belief/knowledge state Kt (prob-

ability distributions giving our belief about unobservable parame-

ters).

2. Decisions xt . These are the controllable quantities. We do not

specify how we are going to make a decision, but we assume

that there will be a decision function (policy) which we denote

by Xπ
t (St), π ∈ Π, which produces a feasible vector xt given

the information in St . Here, “π” carries information about the

structure of the function and any tunable parameters. We can

think of Π as some arbitrary set of allowable functions (policies),

but below, we are going to refine this to a well-defined set of

computable functions.

3. Exogenous information Wt . This is new information that is learned

between time t−1 and t . We assume that any variable indexed by

t is known at time t (that is, it is “Ft -measurable” in the parlance

of the probability community). We note that the information may

depend on both the state St and the decision xt .

4. Transition function. This is the set of equations that takes us from

St to St+1 which we write using

St+1 = S
M(St , xt ,Wt+1). (9)

While this term is not generally used in operations research, this

is widely known as the system model, plant model, or simply

“model” in the engineering controls community, where the term

is standard. The transition function includes both the linear equa-

tions that might be used to model the controlled evolution of

physical resources, as well as updates due to the arrival of ex-

ogenous information (in stochastic programming, this is how sce-

nario trees are constructed).

5. The objective function. Here we formally state our desire to find

the best policy. This is normally written

min
π∈Π

E
π

T
∑

t=0

C(St ,X
π
t (St)), (10)

where C(St , xt) is the cost at time t if we are in state St and

make decision xt . Note that the transition function (9) is imbed-

ded in (10).

We do not have to use an expectation. We might instead use a

risk measure ̺(·) which could be a quantile or a function of a

random variable that penalizes outcomes that are perhaps above

average, giving us the objective function

min
π∈Π

̺
(

T
∑

t=0

C
(

St ,X
π
t (St)

)

)

. (11)

We might even want to focus on the worst outcome, which is

the objective used in robust optimization, a topic we revisit be-

low. The choice of objective is, of course, up to the modeler. Our

job, as algorithms specialists, is to solve the model that has been

presented to us.

We argue that these five elements represent what should be the

canonical form for any sequential (“multistage”) stochastic decision

problem. We observe here that equation (10) represents a dynamic

program; we sometimes have to remind ourselves that a dynamic

program is a problem, not an algorithm (or solution).

Equation (10) is the stochastic version of the objective function in

equation (1) for a deterministic optimization problem, assuming we

are using expectations (otherwise we might use (11)). Equation (3) is

the deterministic analog of our transition function, while equations

(2), (4) and (5) are the constraints that have to be observed by our

policy Xπ
t (St). Yet, while virtually every statement of a deterministic

optimization model will write out an objective function such as (1), it

is actually quite rare to see equation (10) (or (11)) written explicitly.

We claim that every model of a sequential stochastic optimiza-

tion problem should include the objective function using some form
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of (10) or (11). We refer to this objective function (using whatever

form is appropriate for a particular application) as the base model.

This will help distinguish it from an important class of policies that

use a lookahead model, which we describe below.

In practice, we cannot compute the expectation (or risk mea-

sure), so we might simulate a series of N sample paths (ωn)Nn=1. If

these occur with equal likelihood, this means that we estimate the

value of a policy Xπ
t (St) using

F̄
π =

1

N

N
∑

n=1

T
∑

t=0

C

(

St(ω
n),Xπ

t

(

St(ω
n)
)

)

(12)

where St+1(ω
n) = SM(St(ω

n),Xπ
t (St(ω

n)),Wt+1(ω
n)). It is quite

common that authors will view (12) as a “simulation” rather than

an approximation of the objective function. It is not unusual to see

a paper describe the process of simulating a policy without actually

writing the objective function. We feel it is important to explicitly

recognize the base model as the objective function, just as we write

out (1) as the objective function for our deterministic model.

We note that the objectives (10) (or (11)) are mathematically

equivalent to (6), which is widely used by the static stochastic opti-

mization community, where the search is over a real-valued vector.

However, if we have a sequential decision problem, we need to find

the best decision function (policy), which presumably can be char-

acterized by π that captures the structure of the function and any

tunable parameters (which may themselves be time-dependent). The

preferred approach in the research literature (by a wide margin) is

to simply pick a class of policies, after which it is generally possible to

tune parameters that characterize the class (although this last step

is not included in many papers).

