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Note from the Editors

Dear MOS members,

A $15m computer that uses ‘quantum physics’ effects to boost its speed

is to be installed at a NASA facility. It will be shared by Google, NASA,

and other scientists, providing access to a machine said to be up to 3,600

times faster than conventional computers. (BBC Radio, May 16, 2013,

see www.bbc.com/news/science-environment-22554494)

Such news certainly attracts the attention of many people work-

ing in Mathematical Optimization, especially when the benchmark

problem refered to is an optimization problem and the comparisons

are done against branch-and-bound based algorithms on a classical

computer. In the main scientific article of this issue of Optima, San-

jeeb Dash and Jean Francois Puget (both from IBM) shed some light

on the validity of conclusions like the one cited above by reporting

about subsequent experiments on classical computers. In particular

they analyze in detail the experimental setup of the CPLEX solver

used as the classical algorithm in the comparison. Their results are

quite interesting with respect to the question of whether to use lin-

ear instead of quadratic models for certain 0/1-optimization prob-

lems.

In case your expectations of quantum computing have been raised

by news like above but then slightly lowered when reading Sanjeeb’s

and Jean Francois’ article, we must warn you: the discussion column

contributed by Matthias Troyer (ETH Zürich, Institute for Theoreti-

cal Physics) might be further disillusioning, but certainly illuminating.

This issue of our newsletter in front of you appears at the time of

the 22nd International Symposium on Mathematical Programming (ISMP)

held July 12–17, 2015, in Pittsburgh – you might in fact have grabbed

a copy at the conference desk. We take this opportunity to com-

ISMP 2015: Contributions and connections between groups in the optimization community, visualized by Sam Burer (The complete code for computing the figure can be

downloaded from http://sburer.github.io/2015/06/17/ISMP-2015.html)

http://www.bbc.com/news/science-environment-22554494
http://sburer.github.io/2015/06/17/ISMP-2015.html
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memorate one of the most crucial figures in the development of

Integer Programming: Manfred Padberg, who received his doctoral

degree from Carnegie Mellon University in Pittsburgh in 1971, and

who passed away in May 2014. You will find inside this issue a contri-

bution by his PhD-advisor Egon Balas and a gallery of some pictures

from the scientific life of one of the most enthusiastic, influential, and

memorable characters in the history of Mathematical Optimization.

ISMP 2015 in Pittsburgh is going to feature around 1,400 pre-

sentations. The figure on the first page (produced by our co-editor

Sam Burer) visualizes how the contributing groups are distributed

worldwilde and tries to derive a picture of their interactions from

the program information on all sessions, all session chairs, and all

presenters. A group of participants is defined to be those from the

same institution (e.g., university or company) as determined by the

domain name in a participants’s email address (generic domains such

as gmail.com have been ignored). For each group, the number of

sessions in which it participates, and for every pair of groups, the

number of sessions in which that pair participates together were cal-

culated. Finally, the groups have been plotted geographically as points

with the point size indicating the group’s participation frequency, and

great-circle connections have been drawn to indicate the pairs that

participated together. A connection’s thickness and opacity indicates

the pair’s participation frequency.

Finally, this newsletter also provides an outlook into the future

with information about the outcome of the recent MOS elections

(congratulations to everybody elected, in particular to the next chair

of our society: Karen Aardal) and announcements of some of the

most important Mathematical Optimization conferences coming up

in 2016: IPCO in Liège, Belgium, ICCOPT in Tokyo, Japan, and ICSP

in Búzios, Brasil.

We hope you enjoy reading and wish you a pleasant and fruitful

ISMP!

Sam Burer, Co-Editor

Volker Kaibel, Editor

Jeff Linderoth, Co-Editor

Sanjeeb Dash and Jean-François Puget

On quadratic unconstrained binary

optimization problems defined on

Chimera graphs

1 Introduction

An important question in physics and computer science is whether

it is possible in practice to build a quantum computer that can solve

interesting computational problems faster than a classical computer.

The D-Wave Two system, stated to be the “first commercial quan-

tum computer” by its manufacturer [19], is a special-purpose ma-

chine designed to solve the Ising Spin Model (IM) problem. Re-

cently McGeoch and Wang [27] compared the time to solve cer-

tain combinatorial optimization problems on a D-Wave Two sys-

tem (after transforming them to equivalent IM problem instances)

to the running time of some software solvers on an Intel Xeon

workstation. For the quadratic unconstrained binary optimization

(QUBO) problem, the best software solver in their experiments

(IBM ILOG CPLEX Optimizer 12.3 [23], CPLEX 12.3 for short) was

about 3600 times slower than D-Wave Two in obtaining comparable

results – in terms of objective function value. This conclusion was re-

ported in some news articles, e.g., [22, 24], as implying that D-Wave

Two was 3600 times faster than “conventional” or “traditional” com-

puters for this problem. However, this inference is not well-founded

as CPLEX 12.3 produces optimal solutions via a branch-and-bound

algorithm whereas D-Wave Two is not guaranteed to produce opti-

mal solutions.

A natural question is if heuristics running on classical computers

can outperform D-Wave Two on the Ising Spin Model problem. This

was shown to be the case in [10]; a simulated annealing based heuris-

tic running on a regular workstation outperforms D-Wave Two (see

Section 2.1). A second question is whether the running times to

obtain optimal solutions for the QUBO instances in McGeoch and

Wang [27] can be improved significantly, especially with LP-based

branch-and-bound techniques. In this paper, we answer this ques-

tion affirmatively and argue that there is a weakness in the CPLEX

versus D-Wave comparisons of McGeoch and Wang. When we use

a well-known alternative mathematical programming formulation of

the QUBO problem to the one used by them, CPLEX 12.3 can solve

their problem instances in a maximum of 94 seconds – and in 26 sec-

onds on the average – on one core of a Windows 7 workstation (and

within 56 seconds on four cores of the same machine) instead of the

1800 seconds reported in their paper.

Furthermore, McGeoch and Wang report that CPLEX 12.3 was

able to solve only 34 out of 120 weighted Max-2SAT instances within

half an hour when these instances were given to CPLEX as QUBO

instances. We observe that CPLEX can solve 117 out of these 120

instances within half an hour when the alternative formulation men-

tioned above is used.

2 Background

Quantum adiabatic computation [20] is a model of quantum compu-

tation equivalent to [1] the more well-known quantum circuit model

of computation ([30] explains the latter model). The D-Wave Two

system, in the words of the manufacturer, “consists of 512 tiny su-

perconducting circuits, known as qubits, chilled close to absolute

zero to get quantum effects”; see [14] for a description. D-Wave

Two uses these quantum effects to implement “quantum annealing”,

a heuristic search process closely related to quantum adiabatic com-

putation. (There is some debate on the quantum nature of D-Wave

machines, see [10, 32, 35, 36].) The qubits and couplers (pairs of

interacting qubits) are arranged as a subgraph of the Chimera graph

C8. A Chimera graph Ck [27] has 8k2 vertices arranged in a grid-like

pattern: each node in a k × k grid graph is replaced by a complete

bipartite graph K4,4, and the nodes in the “right partition” are con-

nected to the respective nodes in the right partitions of the K4,4s

on the left and right (if they exist), and the nodes in the “left par-

tition” are connected to the respective nodes in the left partitions

of the K4,4s above and below. See [10, Supplementary Information,

Figure 1] for a depiction of the qubits and couplers in a D-Wave

One system which form a subgraph of a Chimera graph C4; some of

the nodes in the graph are active qubits and some are inactive, and

there are no couplers incident with inactive nodes.

The D-Wave Two system uses quantum annealing to approxi-

mately solve Ising Spin Model (IM) problem instances with at most

512 variables (or spins) defined on a subgraph of the Chimera graph

C8. Given an n × n matrix J and n-vector h, the IM problem is:

Min
∑

i 6=j

Jij si sj +
∑

i

hi si subject to s ∈ {−1, +1}n. (1)

(The coefficient of si sj is Jij + Jji , and thus J can be assumed to

be symmetric or upper triangular.) The IM problem with (nonzero)

fields refers to the case when h 6= 0; otherwise the problem is

one with zero fields. An IM instance is associated with an un-

weighted connectivity graph G = (V ,E) where V = {1, ... , n} and

E = {(i , j) : i < j and Jij + Jji 6= 0}; we refer to Jij + Jji values as
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node weights and hi values as edge weights. An instance is defined

on a graph G ′ if its connectivity graph is a subgraph of G ′. To the

best of our knowledge, the quantum annealing algorithm in D-Wave

Two cannot be changed by the user, and so we refer to D-Wave Two

itself as a heuristic solver for IM instances. For an overview of the

computational model used in D-Wave, see [27, 28].

Any other combinatorial optimization problem must be trans-

formed into an IM instance defined on C8 in order to be “natively”

solved on D-Wave Two; see [15], for example, on solving a map-

coloring problem on D-Wave. If such a transformation is not pos-

sible (see [9] for discussions on this issue), D-Wave provides the

“QSage” hybrid solver (a previous version was called “Blackbox”)

which combines computations on a conventional computer along

with queries to the D-Wave quantum hardware.

The QUBO problem is the problem of minimizing a quadratic

function of n {0, 1} variables:

Min
∑

i ,j

Qijxixj subject to x ∈ {0, 1}n, (2)

where Q is an n × n matrix. See [11] for applications. The con-

nectivity graph of an instance is defined as in the case of IM in-

stances. We refer to Qij +Qji values as edge-weights and Qii values

as node weights. The decision version of the QUBO problem is NP-

complete even when the connectivity graph is a planar cubic graph

[4], or a Chimera graph. The latter result follows from [13], where

it is shown that the complete graph on 4n nodes is a minor of Cn.

The transformation si = 2xi − 1 maps the IM problem (1) to the

QUBO problem:

Min
∑

i 6=j

4Jijxixj +
∑

i

2(hi −
∑

j 6=i

Jij )xi + c

subject to x ∈ {0, 1}n, (3)

where c is the constant
∑

i 6=j Jij−
∑

i hi . Under this transformation,

the connectivity graph is unchanged.

In this paper, a random IM instance (defined on a graph G ) is

one where all node and edge weights are chosen independently at

random from a uniform distribution, and a random QUBO instance

is defined similarly. An important point is that the transformation

si = 2xi−1 does not map a random IM instance to a random QUBO

instance (with the same uniform distribution). The diagonal entries

of Q – which can be assumed to be equal to the coefficients of xi as

x2i = xi when xi ∈ {0, 1} – are correlated with the off-diagonal en-

tries. Depending on whether h = 0 or h 6= 0 in the IM instance, we

call the corresponding QUBO instances strongly correlated or weakly

correlated random instances, respectively.

McGeoch and Wang [27] compared three software packages –

CPLEX 12.3, the Max-SAT solver akmaxsat[25], and the Tabu Search

module of METSlib[29] – against a D-Wave Two system on the

QUBO problem, and against the hybrid Blackbox solver of D-Wave

Two on the Max-2SAT and Quadratic Assignment (QAP) problems.

The three solvers above were run on one core of a 4-core Intel

Xeon (E5-2609) 2.4 GHz processor with a 64-bit Ubuntu 12.04 LTS

operating system. The D-wave Two system had a Vesuvius 5 (V5)

hardware chip with 439 active qubits. The time taken by D-Wave

for an IM instance is given by t1+ kt2 where t1 – the overhead time –

is the time to initialize D-Wave, t2 – the sampling time – is the time

to perform one (quantum) “anneal” and get one solution, and k is

the number of “anneals”; in their experiments t1=201ms, t2=0.29ms

and k was set to 1000. In other words, D-Wave would run for a fixed

time of 491ms.

For the QUBO/IM problem, McGeoch and Wang experimented

with 600 random IM instances defined on the D-Wave hardware

graph with between 32 and 439 variables. Out of the 1000 solutions

returned by D-Wave within 491ms, the solution with the best ob-

jective value was recorded. After transforming these IM instances

into QUBO instances, the authors ran the CPLEX 12.3 mixed-

integer quadratic programming (MIQP) solver (and akmaxsat and

METSLib) for up to 1800 seconds. For all 600 instances, the best so-

lution returned by D-Wave in 491ms was the best among all solvers.

Furthemore, for 585 (97 %) instances, the best solution returned

by D-Wave was optimal, as certified by running CPLEX for up to

1800 seconds. They conclude from this that CPLEX “returns com-

parable results running about 3600 times slower than the [D-Wave]

hardware”.

For the Max-2SAT problem, McGeoch and Wang used 120

weighted Max-2SAT instances (40 instances with n = 100 vari-

ables, and the same number with 120 and 140 variables, and

with roughly 1200-1600 clauses). These instances are constructed

by modifying the clause weights of the random, weighted Max-

2SAT instances from Max-SAT 2012 [2] from random inte-

gers in the interval [1,10] to random values from the numbers

{−7.5,−6.5, ... ,−.5, .5, ... , 7.5}. It is easy to transform a Max-2SAT

instance over variables x1, ... , xn into an equivalent QUBO instance

over the same variables. For example, for a clause x1 ∨ x2 in a Max-

2SAT instance, the corresponding term in the QUBO objective func-

tion (assuming a maximization objective) is 1− (1− x1)(1− x2). Mc-

Geoch and Wang report that the optimal solutions of only 34 out of

120 instances can be certified in half an hour with CPLEX.