By writing our objective function as (10), we can resolve the ques-

tion of what we are looking for. In deterministic optimization (and

static stochastic optimization), we are searching for the best decision

(typically a real-valued vector). In sequential stochastic optimization,

we are searching for a function, which is our policy for making de-

cisions. The problem is that while we have an extensive library of

algorithms for finding the best decision, we lack a similar framework

for searching for policies. We address this challenge next.

2 Designing a policy

A policy is a mapping from a state St to a feasible action xt , which

means it is some type of function. Finding the best policy in (10)

requires searching over a class of functions. The problem is, we just

do not know how to translate this to a practical algorithm.

We begin by providing a characterization of an optimal policy, if

only to serve as a reference point. We then propose what we feel

are four fundamental classes of policies which appear to form the

basis of every solution strategy we have encountered in practice or

in the literature.

2.1 The optimal policy

We can always express an optimal policy by writing

X
∗
t (St) = argmin

xt

(

C(St , xt)

+ min
π∈Π

E

{

T
∑

t′=t+1

C
(

St′ ,X
π
t′ (St′)

)∣

∣St , xt

})

, (13)

where St′+1 = SM(St′ , xt′ ,Wt′+1) (note that this only works if we

are using the expectation form of the objective in (10)). Not sur-

prisingly, this is computationally meaningless; we do not know how

to compute the minimization over policies, and even if this was well

defined, we generally cannot compute the imbedded expectation.

Because the optimization over policies can look mysterious, the

stochastic programming community often writes

X
∗
t (St) = argmin

xt

(

C(St , xtt)

+ min
(x

tt′
(ω),t<t′≤T ),∀ω∈Ωt

E

{

T
∑

t′=t+1

C
(

Stt′ , xtt′ (ω)
)∣

∣St

})

. (14)

Instead of writing a policy Xπ
t′
(St′), we are writing xtt′ (ω), which

means that the decision at time t′ depends on the sample path that

we are following. The problem is that when we specify ω, it means

we are identifying the entire sample path, from t = 0 up to t = T ,

which is like being able to know the future. For this reason, it is

necessary to introduce nonanticipativity constraints (see [3]).

A better way of writing (14) is to write xtt′ (Stt′) instead of

xtt′ (ω), which avoids the need to deal with nonanticipativity con-

straints, but it still means figuring out the functional form for

xtt′ (Stt′) (this is basically our policy Xπ
t′ (Stt′)). Either way, equation

(14) is not computable.

There are five strategies for approximating the lookahead model.

These are:

1. Limiting the horizon. Instead of optimizing from t to T , we opti-

mize over a planning horizon t to t + H .

2. Stage aggregation. It is very common to approximate the sequenc-

ing of information and decisions over the horizon with a two-

stage model, where all random information is revealed at once

after xt is determined.

3. Information approximation. The most common approximations of

the information model is outcome aggregation or Monte Carlo

sampling, where the full set of outcomes Ωt is replaced with a

sample Ω̂t . These are referred to as scenarios in the stochastic

programming community. The strategy used by robust optimiza-

tion replaces Ωt with an uncertainty set, and then replaces the

expectation (a form of averaging operator) with a maximization

over the uncertainty set (more on this below).

4. Discretization. We may use a coarse discretization of states, time

and decisions to simplify the lookahead model.

5. Dimensionality reduction. It is surprisingly common to hold some

information constant within the lookahead model. For example,

we may have a set of forecasts ftt′ for t′ = t + 1, ... , t + H . But

this ignores the reality that at time t+1, the forecasts will change.

This has the effect of dropping forecasts from the state variable

within the lookahead model (such variables are known as latent

variables).