We do not perform any comparisons with the QAP results in

[27], and therefore do not discuss them in this paper.

2.1 Heuristics for IM instances

Optimal solutions (without proofs of optimality) of instances very

similar to the IM instances of McGeoch and Wang seem to be eas-

ily obtainable with heuristics. A simulated annealing code by Boixo

et al. [10] (also see [32]) finds optimum solutions with high prob-

ability to random IM instances with fields defined on 512 node C8

Chimera graphs in roughly 0.02 seconds on an 8-core Intel Xeon

E5-2670 CPU. For instances without fields, it takes roughly 0.12 sec-

onds. A heuristic by Selby [34] designed for Chimera graphs re-

turns optimal solutions to similar 439 node instances with fields

with high probability in about 0.01 seconds on one core of a 3.2 GHz

CPU.

Boros, Hammer and Tavares [11] show that local-search heuris-

tics for QUBO can be competitive with other heuristics. We im-

plemented a very simple, randomized, local-search heuristic that re-

turns optimal solutions to at least 99 out of the 100 McGeoch-Wang

439 node instances within 0.25 seconds in 99 out of 100 invocations

with different random seeds (we use all 4 cores of a 2.2 GHz In-

tel CPU specified in the next section). The heuristic is: start with

a random ±1 assignment to variables; then repeatedly flip the sign

of the variable that most reduces the current objective function if

one exists, else flip the signs of a random subset of variables of fixed

size (n/30 in our tests). In other words, find local minima via a 1-opt

algorithm and then perturb (randomly) to escape from local minima

(while recording the best solution found at any step).

The effectiveness of this heuristic may be because of the many op-

timal solutions to the McGeoch-Wang instances. We obtain a lower

bound of between 221 and 230 on the number of distinct optimal so-

lutions to the 439 node instances by finding maximal independent

sets of variables such that flipping their values in an optimal solu-

tion individually does not change the objective function value (such

variables correspond to free qubits, see the discussion on degenera-

cies in [10]). We did not evaluate our heuristic on the zero field

problems as it was difficult to solve them to optimality.
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The D-Wave V6 chip is estimated [27] to be three to five times

faster than the V5 chip, and D-Wave V7 is likely to be even faster,

so the above comparisons with simple heuristics may not hold for

newer D-Wave machines.

On the theoretical side, Saket [33] recently developed a PTAS for

the IM problem on Chimera graphs.

3 Computational results

McGeoch and Wang solve QUBO instances using the CPLEX 12.3

MIQP solver; they say “Since QUBO has a quadratic objective func-

tion, the quadratic programming (QP) module was used through-

out”. We refer to the natural integer quadratic programming formu-

lation of QUBO in (2) as QUBO-iqp; however, we do not know if

McGeoch and Wang used this quadratic formulation. There is a well-

known alternative mixed-integer linear programming (MILP) formu-

lation of QUBO, which we call QUBO-milp:

Min
∑

i<j Qijzij +
∑n

i=1
Qiixi subject to

zij ≤ xi ∀i < j , (4)

zij ≤ xj ∀i < j , (5)

xi + xj − zij ≤ 1 ∀i < j , (6)

zij ≥ 0 ∀i < j , (7)

x ∈ {0, 1}n (8)

(we assume, without loss of generality, that Q is upper triangular).

For any i , j , the constraints (4)-(7) (called Fortet inequalities [21] or

McCormick inequalities [26]) force zij to equal xixj when xi , xj ∈

{0, 1}, and define the convex hull of {(xi , xj , xixj ) : xi , xj ∈ {0, 1}}.

If Qij > 0, then (4)-(5) can be dropped and if Qij < 0 then the

other two constraints can be dropped; we use the subset of con-

straints used in [8]. In our experiments, we solve QUBO-milp with

the CPLEX 12.3 MILP solver.

In our first experiment, we solve random QUBO instances de-

fined on Chimera graphs (all weights are chosen from a uniform dis-

tribution over {−1, +1}) similar to the ones described by McGeoch

and Wang; they state that for their QUBO instances, “Weights are

drawn uniformly from {−1, +1}”. We were informed by Geordie

Rose of D-Wave Systems Inc. and by McGeoch that this statement

is incorrect; their results are instead based on random IM instances

which map to weakly correlated QUBO instances, which they kindly

provided to us. Therefore, in our second experiment, we solve these

weakly correlated QUBO instances. In our third experiment, we

work with the Max-2SAT instances of McGeoch and Wang. All our

experiments were performed on a Windows 7 64-bit workstation

with a 4-core 2.2 GHz Intel Core i7-2720QM CPU and 8 GB mem-

ory. Unless stated otherwise, only one CPU core was used.

We observe that random QUBO instances defined on Chimera

graphs are easy to solve to optimality (up to the default optimal-

ity tolerance of CPLEX). On the average, the CPLEX MILP solver

takes less than 0.2 seconds to solve instances on C8 graphs with

512 nodes, and less than 23.1 seconds to solve instances based on

C50 graphs with 20, 000 nodes. Furthermore, QUBO-iqp is harder

to solve for these instances. For C4 graphs, solving QUBO-iqp with

CPLEX’s MIQP solver is 5 times slower on the average than solv-

ing QUBO-milp, and over 8,000 times slower in the worst case (see

Section 4).

For the 600 randomly generated IM instances with fields used by

McGeoch and Wang, QUBO-milp can be solved to optimality with

the CPLEX MILP solver in at most 93.80 seconds (and 25.58 sec-

onds on the average) using one core of our CPU, though using some

non-default CPLEX settings (which we feel is fair as McGeoch and

Wang also perform a “pilot study aimed at finding good parameter

settings”). This is in contrast to the running time of up to 1800 sec-

onds reported by McGeoch and Wang to solve these instances with

CPLEX’s MIQP solver. If we use all 4 cores of our CPU, QUBO-

milp can be solved in at most 56 seconds (and in 20 seconds on the

average).

If the zero field version of the same instances are used (i.e., the

terms hi in (1) are set to zero), QUBO-milp is very hard to solve,

which takes over 20,000 seconds for some 439 node instances, even

with 4 CPU cores. In other words, the instances used by McGeoch

and Wang do not seem difficult for classical computers, but other in-

stances which can be defined on the hardware graph of the D-Wave

Two computer seem hard, at least for CPLEX (but not necessarily so

for heuristics). Furthermore, random QUBO instances seem much

easier than weakly correlated instances, which in turn seem much

easier than strongly correlated instances.