2.2 The four classes of policies

Our tour through stochastic optimization papers over the last

30 years led to the conclusion that there are four fundamental

classes of policies if we looked just at what people were actually

using (that is, computable policies). These are:

1. Policy function approximations (PFAs). These are analytic functions

that map states to actions, without using an imbedded optimiza-

tion problem. These might be discrete lookup tables (when at

this node, turn left), parametric functions (such as (s,S) inven-

tory policies), or statistical models, such as

X
π(St |θ) = θ0 + θ1St + θ2S

2
t . (15)

2. Policies based on robust cost function approximations (CFAs). To illus-

trate a CFA, imagine starting with a simple myopic policy that we

can write

X
π
t (St) = argmin

x∈Xt

C(St , x).
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Not surprisingly, this would rarely work well in practice. How-

ever, there are problems where a slightly modified cost function

might work quite well. One class of approximations looks like

X
π
t (St |θ) = argmin

x∈Xt

(

C(St , x) +
∑

f∈F

θf φf (St , x)
)

. (16)

Here, (φf (St , x))f∈F , is a set of basis functions (as they are

known in the approximate dynamic programming community)

which might be of the form Stx , Stx
2, x , x2, which serves as

a type of correction term. However, there are other problems

where we make direct changes to the cost function itself, or per-

haps the constraints (e.g., imposing a minimum inventory level).

We can represent this class of policies more broadly by writing

X
π
t (St |θ) = argmin

x∈Xπ

t (θ)
C̄
π(St , x |θ). (17)

where C̄π
t (St , x |θ) is some sort of parametric approximation of

the costs, while Xπ
t (θ) might be a modified set of constraints (for

example, we might introduce schedule slack in a scheduling prob-

lem, or buffer stocks in an inventory problem). Here, we would

let π carry the information about the structure of the approxi-

mation (such as the basis functions in equation (16)) and we let θ

capture all tunable parameters.

3. Policies based on value function approximations (VFAs). These are

the policies most often associated with dynamic programming,

and are written

X
π
t (St |θ) = argmin

x∈Xt

(

C(St , x) + E{V t+1(St+1|θ)|St}
)

. (18)

This is what is generally known as approximate dynamic program-

ming. A popular (if risky) strategy is to approximate the value

function using a linear model, giving us

X
π
t (St |θ) = argmin

x∈Xt

(

C(St , x) + E

{

∑

f∈F

θf φf (St+1)
∣

∣St

})

.

(19)

We could replace St+1 with the post-decision state Sx
t and elim-

inate the expectation, producing a policy that looks cosmetically

like our cost function approximation given in (16). However, the

basis functions and regression parameters θ in (16) are com-

pletely different from those in (19), where they are being used

to approximate the value of being in state St+1 (or Sx
t ), while in

(16), the basis functions and θ bear no relation to a value function.

In a CFA-based policy, the error correction term is not making

any attempt whatsoever to approximate the value of being in a

state. It is being tuned purely to produce a better policy.

4. Lookahead policies. Lookahead policies are based on approxima-

tions of the model from time t onward in equation (13). If we did

not have to approximate the future, we would have an optimal

policy. This approximation is called the lookahead model.

The simplest lookahead policy involves optimizing over a horizon

H deterministically. Let x̃tt′ represent the decision variables (this

might be a vector) for time t′ in the lookahead model that is be-

ing solved at time t (which determines the information content).

Variables with tildes represent the lookahead model, so we do

not confuse them with the base model. A deterministic looka-

head policy might be written

X
π
t (St |θ) = argmin

x̃tt ,...,x̃t,t+H

t+H
∑

t′=t

C(S̃tt′ , x̃tt′ ), (20)

where θ captures the horizon and perhaps the discretization (or

other approximations) used in forming the lookahead model.

The stochastic programming community approximates the future

by using a sampled representation of the exogenous information

process, producing a policy that might look like

X
π
t (St |θ) = arg min

x̃tt ,(x̃tt′ (ω̃),t<t′≤t+H),ω̃∈Ω̃t

c̃tt x̃tt

+
∑

ω̃∈Ω̃t

p(ω̃)

t+H
∑

t′=t+1

c̃tt′(ω̃)x̃tt′ (ω̃). (21)

In this case, θ captures parameters such as the number of in-

formation stages, the number of scenarios per stage, temporal

aggregation and discretization.

Below, we show how robust optimization (for sequential prob-

lems) not only approximates the information process (using an

“uncertainty set”), but also replaces the expectation operator

with a maximization over outcomes.

It is possible to form hybrid policies. For example, we might com-

bine a low-dimensional policy function approximation (pump water

into storage at night, release during the day) into a high-dimensional

problem to plan energy generators. A lookahead policy might use

value functions as a terminal approximation.

Three of our policies (PFAs, CFAs and VFAs) require approximat-

ing some function. Most approximation strategies can be categorized

as lookup table, parametric or nonparametric (see [4] for an in-

depth discussion). The lookahead policy, on the other hand, requires

approximating the lookahead model itself. But all represent some

form of approximation, and optimal policies are extremely rare. In

fact, we often find people overlooking the fact that finding optimal

solutions to stochastic lookahead models (“stochastic programs”),

which can be a serious computational challenge, is generally not an

optimal policy, and bounds on our solution of a stochastic program

(which are often so large they cannot be solved optimally), are not

bounds on the performance of the policy.

We represent a policy π as consisting of the class C ∈ C (its struc-

tural form) along with any tunable parameters θ that must belong to

a set ΘC . This means that the search over policies π in equation (10)

means (a) searching over different classes C of policies and then (b)

for a given class, searching over a set of tunable parameters ΘC . Be-

cause hybrids can be very useful, we also have to consider searching

over mixtures of classes.

2.3 Choosing a policy

Below we offer some guidance in terms of choosing a particular class

of policies:

1. Policy function approximations work best for low-dimensional ac-

tions, where the structure of the policy is fairly obvious. (s,S)

inventories are an easy example. Policy function approximations

can also work well when the policy is a relatively smooth sur-

face, allowing it to be approximated perhaps by a linear function

(known in the literature as “affine policies”) or locally linear func-

tions. Neural networks are very popular in engineering applica-

tions.

2. Robust cost function approximations, which are typically deter-

ministic models modified to handle uncertainty, work well for

high-dimensional problems, where we can readily identify the

change needed to produce a robust policy (such as including

buffer stocks or schedule slack).

3. Value function approximations are particularly useful when the

value of the future given a state is easy to approximate. This

approach has proven particularly powerful when approximating

problems that are convex in the decision variable, since convexity

makes it possible to quickly approximate high dimensional func-

tions with a relatively small number of observations.
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4. Lookahead policies are particularly useful for time-dependent

problems, and especially if there is a forecast available that evolves

over time, an issue that is often overlooked in applications that

use one of the other approximation strategies. Deterministic

lookahead models work better than the research literature likes

to acknowledge, especially for problems with random right hand

sides, but struggle with random prices. Stochastic lookahead

models offer a brute-force way to capture uncertainty, but should

always be compared against a deterministic lookahead policy to

make sure that the cost of solving a stochastic lookahead model

is worth it. These comparisons should be done using equation

(10), but this means that you must write a simulator (after all, this

is the objective function!).

3 Robust optimization for sequential problems

Robust optimization has been primarily studied as a method for

static stochastic optimization, where the expectation in (6) is re-

placed with a maximization problem (find the worst outcome) over

an uncertainty set W , giving us

min
x

max
w∈W

F (x ,w), (22)

which transforms a stochastic optimization problem into a deter-

ministic problem.

Equation (22) is an optimization problem, where the expectation

has been replaced with a maximization. This approach is particularly

appropriate in engineering design problems where a static design has

to work under all possible conditions.

This idea has been extended to sequential applications, where the

problem at time t is to solve

X
π
t (St |θ) = argmin

xt∈Xt

max
w∈Wt(θ)

t+H
∑

t′=t

C
(

St′(w), xt′
)

, (23)

where St′+1(w) = SM(St′(w), xt′ ,Wt′+1(w)), and where Wt(θ) is

an uncertainty set constructed at time t , parameterized by θ. Equa-

tion (23) is a policy that has been suggested for sequential problems

(see, for example, [2]). But it is a policy to solve what problem? Sur-

prisingly, this is not stated explicitly in the robust optimization liter-

ature. For example, [2, Section 4.3], when describing their testing,

state that they ran “hundreds of simulations [. . . ] and compared the

mean performance vis-à-vis the mean [. . . ] outcome.” This means

that they use the robust policy in (23) to solve the expectation-

based form of the stochastic optimization problem given by (10).

It could be argued that a robust policy should be used to solve

a robust problem. Just as (22) is a static robust problem, we might

pose a sequential robust problem as

min
π∈Π

max
ω∈W

T
∑

t=0

C

(

St(ω),X
π
t

(

St(ω)
)

)

. (24)

Finding the optimal policy that solves (24) appears to be computa-

tionally intractable. It is harder than (10) since the expectation is an

additive operator, while maxω∈W is not additive.