Finally, 117 out of 120 Max-2SAT instances are solved to optimal-

ity using QUBO-milp within 1800 seconds, and the average time to

solve all instances is 280.53 seconds, whereas only 34 out of 120

instances are solved to optimality using CPLEX’s MIQP solver in the

McGeoch-Wang experiments.

We note that the optimal solutions of similar Chimera graph

based instances have been obtained in [10] and [34] using other

exact methods.

3.1 Random QUBO instances

We use random QUBO instances defined on Chimera graphs Ck

with k = 8, 20, 35 and 50, where each node or edge weight of the

Chimera graph is chosen uniformly at random from {−1, 1}. Addi-

tional experiments with integer weights in the range [−100, 100] can

be found in an earlier version of this paper (arXiv:1306.1202v2).

In Table 1, we give the time (in seconds) to solve QUBO-milp

with CPLEX running with default settings. We give the graph, and its

number of nodes and edges in columns one-three. In the remaining

five columns, we give, respectively, the arithmetic mean, the geomet-

ric mean, and the minimum, maximum and standard deviation of the

running times across 50 randomly generated instances.

Table 1. Run times (in seconds) with CPLEX 12.3 for QUBO-milp on random

QUBO instances

Graph nodes edges Mean G. Mean Min Max Std. Dev.

C8 512 1472 0.12 0.11 0.08 0.19 0.02
C20 3200 9440 1.31 1.29 0.97 2.42 0.27
C35 9800 29120 7.32 7.26 6.10 11.09 0.99
C50 20000 59600 23.12 22.92 10.44 29.50 2.71

The maximum time to solve any instance is 29.50 seconds. Out of

the 200 instances in this table, 198 are solved without branching and

the total number of branch-and-bound nodes for the remaining two

is 96. Thus the LP relaxation of QUBO-milp augmented with cutting

planes (or cuts for short) is enough to solve almost all instances; we

dicuss cuts for QUBO-milp in the next section. CPLEX only gener-

ates two types of cuts in these experiments, namely zero-half cuts

[12] and Gomory cuts, and these seem essential. When cuts are

turned off, the C8 instances are all solved within 1.81 seconds with

pure branch-and-bound, but larger instances are hard to solve in this

way; for C20 instances the worst-case solution time without cuts is

over 1000 seconds.

3.2 Random Ising Model Instances

We solve QUBO-milp for the IM instances with fields used by Mc-

Geoch and Wang. There are 6 groups of instances, with 100 in each

group. All instances in each group are based on the same graph but
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Table 2. Run times (in seconds) with CPLEX 12.3 for QUBO-milp on

McGeoch-Wang instances

cores nodes edges Mean G. Mean Min Max Std. Dev.

1 32 80 0.05 0.04 0.01 0.39 0.05
119 305 1.12 1.03 0.23 2.06 0.41
184 471 2.38 2.18 0.53 5.77 0.96
261 672 5.72 5.10 1.64 18.00 2.99
349 899 11.81 10.80 3.04 30.36 5.07
439 1119 25.58 22.18 7.71 93.80 15.29

4 439 1119 20.12 18.01 8.11 55.55 10.49

have different edge and node weights. To create an instance, edge

and node weights are drawn uniformly at random from ±1. In Ta-

ble 2, the first column gives the number of CPU cores used. The

remaining columns have the same interpretation as the last seven

columns in Table 1. We use non-default CPLEX settings as these

instances are harder than those in Table 1. As Gomory cuts and

zero-half cuts are the only cuts employed by CPLEX in solving the

latter, we turn on “aggressive” generation of these two families of

cuts for the current instances. It takes 10 times longer to solve these

instances with default settings.

The hardest QUBO-milp instances (the 439 node ones) can be

solved within 25.58 seconds on the average and within a maximum

of 93.80 seconds. Furthermore, if 4 cores are used, then the maxi-

mum time is 55.55 seconds and the average time is 20.12 seconds.

Additional computations with CPLEX 12.5.1 and 32 cores can be

found at [31]; version 12.5.1 in fact automatically chooses between

QUBO-iqp and QUBO-milp.

Interestingly, even if we provide the optimal solution at the out-

set, it still takes 22.8 seconds on the average to solve QUBO-milp for

the 439 node McGeoch-Wang instances, and 88.6 seconds at most.

In other words, most of the work done by CPLEX is for verifying

optimality (which D-Wave does not do).

On the other hand, if we simply remove the random field (hi
terms) from the IM instances of McGeoch and Wang before trans-

forming to strongly correlated QUBO instances, QUBO-milp seems

very hard to solve. The worst case solution time with four cores is

over 20,000 seconds compared to the maximum of 93.80 seconds

on one core for the instances with fields. We believe that specialized

LP based codes as in [7] are likely to be faster than CPLEX.

3.3 Max-2SAT instances

The Max-2SAT instances used by McGeoch and Wang were pro-

vided to us by D-Wave as QUBO instances, and we simply solve

QUBO-milp for these instances. McGeoch and Wang report that

the optimal solutions of only 34 out of 120 instances can be ob-

tained in half an hour with CPLEX’s MIQP solver. We observe that

the optimal solutions of 117 instances can be obtained via QUBO-

milp in half an hour. In Table 3, we give the run-times for QUBO-milp

for the problems grouped by number of variables. The first column

of the table gives the number of variables n, the last column gives

the number of instances for which QUBO-milp was solved in over

half an hour, and the remaining columns have the same meaning as

in the previous tables. We note that increasing n from 100 to 140

Table 3. Run times in seconds for random Max-2SAT instances with different

number of variables

n Mean G. Mean Min Max num > 1800

100 211.31 113.21 32.18 1595.81 0
120 323.21 195.09 39.72 2046.14 2
140 306.97 199.52 57.08 2257.30 1

does not change running times as much as increasing the number

of clauses from 1200 to 1600. In fact all three instances which

take more than half an hour to solve (via QUBO-milp) have about

1500 clauses.

4 QUBO formulations

The two approaches to solving QUBO instances we discussed are

based on either modeling QUBO instances as integer quadratic pro-

grams or as mixed-integer linear programs (MILP). For the first ap-

proach, letting Q̄ = (Q+QT )/2, QUBO-iqp in (2) can be rewritten

as

Min x
T
Q̄x subject to x ∈ {0, 1}n. (9)

An MIQP solver, such as the one in CPLEX, typically uses a branch-

and-bound algorithm, where lower bounds on QUBO-iqp are ob-

tained by solving a QP relaxation of the form

Min x
T
Q̄x subject to x ∈ [0, 1]n. (10)

If Q̄ is not positive semidefinite, then the QP problem above is non-

convex and NP-hard. For QUBO instances, a simple transformation

makes Q̄ positive semidefinite without changing the optimal solution.