4 Closing remarks

It is not unusual to find papers simulating two policies, averaging the

results and then reporting which one is best. However, it is surpris-

ingly difficult to find papers that will actually write out this function

as we have in equation (12), and even rarer to see this expressed as

an approximation of the expectation in equation (10). However, if a

paper compares two policies by averaging the results of simulations,

as is done in [2], it seems unavoidable that the authors should rec-

ognize that their true objective function is, in fact, (10), and they are

doing an extremely limited search for the optimal policy.

We argue that any paper that is testing and comparing different

policies for a sequential optimization problem should start by writing

(10) as the objective, just as we write the objective for a determin-

istic optimization problem as is illustrated in equation (1). In the

process, we must acknowledge we are searching for the best policy,

just as we searched over vectors x ∈ X . We need to acknowledge

the full range of policies that might be tested, and even if we cannot

test them all, perhaps we can replace our current culture of root-

ing for a policy class like our favorite sports team, and simply let

scientific experimentation decide this problem for us.

A series of tutorials on this topic are available at

www.castlelab.princeton.edu/jungle.htm.

Warren B. Powell, Department of Operations Research and Financial Engi-

neering, Princeton University, Princeton, NJ, USA. powell@princeton.edu
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Andrzej Ruszczyński

Few Remarks on Stochastic Dynamic

Optimization

Warren Powell provides a great service to our community with his

article. Indeed, many people in many areas work on similar problems

under different names and come to similar conclusions.

His view may be appealing, because it attempts to reduce the

complexity of several research areas to one problem formulation

and several basic ideas of solution methods. As usually happens in

such cases, the most difficult are the first steps, and the foundations

of his proposal need to be carefully examined. While this commen-

tary is not the best platform to carry out such analysis, I will restrict

my remarks to four issues which caught my attention and which

need to be examined with more scrutiny.

1 Wealth of Problem Formulations

An important feature of dynamic stochastic optimization, which has

been overlooked in the article, is the wealth of problem formula-

tions in this area. While deterministic optimization theory focuses

on a small number of well-defined problems, optimization under un-

certainty introduces a great variety of problem formulations, involv-

ing expected value optimization, probabilistic constraints, stochastic

www.castlelab.princeton.edu/jungle.htm
http://www.castlelab.princeton.edu/jungle.htm
mailto:powell@princeton.edu
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dominance relations, risk measures, reliability or bankruptcy con-

siderations, etc. In my opinion, the restriction of possible problem

formulations to just one or few possibilities may be very detrimental

to the development of the area. In fact, new problem formulations

are sources of qualitative progress of the field.

2 Stochastic Programming versus Dynamic

Programming

Having our earlier remarks in mind, we may still admit that model

(10), which is used by Dr. Powell as the base model of multistage

stochastic optimization, does indeed coincide with many popular

problem formulations. However, superficially similar models may

serve different purposes for different applications. The main differ-

ence between stochastic programming and dynamic programming

models is, in my opinion, the relative importance of the first-stage

decision.

In stochastic programming, models of form (10) are usually con-

structed to find the first-stage decision that allows for efficient re-

sponse to uncertain circumstances which may occur in the future.

The nature of the first-stage decision x0 is usually different than later

decisions. A good example is a stochastic facility location problem,

where the first-stage decision is to choose locations of several ser-

vice units, while the second-stage and later decisions represent the

service provided by these facilities to respond to uncertain demand.

The problem is mainly about locating the facilities, and the later

stages serve as a model of uncertain future operation conditions.

The horizon T can be chosen to represent these conditions in the

best possible way. While it is possible to consider location of facilities

over two or three periods, it is hard to envisage an infinite-horizon

problem of this type.

A mathematical advantage of the focus on a few earlier stages is

the possibility to exploit convexity, which helps analyze and solve

stochastic programming problems of significant size. Furthermore,

these models allow for non-Markovian structure of the underlying

process.

In dynamic programming, on the other hand, the focus is on the

long-term performance of the system. The goal is to find a deci-

sion rule (feedback control) to ensure good operation of the system

in the long run. The decisions made at successive periods are of the

same nature; frequently, we make stationarity assumptions about the

dynamics of the system and external disturbances, and every stage

looks like the first stage. That is why we can successfully model

such problems as infinite-horizon dynamic programming problems.

The extreme case is the average cost problem, in which the first

stage does not matter much. Dr. Powell is right in observing that

stochastic programming models may be used as tools for deriving

approximate look-ahead policies in dynamic programming, but the

nature of both classes of models is different.

3 Stochastic versus Robust Optimization

I share Dr. Powell’s criticism of robust optimization models, but I

think that his brief discussion of these approaches missed one very

important issue. While the technical property of additivity is impor-

tant, what matters most are the ways of modeling dependence. In

a system affected by several uncertain quantities, relations between

these uncertain quantities are germane for the operation of the sys-

tem and for developing a policy. In dynamical systems, in which we

are interested in the long-term effects of our decisions, we must not

ignore relations between future uncertain outcomes and past obser-

vations. The theory of probability and stochastic processes provides

us with powerful tools to model dependence and to use it for guid-

ing our actions. I am not aware of the existence of such tools in

robust optimization.

A closely related issue is the construction of uncertainty sets,

which are the key ingredients of robust optimization problems.

While in a static setting one might envisage some confidence sets

playing this role, the dynamic situation is completely unclear. Should

the confidence sets be formulated for the entire sequence of ran-

dom outcomes? How do they change, once the earlier outcomes

have been observed? Do policy recommendations enjoy the time-

consistency property, or is it possible that we shall have an incentive

to renege on our plans, once some observations have been col-

lected? The theory of robust optimization has not yet provided con-

vincing answers to these questions.

4 Expected Value versus Risk Measures

Because of the lack of space, Dr. Powell glossed over one of the most

fascinating recent development in stochastic dynamic optimization:

the use of dynamic measures of risk. There is far more to it than

just replacing the expected value operator E in (10) by ̺ in (11).

The use of dynamic measures of risk creates a large number of the-

oretical and computational difficulties: we need to ensure the time-

consistency property of the model, we need to understand what

Markov property means in this setting, we need efficient solution

methods, and we need new statistical techniques, far beyond the

sample-based model (12).

I want to finish my remarks with the statement that satisfactory

answers to the issues raised in Dr. Powell’s paper and in my short

note cannot be found without mathematics. Only solid mathematical

foundations may lead to a theory that can stand the test of time and

become practically useful.

Andrzej Ruszczyński, Department of Management Science and Information

Systems, Rutgers University, Piscataway, New Jersey, USA.

rusz@business.rutgers.edu

Warren B. Powell

Response to Andrzej Ruszczynski’s

comments

Andrzej has made a number of insightful comments about the ar-

ticle and the field. There is one issue, however, that needs a re-

sponse. He makes the comment “In stochastic programming, mod-

els of form (10) are usually constructed to find the first-stage de-

cision that allows for efficient response to uncertain circumstances

which may occur in the future.” It is certainly true that a large part

of the stochastic programming literature focuses on two-stage prob-

lems, but this article specifically addresses modeling issues associated

with sequential problems. There are many applications of stochastic

programming in operational problems in areas such as transporta-

tion, logistics and energy. The stochastic unit commitment problem

(which involves the planning of when energy generators should be

turned on or off) is a particularly popular area of application. These

are fully sequential problems where decisions have to be made over

time.

Andrzej acknowledges that there are some unresolved modeling

issues in the robust optimization community (in the setting of fully

sequential problems), but his response does not recognize that the

same issues arise in the use of stochastic programming (again, only in

the setting of sequential problems). Stochastic programs, when used

rusz@business.rutgers.edu
mailto:rusz@business.rutgers.edu
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for sequential problems, are a form of lookahead policy that repre-

sents one possible solution to equation (10). It is virtually automatic

for an author applying stochastic programming to a sequential prob-

lem to write a model in the form of (21), but not using (10).

The point of this article is to make the case that equation (10) is

the true objective function, and should be written explicitly. Then,

the stochastic program in equations (21) is simply one class of pol-

icy. Authors should recognize that there are competing classes (e.g.

deterministic lookaheads, robust cost function approximations or

even robust lookahead models), in addition to testing variations

within a class (e.g. variations of the number of scenarios, and pos-

sibly comparisons of two-stage and three-stage approximations).

Equation (10), then, becomes the basis for deciding which policy

is best.

ISMP 2015 in Pittsburgh: Plenary and Semi-Plenary Speakers

The 22nd International Symposium on Mathematical Programming

(ISMP 2015) will take place in Pittsburgh, PA, USA, July 12–19, 2015.