Let D be a n × n diagonal matrix. Then

Min x
T (Q̄ +D)x −

n∑

i=1

Diixi subject to x ∈ {0, 1}n, (11)

is equivalent to QUBO-iqp: when xi ∈ {0, 1}, x2i = xi and for every

x ∈ {0, 1}n , the objective function in (11) has the same value as the

objective function in (9). By choosing D such that Q̄ + D is positive

semidefinite, e.g., if D = −λmin(Q̄)I where λmin(Q̄) is the minimum

eigenvalue of Q̄ and I is the identity matrix, and letting x ∈ [0, 1]n ,

one gets a convex QP relaxation of (11) which can be solved effi-

ciently and used in a branch-and-bound algorithm. The choice of D

influences the quality of the lower bound on the optimal solution

value of (11) from this relaxation, see [8].

As for the second approach, QUBO-milp can often be solved

quickly with linear programming (LP) based branch-and-cut algo-

rithms when the connectivity graph is sparse. The QUBO (or IM)

problem maps, via a one-to-one linear transformation, to the Max

Cut problem [16] on a graph with one extra node connected to all

existing nodes. Some IM instances on 3D grid graphs were shown

to be easy to solve [5] using LP relaxations combined with cycle

inequalities [4] for the Max Cut problem (mapped back to the IM

variable space). The same techniques combined with branch-and-

bound were used in [6] to solve randomly generated QUBO in-

stances on sparse graphs with (n =) 100 nodes (and average node

degree ≤ .0625n), and – with additional cutting planes – in [17] to

solve IM instances on 100 × 100 2D grid graphs. In [6], 160 out

of 162 instances were solved by strengthening the LP relaxation

with cycle inequalities and without branching; almost all instances

in [17] were solved in this manner. It was shown in [8] that QUBO-

milp instances based on sparse, randomly generated graphs G with

n ≤ 80 (average degree of a node is .2n or less) can be solved very

quickly with a general MILP solver, specifically CPLEX 8.1. They use

edge weights in the range [−50, 50] and node weights in the range

[−100, 100]. The average node degree of a Chimera graph is be-

tween 5 and 6, and much less than the average degrees considered

in [8]. On the other hand, it is observed in [18] and [7] that random

IM instances with zero fields (often called “+-J Ising spin glasses”)

and their associated QUBO istances are quite difficult to solve with

LP based methods (Ojas Parekh and Matthias Troyer told us about

the difficulty of these instances).

For the random QUBO instances in Section 3.1, we compare

the time to solve QUBO-iqp and QUBO-milp with the respective
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solvers of CPLEX (with default settings). Even for relatively small

C4-based instances, the difference in time is significant, in the worst

case. The geometric mean of solution times for QUBO-milp over

50 random C4-based instances is 0.02 seconds and 0.10 seconds

for QUBO-iqp, whereas the maximum solution time for QUBO-

milp is 0.16 seconds, and the maximum solution time for QUBO-iqp

is 1355.85 seconds. Therefore, solving QUBO-iqp can take much

longer than solving QUBO-milp on these instances (the gap is even

larger for the larger instances).

We believe the running-time disparity is mainly due to formu-

lation differences rather than differences in solver quality. Firstly,

even though the QP relaxation of QUBO-iqp is stronger than the

LP relaxation of QUBO-milp in general, when Q̄ is modified as in

(11) to make it positive semidefinite (“repairing indefiniteness” in

CPLEX language), the associated convex QP relaxation yields sig-

nificantly worse lower bounds for many of the above instances. Sec-

ondly, QUBO-milp is an extended formulation with extra variables

(representing xixj ). One can derive new linear constraints (e.g., cy-

cle inequalities) to get a better approximation of conv({xxT : x ∈

{0, 1}n}) than conv({xxT : x ∈ [0, 1]n}). This is not possible in

QUBO-iqp. CPLEX does not generate cycle inequalities specifically

when solving QUBO-milp; however it generates zero-half cuts and

Gomory cuts, and cycle inequalities form a subclass of Gomory cuts.

We also observe high computation times for QUBO-iqp for the

McGeoch-Wang IM instances (even though the initial “repaired” QP

bound is stronger than the LP bound from QUBO-milp). For the

439 node instances, QUBO-milp can be solved in at most 93.80

seconds, whereas even after 600 seconds and over 900,000 nodes,

CPLEX is unable to solve QUBO-iqp and there is a large optimality

gap (22% on the average). However, in this case, the best solution

found is optimal for about a third of the instances, and within 0.3%

of the optimal one for all instances. That said, QUBO-iqp may be

much better for dense graphs [8].
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Matthias Troyer

Quantum annealing and the D-Wave

devices

Faced by the computational challenge of simulating interacting quan-

tum systems, which grows exponentially with the number of parti-

cles, Richard Feynman in 1982 proposed to use quantum mechan-

ics itself in a so-called quantum computer to simulate problems in

quantum physics [1]. Quantum computation remained a theoretical

curiosity until Peter Shor showed in 1994 that a quantum computer

could factor integers in polynomial time [2]. This raised interest in

quantum computing since the RSA public key encryption scheme is

based on the presumed hardness of factoring, and with Shor’s algo-

rithm a quantum computer would be able to break RSA encryption.

While Shor’s algorithm has led to intensive efforts of building a quan-

tum computer, factoring is not a long-term ‘killer app’ for quantum

computers. Before we get close to building large enough quantum

computers that can run Shor’s algorithm on currently used key sizes,

one can change to so-called ‘post-quantum’ public key encryption

schemes that are not vulnerable to any known quantum attack [3].

Faced with the challenge of finding broad applications of quan-

tum computers, and the difficulties of building large-scale quantum

computers, the Canadian company D-Wave systems went a different

path from academic research. Instead of trying to produce better

and better quantum bits (qubits), which could ultimately be used to

run quantum algorithms, they looked for application areas where a

quantum device built from many, but imperfect, qubits could poten-

tially be useful.