ISMP is a scientific meeting held every three years on behalf of the

Mathematical Optimization Society (MOS). It is the world congress of

mathematical optimization where scientists as well as industrial users

of mathematical optimization meet in order to present the most re-

cent developments and results and to discuss new challenges from

theory and practice.

Plenary speakers

Laurent El Ghaoui (University of California, Berkeley). Laurent El

Ghaoui graduated from Ecole Polytechnique (Palaiseau, France) in

1985, and obtained his Ph.D. in Aeronautics and Astronautics at

Stanford University in 1990. He taught at several institutions in

France, including Ecole Polytechnique, before joining the EECS de-

partment at UC Berkeley in 1999. His research interests include

robust optimization, large-scale machine learning, with a focus on

text analytics.

Jim Geelen (University of Waterloo, Canada). Jim Geelen com-

pleted his Ph.D. at the University of Waterloo. After three post-

doctoral fellowships at CWI (Amsterdam), RIMS (Kyoto), and ZPR

(Cologne), he returned to the University of Waterloo. For the past

15 years he, together with Bert Gerards and Geoff Whittle, has been

working on extending the graph minors project to binary matroids.

Daniel Kuhn (EPFL, Switzerland). Daniel Kuhn holds the Chair of

Risk Analytics and Optimization at EPFL. Before joining EPFL, he was

a faculty member at Imperial College London (2007–2013) and a

postdoctoral researcher at Stanford University (2005–2006). He re-

ceived a Ph.D. in Economics from the University of St. Gallen in 2004

and an M.Sc. in Theoretical Physics from ETH Zürich in 1999. His re-

search interests revolve around robust optimization and stochastic

programming.

Daniel A. Spielman (Yale University). Daniel Alan Spielman re-

ceived a B.A. in Mathematics and Computer Science from Yale in

1992 and a Ph.D. in Applied Mathematics from M.I.T. in 1995. He

spent a year as a NSF Mathematical Sciences Postdoc in the Com-

puter Science Department at U.C. Berkeley, and then taught in the

Applied Mathematics Department at M.I.T. until 2005. Since 2006,

he has been a Professor of Computer Science and Mathematics at

Yale University. He has received many awards, including the 1995

ACM Doctoral Dissertation Award, the 2002 IEEE Information The-

ory Paper Award, the 2008 Godel Prize, the 2009 Fulkerson Prize,

the 2010 Nevanlinna Prize, the 2014 Polya Prize, an inaugural Simons

Investigator Award, and a MacArthur Fellowship. His main research

interests include the design and analysis of algorithms, network sci-

ence, machine learning, digital communications and scientific com-

puting.

Stephen J. Wright (University of Wisconsin). Stephen Wright re-

ceived a B.Sc.(Hons) degree in 1981 and a Ph.D. in 1984 from the

University of Queensland. He has held appointments at the Univer-

sity of Arizona, North Carolina State University, Argonne National

Laboratory (during the 1990s), and the University of Chicago. Since

2001 he has been at the University of Wisconsin-Madison. His re-

search is in continuous optimization and its applications to all areas

of science and engineering.

Semi-plenary speakers

Samuel A. Burer (University of Iowa). Sam Burer is Professor and

Tippie Research Fellow in the Department of Management Sciences

at the University of Iowa. He received his Ph.D. from the Georgia

Institute of Technology, and his research and teaching interests in-

clude convex optimization, mixed integer nonlinear programming,

operations research, and management sciences. His research has

been supported by grants from the National Science Foundation,

and he serves on the editorial board of Operations Research, SIAM

Journal on Optimization, Mathematics of Operations Research, and

Optima. He also serves as a Council Member of the Mathematical

Optimization Society, and as a Member of the Board of Directors of

the INFORMS Computing Society.

Roberto Cominetti (University of Chile, Chile). Roberto

Cominetti graduated as Mathematical Engineer from Universidad

de Chile in 1986 and received a Ph.D. in Applied Mathematics from

Université Blaise Pascal (Clermontt II) in 1989. He has developed

his career at the University of Chile, first at the Department of

Mathematical Engineering and more recently at the Department of

Industrial Engineering. His main research interests are in convex op-

timization and algorithmic game theory as well as their applications

to equilibrium and dynamics in transportation networks.

Michelangelo Conforti (University of Padova, Italy). Michele Con-

forti received his BS from University of Bologna and a Ph.D. from

Carnegie Mellon University. He is currently professor in the Mathe-

matics Department, University of Padova. His interests are mainly in

Combinatorial Optimization and Graph Theory. He is co-recipient

of the Fulkerson Prize. In the past years he has worked in Integer

Programming and has recently co-authored a book on the subject.

Tamara G. Kolda (Sandia Labs). Tamara Kolda is a Distinguished

Member of the Technical Staff at Sandia National Laboratories in

Livermore, California. Her research interests include multilinear al-

gebra and tensor decompositions, graph models and algorithms, data

mining, optimization, nonlinear solvers, parallel computing and the

design of scientific software. She received her Ph.D. from the Uni-

versity of Maryland in 1997 and was the Oak Ridge National Lab

Householder Postdoc in Scientific Computing from 1997-99.

Andrea Lodi (University of Bologna, Italy). Andrea Lodi received

the Ph.D. in System Engineering from the University of Bologna in
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2000 and he has been Herman Goldstine Fellow at the IBM Mathe-

matical Sciences Department, NY in 2005–2006. He is full professor

of Operations Research at DEI, University of Bologna since 2007.

His main research interests are in Mixed-Integer Linear and Nonlin-

ear Programming. He serves as Associated Editor for several pres-

tigious journals in the area and is currently network coordinator of

the two EU projects, and, since 2006, consultant of the IBM CPLEX

research and development team.

Asu Ozdaglar (Massachusetts Institute of Technology). Asu

Ozdaglar received the B.S. degree in electrical engineering from the

Middle East Technical University, Turkey, in 1996, and the Ph.D. de-

gree in electrical engineering and computer science from the Mas-

sachusetts Institute of Technology in 2003. She is currently a profes-

sor in the Electrical Engineering and Computer Science Department

at the Massachusetts Institute of Technology. She is the director of

the Laboratory for Information and Decision Systems and also a

member of the Operations Research Center. Her research area in-

cludes optimization theory, with emphasis on nonlinear program-

ming, distributed optimization, and convex analysis, game theory,

with applications in communication, social, and economic networks,

and network analysis with special emphasis on contagious processes,

systemic risk and dynamic control.

Werner Römisch (Humboldt University Berlin, Germany). Werner

Römisch received a mathematics diploma in 1971 and a Ph.D. in

1976 both from Humboldt-University Berlin. He continued at Hum-

boldt University Berlin and received there a habilitation in 1985 and

a full professorship in 1993. His research is mainly in stochastic op-

timization with side interests in stochastic equations and risk, and

applications in energy and revenue management.

Frank Vallentin (University of Köln, Germany). Frank Vallentin is

a professor of applied mathematics and computer science at Uni-

versität zu Köln. In 2003 he received his Ph.D. in mathematics from

Technische Universität München. Past appointments include assistant

and associate professor at Technische Universiteit Delft, postdoc at

Centrum Wiskunde & Informatica in Amsterdam and postdoc at the

Hebrew University of Jerusalem. His research interests include opti-

mization, geometry, discrete and experimental mathematics.

Pascal van Hentenryck (NICTA, Australia). Pascal Van Hentenryck

got his B.Sc. and Ph.D. from the University of Namur in Belgium.

He leads the Optimization Research Group at NICTA and holds a

vice-chancellor chair in data-intensive computing at the Australian

National University. Prior to his NICTA appointment, he was pro-

fessor at Brown University for about 20 years. His current research

is at the intersection of data science and optimization with applica-

tions in energy, logistics, disaster management, and computational

social science.

Ya-xian Yuan (Chinese Academy of Sciences, China). Ya-xiang Yuan

received a B.Sc. from Xiangtan University (China) in 1981 and a Ph.D.

from University of Cambridge (UK) in 1986. He was Rutherford

Fellow at Fitzwilliam College, University of Cambridge from 1985–

1988. He returned to China in 1988, and has been working as a

full professor at the Chinese Academy of Sciences since then. His

research area is mainly in continuous optimization, particularly on

trust region methods, quasi-Newton methods, nonlinear conjugate

gradients, and subspace methods.

Information

ISMP details (including clusters, cluster chairs, important dates, all

registration rates, discounted MOS membership for 2016–2018, ho-

tel, sponsorship opportunities, exhibits etc.) are available on the

conference web site at www.ismp2015.org.
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