The D-Wave devices are designed to implement an approach

called ‘quantum annealing’ to find the ground states of Ising spin

glass problems. Ising spin glasses are models in statistical physics,

consisting of N spins si (i = 1, ... ,N) that can take the values +1 or

−1. The energy of a configuration is given by

H =
∑

i<j

Jij si sj −
∑

i

hi si , (1)

with arbitrary coupling constants Jij and hi . Finding the ground state

of an Ising spin glass, i.e. the assignments of si that minimize the en-

ergy, is an NP-complete problem [4], which makes any new approach

to solving these Ising spin glasses interesting to the optimization

community. In fact, the widely used algorithm of simulated annealing

was initially proposed for Ising spin glasses [5]. In simulated anneal-

ing, a Monte Carlo simulation of the Ising spin glass is performed,

slowly cooling the system. Using thermal fluctuations the configura-

tion of the system can escape a local minimum, by climbing over the

barrier separating it from neighbouring local (or global) minima.

A quantum system can escape a local energy also by ‘tunneling’

through barriers, that is without needing the energy to climb over

the barrier. Especially for narrow and tall barriers, quantum tunneling

is more efficient than thermal excitation to the top of the barrier. It

has thus been proposed that a quantum-mechanical version of sim-

ulated annealing, called ‘quantum annealing’ [6, 7, 8] may be more

efficient than classical annealing in finding the ground states of hard

problems [9, 10]. Quantum annealing may not require perfect qubits,

since even an imperfect quantum annealer may profit from quantum

effects in finding ground states more efficiently than a classical algo-

rithm.

D-Wave’s approach in being the first company to bring quantum

computers to the market has been to aim to implement a quan-

tum annealer with more than one thousand imperfect qubits, which

should be compared to academic efforts that develop substantially

better qubits, but are limited to about a dozen (and which can still

be easily simulated classically). The company and its product have

received a very skeptical reception, with doubts being raised if the

qubits are even good enough to be called quantum and not just noisy

classical bits. With the sale of two devices to Lockheed Martin cor-

poration and Google, researchers have now been able to investigate

these devices and shed some light on their potential.

While there is evidence for quantum effects being present in the

D-Wave devices [11] and their performance on random problems

has been consistent with that of a quantum annealer [12], there also

exists an effective classical description for its performance on spin

glass instances [13], which raises doubts about how much quantum

effects can help the device solve problems more efficiently than a

classical one. More importantly, no evidence for so-called ‘quantum

speedup‘ was seen [14], which would refer to a more benign scaling

of the time to solution as a function of problem size N on a quantum

device compared to the best classical algorithm. At this time we can

only speculate about the reasons for not seeing quantum speedup.

Potential explanations might be that the qubits are not ‘coherent’

enough, i.e. they do not stay quantum long enough to give an ad-

vantage. Alternatively it has also been suggested that the benchmark

problems studied so far may not profit from quantum tunneling since

the barriers may be very shallow and wide (recall that quantum tun-

neling is most efficient for tall and narrow barriers) [15]. The con-

troversy about the D-Wave devices is ultimately rooted in the ab-

sence of any mathematical proof of advantages of quantum annealing

in application problems. In the absence of rigorous results, the only

way to ultimately answer this question requires the development of

better quantum annealers and a search for problem classes with the

potential for quantum speedup.

Even in the absence of any scaling advantage, a quantum annealer

may still be useful if it solves a problem more efficiently (in terms

of time to solution or power consumption) than a classical algo-

rithm. While optimized special-purpose codes on a single Intel Xeon

CPU perform slightly better than the 512-qubit D-Wave Two device

[12, 14] there have been claims that D-Wave outperforms the best

classical general purpose optimizers, and in particular CPLEX, by a

factor of 3600 and more [16]. This claim is questioned in the article

by Dash and Puget in this issue, who present the performance of

CPLEX on these problems, if CPLEX is used in an optimal way.

This study is important in several ways. While for the scientist the

right question to ask may be the comparison of a special-purpose de-

vice such as D-Wave to a special-purpose code such as those used

in Ref. [12, 14], for the practitioner the comparison of a commer-

cial device from D-Wave to the best general-purpose commercial

code may make sense. More broadly, the discussion about the per-

formance of the D-Wave devices, shows the challenge faced by new

technology, such as quantum annealers or quantum computers, to

compete with well established and highly optimized classical hard-

ware and software. Fair benchmarks such as the ones by Dash and

Puget, comparing new devices to existing algorithms run in the op-

timal way, are required to assess the potential for new technologies.
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In memoriam Manfred Padberg

On May 12, 2014, Manfred Padberg, one of the

pioneers of integer programming, passed away. In

January 2015, the organizers of the Workshop

on Combinatorial Optimization in Aussois, France,

Michael Jünger, Giovanni Rinaldi, and Gerhard Reinelt,

dedicated one morning to his memory. Some of his

closest scientific friends and collaborators honored

Manfred Padberg by recalling his ground breaking sci-

entific contributions and sharing memories and pic-

tures with the audience. We are very grateful to them

for allowing us to use some of the material in this issue

of our newsletter. In particular, we thank Egon Balas

(Manfred Padberg’s doctoral advisor) for allowing us

to reprint his speech, which, unfortunateley, he could

not give himself during the meeting, and to Martin

Grötschel for providing the scientific curriculum vitae

you find below.

Scientific curriculum vitae
1961–1967 Studies of mathematics at U

Münster (Diploma)

1967–1968 Research assistant at U Mannheim

1968–1971 Masters’ degree and doctorate

(1971) at Carnegie Mellon

University, Pittsburgh

1971–1974 Research fellow at International

Institute of Management, Berlin,

Germany

1973–1974 Guest professor at U Bonn

1974–2002 Associate/full professor at Stern

School of Business, NYU

1983 Lanchester Prize of ORSA

1985 George B. Dantzig Prize of

MPS/SIAM

1989 Alexander von Humboldt Senior

US Scientist Research Award

2000 John von Neumann Theory Prize

(INFORMS)

2002 INFORMS Fellow Manfred Padberg

(10 October 1941 – 12 May 2014)

Egon Balas

Manfred Padberg was my first and best doctoral student.

Almost half a century ago I became Manfred’s professor and then

his doctoral thesis advisor. This happened at GSIA, the Graduate

School of Industrial Administration of Carnegie Mellon University,

where Manfred studied for his PhD between 1968 and 1971. Those

were heady days for me. I had joined the place just one year earlier,

as a fresh immigrant from behind the Iron Curtain and was thor-

oughly enjoying my new freedom and the wonderful research envi-

ronment. One day a young German showed up at my office, with a

Diplom in Mathematics from Münster and with a Ford Foundation

fellowship to study in the US for a doctorate, for which he chose

the area of Operations Research.

The two of us hit it off well from the beginning. As I later found

out others did not do so well in getting along with Manfred, but

the fact that he was my first doctoral student may have facilitated

the process. It seems that we have entered each other’s lives at the

appropriate moment. We worked closely together for four years

and developed an interaction from which I certainly benefitted a

lot, given Manfred’s talent and enthusiasm for our subject, which of

course was integer programming. I am talking about enthusiasm, but

it was more than that: Manfred did have fire in his belly, as they say.

If the proof of a theorem or a step in the proof was open or in

doubt at midnight, he would not go to sleep until the question was

settled. As to Manfred’s perception of our relationship, in the pref-

ace of his wonderful book on Linear Optimization and Extensions,

Manfred talks about “the ‘invisible hand’ of Egon . . . whose enthusi-

asm and superb teaching of the subject literally got me hooked on

linear and combinatorial optimization”. If anybody else had called

my teaching superb, I would have taken it as a routine compliment,

but Manfred can certainly not be accused of throwing around praise

and kind words too easily. So when I read this I thought to my-

self that, maybe, I should reconsider my bias towards research in the

“teaching-versus-research” equation: if indeed I got Manfred Padberg
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“TSP-art” – this is how Giovanni Rinaldi calls Manfred Padberg’s drawings like this one visualizing fractional TSP-solutions and created in order to solve separation problems.

Probably nobody would complain if these pieces were hanging in The Museum of Modern Art.

An incredible world record! In 1986 Manfred Padberg and Giovanni Ri-

naldi solved to optimality a TSP-instance on 2392 nodes, thus pushing

the size of relevant integer programs which might be conceivable to be

solved to optimality beyond everything people could imagine before. The

1986 computations were performed at the National Bureau of Standards

in Washington DC; the printout is from a repeated computation done in

1989 at IBM Thomas J. Watson Research Center, New York.
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During the 80’s large parts of the most important and influential work in integer

programming were done in the group around Manfred Padberg at NYU. The pic-

ture shows (from left to right) Giovanni Rinaldi, Michele Conforti, Monique Laurent,

Ram Rao, and Manfred Padberg.

In 1989, a few months before the Berlin wall came down, Manfred Padberg to-

gether with his first doctoral student Martin Grötschel, his first two doctoral grand

children Michael Jünger and Gerhard Reinelt, and his (non-doctoral) son Marc

Oliver visited East Germany in order to give lectures on Combinatorial Optimiza-

tion. The picture was taken at „Auerbach’s Keller“ in Leipzig, a pub and restaurant

that had been famous since 200 years before due to one scene of the probably

most famous German play „Faust“ by Johann Wolfgang von Goethe.

Claude Berge was one of Manfred Padberg’s closest friends. The investigation of

polyhedral aspects of perfect graphs (which were invented and pioneered by Berge)

became a driving momentum in the development of integer programming and poly-

hedral combinatorics.

For Manfred Padberg’s 60th birthday in 2001, Martin Grötschel and his group at

Zuse-Institute Berlin organized a wonderful day of lectures and celebration that

ended in a big party on a boat at Spree river. On this occasion, Martin Grötschel

reported about his historical research revealing that Manfred Padberg descends

from an old family of robber barons of the Sauerland region in Westphalia, his

family name still being present in the name of a part of the town of Marsberg.

hooked on Combinatorial Optimization, and Manfred got Martin

Grötschel hooked, and Martin got Michael Jünger and Gerd Reinelt

hooked, and so on, then who knows what is more important for the

future of the profession: the research, the facts and properties that it

establishes, or the teaching, the talent that it attracts and sometimes

“gets hooked”?

This is not the place to enumerate Manfred’s contributions to our

field, but let me mention a few crucial facts. In his early work, Man-

fred discovered some basic properties of set partitioning polytopes,

like the fact that any vertex can be reached from any other vertex

by fewer integer pivots than the number of equations. His character-

ization of perfect zero-one matrices reinforced the already existing

ties between graph theory and 0–1 programming. Padberg’s focus

on characterizing the facets of various combinatorial polyhedra set

a trend. His work with Groetschel laid the foundations of the poly-

hedral study of the traveling salesman polytope. These and other

discoveries of Padberg and his coauthors paved the way towards the

larger use of polyhedral methods in integer programming.

Padberg is the originator and main architect of the approach

known as branch-and-cut. Concentrating on the traveling salesman

problem as their main testbed, Padberg and Rinaldi have shown that

if cutting planes generated at various nodes of a search tree can be

lifted so as to be valid everywhere, then interspersing them with

branch-and-bound yields procedures that vastly amplify the power

of either enumeration or cuts by themselves. One of the basic dis-

coveries of the 1980’s in the realm of combinatorial optimization,

arrived at by three different groups of researchers in the wake of
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the advent of the ellipsoid method, was the equivalence of optimiza-

tion and separation: Padberg and Rao were one of these groups.

Padberg’s work combines theory with algorithm development

and computational testing in the best tradition of Operations Re-

search. In his joint work with several researchers he set an exam-

ple of how to formulate and handle efficiently very large scale 0–1

programs with practical applications in industry and transportation.

The fields of Combinatorial Optimization, Integer Programming and,

more generally, Operations Research, will badly miss him.

2015 MOS Elections

We are pleased to announce the results of the 2015 MOS Elections.

Thanks to everyone who voted, and special thanks to the great slate

of nominated candidates who agreed to stand for election. Here are

the results:

MOS Chair: Karen Aardal

MOS Treasurer: Marina A. Epelman

MOS Council Members-at-Large: Shabbir Ahmed, Roberto Cominetti,

Jacek Gondzio, Adrian Lewis

Karen Aardal will be the Vice Chair starting after the ISMP, and she

will be the Chair starting July 2016.

Marina Epleman will be the Treasurer starting July 2016.

The four elected Council Members will begin their terms after the

ISMP.

William Cook, MOS Chair

ICSP 2016 – Búzios, Brazil

The XIV International Conference on Stochastic Programming will

take place in Búzios, a charming town 160 km from Rio de Janeiro,

Brazil, from June 25 to July 1, 2016.

A two-day introductory series of tutorials held during the week-

end precedes the main conference to provide sufficient background

in Stochastic Programming. The conference is developed over the

next five week days with parallel sections, plenary talks from recog-

nized leading researchers in stochastic optimization and a set of mini

symposia, featuring recent contributions on state-of-the-art topics.

To keep registration fees low, we have negotiated preferential

rates with hotel Atlântico for the lecture rooms, in exchange of cer-

tain minimal rooms occupancy. Hotel Atlântico Búzios is a deluxe

resort by the sea, with an excellent restaurant. To encourage ICSP

2016 participants to choose hotel Atlântico for their venue, we of-

fer two perks: R$300 (ca. US$100) discount in the registration fee

for attendants staying in the hotel; the negotiated hotel rates include

also lunch, a very good deal! Please consider staying in hotel Atlân-

tico to help our organization!

Beware of the early submission deadlines; this is done to allow

conference participants to make travel arrangements with antici-

pation, since prices may rise in 2016 due to the realization of the

Olympic Games in Rio in August. The deadline for registration pay-

ment at early-bird rate is December 15th, 2015.

The ICSP is the premier event of the Stochastic Programming So-

ciety (SPS), a technical section of the Mathematical Optimization So-

ciety, that brings together researchers who work on decisions under

uncertainty. The 2016 conference will be the first one held in South

America and will be jointly organized by Brazil and Chile.

ICSP 2016 is the closing event of SVAN 2016, a full trimester

organized at IMPA on Stochastic Variational Analysis, click here for

details on this thematic program.

Plenary Speakers

◦ Shabbir Ahmed (Georgia Institute of Technology, USA)

Mixed-Integer Models in Stochastic Programming

◦ Johannes Royset (Naval Postgraduate School, USA)

Designing Uncertainty Models in Stochastic Programming

◦ Andrzej Ruszczyński (Rutgers University, USA)

Risk Models for Stochastic Programming

◦ Mario Pereira (PSR, Brazil)

Stochastic Programming Models for Energy Planning

Minisymposia Organizers

◦ Güzin Bayraksan (Ohio State University, USA)

Data-driven Methods for Stochastic Programming

◦ David Brown (Duke University, USA)

Advances in Stochastic Dynamic Programming

◦ Miloš Kopa (Charles University in Prague, Czech Republic)

Applications of Stochastic Programming in Finance

◦ Warren Powell (Princeton University, USA)

Applications of Machine Learning in Stochastic Optimization

◦ David Woodruff (University of California, Davis, USA)

Applications of Stochastic Programming in Natural Resources

◦ Huifu Xu (University of Southampton, UK)

Stochastic Equilibrium and Stochastic Variational Inequalities

Tutorials

◦ Roger J-B Wets (University of California, Davis, USA)

Introduction to Stochastic Programming (Saturday afternoon)

◦ Simge Küçükyavuz (Ohio State University, USA)

Stochastic Integer Programming (Sunday morning)

◦ Alexander Shapiro (Georgia Institute of Technology, USA)

Risk measures (Sunday afternoon)

http://icsp2016.sciencesconf.org

ICCOPT 2016 – Tokyo, Japan

The Fifth International Conference on Continuous Optimization

(ICCOPT 2016) will take place in Tokyo, Japan, from August 6 to

August 11, 2016. ICCOPT is a flagship conference of the Mathemat-

ical Optimization Society, organized every three years. It is designed

to provide ample opportunities in which researchers and practition-

ers in continuous optimization can exchange ideas, techniques and

applications.

ICCOPT 2016 consists of Conference and Summer School. The

Conference (August 8–11) comprehends a series of plenary and

semi-plenary talks, organized and contributed sessions, and poster

sessions. It will be held on the campus of the National Graduate

Institute for Policy Studies (GRIPS) located at Roppongi, the most

advanced fashionable central area in Tokyo. The Summer School

(August 6–7) is directed to students and researchers in continu-

http://icsp2016.sciencesconf.org
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ous optimization and related fields. It will be held on the National

Olympics Memorial Youth Center (NYC) located at Yoyogi.

The meeting is chaired by Shinji Mizuno (Organizing Commit-

tee) and Yinyu Ye (Program Committee) and locally coordinated by

Takashi Tsuchiya (Local Organizing Committee).

Tokyo is one of the largest cities in the world with full of exciting

events, attractions and entertainments! At the same time, the city

is quite safe and well-organized. The venue (GRIPS) is in an unbeat-

able location with an exciting neighborhood. The area has a bunch

of nice restaurants which are familiar with foreign guests. We are

sure that participants will enjoy both academic events in the day-

time and social events in the evening. We hope that researchers and

practitioners from all over the world get together in Tokyo on this

occasion.

Important Deadlines

March 15: Summer School Accommodation Reservation for Stu-

dents

April 15: Abstract Submission for Parallel Session, Summer School

Accommodation Reservation for Non-students

May 16: Abstract Submission for Poster Session

May 31: Registration for Presenting Authors and Early Registration

Organizing Committee: support@iccopt2016.tokyo

Further information: www.iccopt2016.tokyo

IPCO 2016 – Liège, Belgium

The 18th conference on Integer Programming and Combinatorial

Optimization (IPCO) will be held in Liège, Belgium. Authors are in-

vited to submit extended abstracts of their recent work by Novem-

ber 20, 2016. Submission details and other information can be found

at www.ipco2016.be.

The aim of the conference is to present original unpublished work

in various aspects of integer programming and combinatorial opti-

mization: theory, computation and applications of discrete optimiza-

tion are most welcome.

Program committee: ◦ Karen Aardal (Delft) ◦ Daniel Bienstock

(Columbia) ◦ José Correa (Chile) ◦ Oktay Günlük (IBM) ◦ Satoru

Iwata (Tokyo) ◦ Volker Kaibel (Magdeburg) ◦ Jochen Könemann

(Waterloo) ◦ Andrea Lodi (Bologna/Montréal) ◦ Quentin Louveaux

(Liège) ◦ Gianpaolo Oriolo (Tor Vergata) ◦ András Sebő (Greno-

ble) ◦ Bruce Shepherd (McGill) ◦ Martin Skutella (TU Berlin, chair)

◦ Leen Stougie (VU Amsterdam) ◦ Gerhard Woeginger (Eindhoven)

Organizing committee: ◦ Yves Crama (Liège) ◦ Quentin Louveaux

(Liège) ◦ Mathieu Van Vyve (Louvain) ◦ Laurence Wolsey (Louvain)

Important dates

Submission: November 20, 2015

Summer School: May 30–31, 2016

Conference: June 1–2–3, 2016

Website: www.ipco2016.be

Application for Membership

I wish to enroll as a member of the Society. My subscription is for my personal use

and not for the benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.

I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:

Mathematical Optimization Society

3600 Market St, 6th Floor

Philadelphia, PA 19104-2688

USA

Cheques or money orders should be made

payable to The Mathematical Optimization

Society, Inc. Dues for 2015, including sub-

scription to the journal Mathematical Pro-

gramming, are US $ 90. Retired are $ 45.

Student applications: Dues are $ 22.50.

Have a faculty member verify your student

status and send application with dues to

above address.

Faculty verifying status

Institution
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